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Study of positive solutions of nonlinear elliptic partial differential equations

Introduction

Consider the elliptic system

��u = �1f1(u) + µ1g1(v) in ⌦;

��v = �2f2(u) + µ2g2(v) in ⌦;

u = v = 0 on @⌦,

9
=

; (1)

�i, µi > 0 are parameters

⌦ ⇢ RN
is a smooth bounded domain

f1, g2 : [0,1) ! R are C

1
, f2, g1 : [0,1) ! [0,1] are C

1
nondecreasing

fi(0) = 0 = gi(0), f

0
1(0)  0, g

0
2(0)  0

f

0
2(0) = 0 = g

0
1(0)

lim

s!1
fi(s)

s = 0 = lim

s!1
gi(s)

s

The system (1) has two positive solutions when �1 and µ2 are large.
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Study of positive solutions of nonlinear elliptic partial differential equations

Three solution theorem

Sub-super solution

A pair (u, v)((u, v)) is a subsolution(supersolution) to (1) if it satisfies  (�) in

(1). Strict sub or super-solution if not a solution.

Three solution theorem (Shivaji, 1987) [3]

Suppose there exist a sub-solution  1, a strict super-solution �1, a strict

sub-solution  2 and a super-solution �2 for a system

��u = f(u) in ⌦; u = 0 on @⌦ such that  1 < �1 < �2,  1 <  1 < �2 and

 2 ⌅ �1. Then the system has at least three solutions u1, u2, u3 such that

 1  u1 < u2 < u3  �2.

Remark: The above result works for any cooperative system, which is the case in

our system (1) since

@g
1

@v > 0 and

@f
2

@u > 0

1 sub-solution: (u, v) = (0, 0)

2 strict sub-solution: (u, v) = (w1, w2) (not so trivial) but with help of [2]

where w1,w2 are respectively solutions to

��w = h1(w) in ⌦; w = 0 on @⌦ and

��w = h2(w) in ⌦; w = 0 on @⌦
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Study of positive solutions of nonlinear elliptic partial differential equations

Conclusion

1 strict super-solution: (u, v) = (✏�, ✏�) ( for ✏ > 0) and � is the fist

eigenfunction corresponding to the first eigenvalue of the operator �� (see

[1]).

2 super-solution: (u, v) = (Me,Me) (for large M) and the function e is the

unique solution to the problem ��u = 1 in ⌦; u = 0 on @⌦.

Work on progress

Extension to p-Laplacian systems; �pu := (div(|ru|p�2
u))

Simulation

R. Shivaji C. Maya, Multiple positive solutions for a class of semilinear

boundary value probems, NonLinear Analysis,Elsevier Science 38 (1999),

497–504.

A. Castro J. B. Garner and R. Shivaji, Existence results for classes of

sublinear semipositone problems, Results in Mathematics 23 (1993), 214–220.

R. Shivaji, A remark on the existence of three solutions via sub-super

solutions, in: Lakshmikantham, v. (ed.), Lecture Notes in Pure and Applied

Mathematics Springer, Berlin 109 (1987), 561–566.
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Confession

I do not have a thesis problem yet, and indeed do not yet know very
precisely what my research interests are.

Instead of trying to summarize everything I might end up studying, let me
focus on one specific example of a problem.

Definition

A central simple algebra of degree n over a field k is called cyclic if it has
a presentation hx , y : xn = a, yn = b, xy = ⇣nyxi for some a, b, ⇣n 2 k , ⇣n
a primitive nth root of unity.

Conjecture (Albert)

Every central division algebra of prime degree p is cyclic.
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Central simple algebras of degree p that split over an extension K/k are
classified by the Galois cohomology set H1(K ,PGLp).

Vague, heuristic definition

The essential dimension of a group G is the minimal transcendence degree
over the base field necessary to define classes of H1(K ,G ) for extensions
K/k .

Cyclic algebras are always defined over k(x , y) which has transcendence
degree at most two, so the conjecture would imply ed(PGLp) = 2 for all
primes p. This is an open question!
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Let K be a number field and Cl(K ) be the class group of K . Class groups
can be thought of as Galois groups.

Theorem (from class field theory)

Cl(K ) ⇠= Gal (H/K )

where H is the maximal unramified abelian extension of K (also called the
Hilbert class field of K ).

