Research: Number Theory
Congruence Subgroups of PSL(2,Z)
^ | Level 19 | Name | Index | con | len | c2 | c3 | > | Cusps | Gal | Supergroups | Subgroups |
---|---|---|---|---|---|---|---|---|---|---|---|---|
19A14 | 285 | 1 | 285 | 5 | 6 | 1915 | 61 91 1815 | 19A2 | ||||
^ | Level 21 | Name | Index | con | len | c2 | c3 | > | Cusps | Gal | Supergroups | Subgroups |
21A14 | 252 | 2 | 63 | 8 | 0 | 2112 | 67 127 | 21B4 21D5 21C6 | ||||
^ | Level 25 | Name | Index | con | len | c2 | c3 | > | Cusps | Gal | Supergroups | Subgroups |
25A14 | 250 | 1 | 250 | 10 | 1 | 2510 | 101 2012 | 5C0 | ||||
^ | Level 28 | Name | Index | con | len | c2 | c3 | > | Cusps | Gal | Supergroups | Subgroups |
28A14 | 252 | 2 | 63 | 8 | 0 | 146 286 |
621 | 14G5 28J6 28C7 | ||||
28B14 | 252 | 2 | 63 | 8 | 0 | 146 286 |
621 | 28H5 14A6 28C7 | ||||
28C14 | 252 | 2 | 63 | 8 | 0 | 146 286 |
621 | 28C4 14A6 28I6 28J6 | ||||
^ | Level 30 | Name | Index | con | len | c2 | c3 | > | Cusps | Gal | Supergroups | Subgroups |
30A14 | 240 | 1 | 240 | 0 | 3 | 106 306 |
430 815 | 10J1 30I5 | ||||
^ | Level 31 | Name | Index | con | len | c2 | c3 | > | Cusps | Gal | Supergroups | Subgroups |
31A14 | 248 | 2 | 248 | 8 | 5 | 318 | 61 101 3016 | 1A0 | ||||
^ | Level 32 | Name | Index | con | len | c2 | c3 | > | Cusps | Gal | Supergroups | Subgroups |
32A14 | 256 | 1 | 256 | 16 | 1 | 328 | 1616 | 16G2 |
Part of a table of all congruence subgroups of Genus 14, which is included in a collection of tables of all congruence subgroups of PSL(2,Z) of genus up to 24. The algorithm used to generate these tables is described in the article Congruence Subgroups of PSL(2,Z) of Genus up to 24 by Chris Cummins and Sebastian Pauli.