Research: Number Theory

Congruence Subgroups of PSL(2,Z)

^ Level 19 Name Index  con  len  c2  c3 > Cusps Gal  Supergroups  Subgroups
19A14 285 1 285 5 6 1915 61  91  1815 19A2
^ Level 21 Name Index  con  len  c2  c3 > Cusps Gal  Supergroups  Subgroups
21A14 252 2 63 8 0 2112 67  127 21B4 21D5 21C6
^ Level 25 Name Index  con  len  c2  c3 > Cusps Gal  Supergroups  Subgroups
25A14 250 1 250 10 1 2510 101  2012 5C0
^ Level 28 Name Index  con  len  c2  c3 > Cusps Gal  Supergroups  Subgroups
28A14 252 2 63 8 0 146
286
621 14G5 28J6 28C7
28B14 252 2 63 8 0 146
286
621 28H5 14A6 28C7
28C14 252 2 63 8 0 146
286
621 28C4 14A6 28I6 28J6
^ Level 30 Name Index  con  len  c2  c3 > Cusps Gal  Supergroups  Subgroups
30A14 240 1 240 0 3 106
306
430  815 10J1 30I5
^ Level 31 Name Index  con  len  c2  c3 > Cusps Gal  Supergroups  Subgroups
31A14 248 2 248 8 5 318 61  101  3016 1A0
^ Level 32 Name Index  con  len  c2  c3 > Cusps Gal  Supergroups  Subgroups
32A14 256 1 256 16 1 328 1616 16G2

Part of a table of all congruence subgroups of Genus 14, which is included in a collection of tables of all congruence subgroups of PSL(2,Z) of genus up to 24. The algorithm used to generate these tables is described in the article Congruence Subgroups of PSL(2,Z) of Genus up to 24 by Chris Cummins and Sebastian Pauli.