Replacing H with the maximal unramified extension of K or some other
maximal extension with restricted ramification, one can consider the
associated Galois group.

These groups are often nonabelian and may be finite/infinite. They arise
naturally in various parts of number theory. eg. the embedding problem
for OK .
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Let G be one of these Galois groups. Questions I like to think about:

(i) How can one determine if G is finite/infinite?

(ii) What sort of groups arise in this way?

(iii) Can one compute/describe G when finite (or certain special finite
quotients if infinite)?

(iv) If one fixes a group, can one say anything about how often this
particular group occurs as the Galois group as one varies K over some
family of fields?

Things I’d like to get out of the workshop:

(i) A better understanding of some of the basic algorithms in CNT
(particularly in relation to class groups and Galois groups).

(ii) Perhaps some understanding of the main factors governing running
times and how one might come up with reasonable estimates ahead of
time.
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Zeros of ⇣(k) on the left half plane

Levinson and Montgomery 1974

The Riemann hypothesis implies that ⇣(k) has at most finitely many

non-real zeros with � < 1
2 .

Levinson and Montgomery 1974

For n � 2 there is a unique zero of ⇣ 0 in the interval (�2n,�2n + 2)

⇣ 0 has no non-real zeros with � < 0

Yildirim 1996

⇣ 00 has only one pair of non-real zeros with � < 0

⇣ 000 has only one pair of non-real zeros with � < 0
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Chebyshev Polynomials

Arithmetic Dynamics is the study of number theoretic properties of

dynamical systems.

T. Alden Gassert University of Massachusetts, Amherst Chebyshev Radical Extensions



Chebyshev Polynomials

Arithmetic Dynamics is the study of number theoretic properties of

dynamical systems.

The Chebyshev polynomials are a unique family of polynomials

defined by a trigonometric relation.

Td(2 cos(✓)) = 2 cos(d✓)

T

0

(x) = 2 T

1

(x) = x

T

2

(x) = x

2 � 2 T

3

(x) = x

3 � 3x

T

4

(x) = x

4 � 4x

2

+ 2 T

5

(x) = x

5 � 5x

3

+ 5x

Td+1

(x) = x · Td(x)� Td�1

(x)

Td(Te(x)) = Te(Td(x)) = Tde(x)

T. Alden Gassert University of Massachusetts, Amherst Chebyshev Radical Extensions



Chebyshev Polynomials

Arithmetic Dynamics is the study of number theoretic properties of

dynamical systems.

Td(Te(x)) = Te(Td(x)) = Tde(x)

Consider the polynomials

T

n
` (x)� t := T` � · · · � T`| {z }

n

(x)� t = T`n(x)� t

where ` is an odd prime, and t is an integer for which every iterate

is irreducible.

T. Alden Gassert University of Massachusetts, Amherst Chebyshev Radical Extensions



Chebyshev Radical Extensions

A Chebyshev radical ✓n is a root of T

n
` (x)� t.

T. Alden Gassert University of Massachusetts, Amherst Chebyshev Radical Extensions



Chebyshev Radical Extensions

A Chebyshev radical ✓n is a root of T

n
` (x)� t. Consider a

sequence of roots: {t = ✓
0

, ✓
1

, ✓
2

, . . .} satisfying T`(✓n) = ✓n�1

.

(i.e. ✓n is a root of T

n
` (x)� t.) Let Kn = Q(✓n).

Q

K

1

K

2

.

.

.

`

`

`

�

�

�

Z

OK
1

OK
2

.

.

.

�

�

pZ

pe1
1

· · · perr

.

.

.

.

.

.

T. Alden Gassert University of Massachusetts, Amherst Chebyshev Radical Extensions



Chebyshev Radical Extensions

A Chebyshev radical ✓n is a root of T

n
` (x)� t. Consider a

sequence of roots: {t = ✓
0

, ✓
1

, ✓
2

, . . .} satisfying T`(✓n) = ✓n�1

.

(i.e. ✓n is a root of T

n
` (x)� t.) Let Kn = Q(✓n).

Q

K

1

K

2

.

.

.

`

`

`

�

�

�

Z

OK
1

OK
2

.

.

.

�

�

pZ

pe1
1

· · · perr

.

.

.

.

.

.

– disc(Kn)?

– basis for OKn?

– decomposition

of primes?

T. Alden Gassert University of Massachusetts, Amherst Chebyshev Radical Extensions
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Interests  #

Interests

Things I like:

Heights (and Diophantine geometry)

Infinite algebraic extensions of Q
Applications of group theory to number theory

Using computation to gain insight to theoretical problems – Sage,
GAP

Elliptic curves and abelian varieties

Unlikely intersections

(University of Texas) Bobby Grizzard May 21, 2013 2 / 3
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Problems # 

Problems I have thought about / am thinking about

If a field extension is generated by polynomials of a given degree d ,
are all sub extensions generated by polynomials of degree at most d?

Are there only finitely many elements of height  T in the infinite
extension Q(d) := Q(�

�� [Q(�) : Q]  d)? (Northcott Property)

If A/Q is an abelian variety, is there an " > 0 such that if
↵ 2 Q(A

tors

), then ↵ has height � "? (Bogomolov Property)

Can " be chosen to depend only on the dimension of A?

What is the relationship between properties such at the Bogomolov
and Northcott properties, Galois theory, and field arithmetic?

Lehmer’s conjecture (the one about Mahler measure)

(University of Texas) Bobby Grizzard May 21, 2013 3 / 3
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The Representation Problem

Given a polynomial f (~x) in several variables with rational
coe�cients, and an integer a, we say that f represents a when the
diophantine equation

f (~x) = a

has a solution over the integers.

f (x) = Q(x) + `(x) + c
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n is represented by f (x) Inhomogeneous
Quadratic Polynomial

m

Q(v) + n is represented by v + N Coset of a
Quadratic Lattice

+

Q(v) + n is represented by M := Zv + N Quadratic Lattice
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Koecher Theory

Given a totally real field, F and its ring of integers, OF, let

V = {f (x , y) = ax

2 + bxy + cy

2 | a, b, c 2 OF}

be the set of positive definite quadratic forms over F and
C ⇢ V be the set of positive definite forms.

By Koecher Theory,
C can be decomposed into a union of cells parameterized by
perfect binary quadratic forms.
There are finitely many perfect binary forms up to GL2(OF)
equivalence, that they can be computed using a generalization
of Voronoi’s work. He gave a general algorithm for computing
equivalence classes of perfect n-ary forms over the rationals.
The cones defined by inequivalent perfect forms form a finite
cover of a fundamental domain, containing representatives
from each equivalence class of quadratic forms.

Paula Hamby, Department of Mathematics and StatisticsUniversity of North Carolina at Greensboro Equivalence Classes PD Quad Forms over F,
UNCG Summer School in Computational Number Theory 2013 2/6



Finding Equivalence Classes of Binary Quadratic Forms

over F

V is a 6-dimensional rational vector space. For
F = Q(

p
2),OF = Z[!], where ! =

p
2, there are 2 classes of

perfect forms. One defines a cone over a polytope with 12
vertices, the other defines a cone over a 5-simplex (6 vertices).

To find an equivalence class, fix the discriminant and find the
upper bound for a (which is found the same as for the case
F = Q). The upper bound for a defines a bounded region for
which the coe�cients must belong, so loop over this region
and test if found positive definite forms for equivalency and
inclusion in the cones defined by the perfect forms.
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Representation Theorems for Quadratic Forms
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University of Georgia

May 20, 2013
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Tools

Theorem (Key tool)

Let q be quadratic form over a normed ring R. Let n 2 R be squarefree.

Then there exists a k = k(q,R) of bounded norm and

~
x 2 R

n
such that

q(~x) = kn

Then the problem is simplified to finding reductions for all k /2 R

⇥. If q
represents kn then q represents n.
There are two ingredients to this theorem

1 ”Magic Lattice” theorem

2 Minkowski’s convex body theorem, Hermite Constants, Pigeon Hole
Principal.
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Extending the Technique

The ”Magic” lattice theorem imposes restrictions on the types of
quadratic forms. Currently it requires them to be 2n-ary and have
square discriminant.

We are restricted to rings where the Hermite constant is bounded
above.

Currently I am working to extend this by using various transforms to
change the ring of the quadratic form.

I am working on trying to using various generalization of Hermite
constants (Adelic Heights, Rankin’s)

Jacob Hicks (UGA) Representation Theorems May 20, 2013 3 / 3
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Research Interests

My recent interests are in the geometry of curves and in computational number theory.

Definition

A curve is a smooth projective variety of dimension 1. A divisor of a curve is a formal sum of
points on the curve. A principle divisor is one that can be realized as the zeros and poles of a
regular function.

The Jacobian of a curve C is a geometric object with a group structure we can associate to the
curve.

Question

Given a curve and its Jacobian, describe the family of curves sharing that particular Jacobian.
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Other Interests: S-unit equations

S-unit equation

A1x1 +A2x2 + . . .+A

n

x

n

= B

x

i

2 {p

e1
1 . . .pe

s

s

}

Problem

Determine solutions with no vanishing sub-sum if they exist.

Approach

Using sieving techniques to confirm there are no solutions in cases where this might be
expected.
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Algebraic Number Theory

Class Field Towers

Let K = K0 be a number field and for i � 1, put Ki = HKi�1 .
Consider the tower K0 ✓ K1 ✓ K2 ✓ . . ..

Question: Which families of number fields have infinite class
field towers? For example, are there infinitely many primes p for
which Q( 3

p
p) has infinite class field tower?

Galois Representations

What is the fixed field of the kernel of an abstract representation
⇢ : GQ ! GLn(F ) if...F = C? n = 3? Im ⇢ is solvable?

-Tools: Group theory, Class field theory, Serre’s conjecture/
Langlands



Arithmetic Geometry

Torsion Points on Abelian Varities

Given an abelian variety A over a number field K , how does
A(K )tor compare to A0(K )tor for K -isogenous A0?

How are the rational points of Ap over all primes p of K related
to A(K )tor ?

Noether’s Problem

Given a finite group G and a field K , what does
K (G) := K (xg : g 2 G)G look like? Is it a purely transcendental
extension of K ? If not, what is the minimal degree d such that
there is a purely transcendental extension F of K with
[K (G) : F ] = d? How does the picture change for different
groups G and fields K ?
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First love: integer factorization problem

Given n 2 Z, determine prime numbers p

1

, · · · , pr so that n =

Qr
i=1

pi .

Studying approaches to this problem during college convinced me to try to

become a professional mathematician.

There are three sophisticated algorithms for factoring: the quadratic

sieve, the number field sieve, and the elliptic curve method. The first

two attempt to find numbers a and b satisfying a

2 ⌘ b

2

(mod n). If they

succeed, then

n | a2 � b

2

= (a� b)(a+ b),

and potentially the factors of n have spread out among a� b and a+ b, so

that we can detect them.

Largest number I’ve factored myself (quadratic sieve)

424531313687724587938508659434054133107159755411 =

111244312576158616037⇥ 3816206904034644931770202903

Adam Lizzi (University of Maryland) Mathematical background and interests May 17, 2013 1 / 2



What I enjoy about the factorization problem is trying to bridge the gap

between theoretical and practical. I’m drawn to areas like algebraic number

theory and arithmetic geometry where questions of this sort abound.

Much like how a number field has objects associated to it (discriminant,

regulator, integral basis, ...) that we call upon, algebraic curves have a

cast of associated objects. They include the Jacobian, the zeta function,

point counts over finite fields, ...

Problem

Let C : y

2

= f (x) be a curve of genus two (so deg f = 5, and f satisfies

some other condiitons). Associated to C is its Jacobian JC , an algebraic

surface. Determine polynomials so that JC is the zero set of those

polynomials.
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Introductions

UNCG summer school in Computational Number Theory

Christine McMeekin
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Previous Work

Undergraduate thesis

I
Proved an upper bound on the rank of elliptic curves.

I
Wrote some programs in SAGE to get an idea of how sharp the bound

was in various cases.

I
SAGE data lead to the suspicion that the hardest piece of this bound

to compute may not be contributing to the bound.

Computing/programming background

I
some experience with SAGE

I
took intro to programming in Python

I
and wrote this totally baller breakout game... :)
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Stu↵ I’m learning now...

Want to understand more about computing the Fourier coe�cients of

the modular invariant J(⌧).

Given an elliptic curve E/Q with multiplicative reduction mod some

prime p, want to better understand relationships between j-invariant

and the L-invariant defined by

Lp(E ) =

logp(q)

ordp(q)

where q 2 pZp is the Tate period for E .
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The Computation of Galois

Groups over Local Fields

Jonathan Milstead, UNCG



The General Case

W

Q
p

wildly ramified

g(x) = x

e0 � ⇣

r

p

T = Q
p

(⇣, e

o

p
⇣

r

p)

normal, tamely ramified
extension given by

extension of
degree p

m

unramified extension degree f
given by cyclotomic polynomial,
⇣ is primitive root of unity.

p-adic numbers

U = Q
p

(⇣)

In all cases, OM Algorithm used to find

Splitting Field of given polynomial

1



Brute Force Method

First: Let l = p

f�1
e

o

and k = r(p�1)
e

o

. Then

Gal(T/Q
p

) is generated by the maps s,t

where s: ⇣ 7! ⇣,

e

o

p
⇣

r

p 7!⇣

l

e

o

p
⇣

r

p

and t: ⇣ 7!⇣

p, e

o

p
⇣

r

p 7!⇣

k

e

o

p
⇣

r

p

Second: Continue maps s and t to W. If

Defining Polynomial of W has m roots, ob-

tain 2m maps.

Third: Use OM Algorithm to find roots of

inputted polynomial : {↵1, ...↵n

}.
Fourth: Identify Transitive Subgroup of S

n

.

Each map corresponds to one generator.

Each generator formed by tracking how

maps send an ↵

i

to an ↵

j

.

2



Primitive Prime Divisors in Arithmetic
Dynamics

Khoa Nguyen
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Diophantine Geometry and Arithmetic Dynamics

Diophantine geometry: studies K -rational points on varieties
defined over K where K is arithmetically interesting (e.g.:
number fields, function fields,...)
Dynamics: studies a self-map � : S ! S, and all the iterates �n

for n 2 N.
Arithmetic dynamics: when K is arithmetically interesting, S is
a variety over K , and � is a K -morphism.

Example: a special case of a joint result with Chad Gratton and
Thomas Tucker (to appear Bulletin London Math. Soc.):
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Theorem
Let �(X ) 2 Q[X ] of degree d � 2. Let a 2 Q having infinite

�-orbit. Assume the ABC conjecture.

(a) Assume that �(X ) does not have the form uX

d

. Then for all

n >> 0, there is a prime p (depending on n) such that

v

p

(�n(a)) > 0 and v

p

(�m(a))  0 for all 1  m < n.

(b) Assume that �n(X ) has a square-free factor in Q̄[X ] for

every n. Then for all n >> 0, there is a prime p (depending on

n) such that v

p

(�n(a)) = 1 and v

p

(�m(a))  0 for all 1  m < n.

THANK YOU.
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On Generalizations and Applications of OM
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OM Algorithms

OM Algorithms have been described by several mathematicians including
Mac Lane, Ford, Okutsu, Cantor-Gordon, Montes, and Pauli, to answer
questions related to:

Computing integral bases (both local and global)

Factoring polynomials over local fields

Ideal decomposition in global fields

Computing valuations

Computing completions of global fields

These algorithms construct a sequence of polynomials with strictly
increasing (and known) degrees and valuations that encode strong
arithmetic invariants about ramification, inertia, and more. These are
called Okutsu invariants.
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Applications and Generalizations

With papers being regularly published in the ongoing study of OM
algorithms, there is future work to be done. My work will include:

OM implementation in SAGE

Polynomials with given Okutsu invariants

A clear guide to OM algorithms and known applications

How Okutsu invariants classify polynomials and their extensions

Maximal Tamely Ramified Subextensions and Splitting Fields

The three “discriminants”: classical, reduced, Okutsu

Further ideas: Multivariate polynomials, characteristic polynomials
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Stark’s Conjecture as it relates to
Hilbert’s 12th Problem

Brett A. Tangedal

University of North Carolina at Greensboro, Greensboro NC, 27412, USA
batanged@uncg.edu

May 20, 2013



Let F be a real quadratic field, OF the ring of integers in F, and
m an integral ideal in OF with m 6= (1). There are two infinite
primes associated to the two distinct embeddings of F into R,
denoted by p(1)1 and p(2)1 . Let H2 := H(mp(2)1 ) denote the ray
class group modulo mp(2)1 , which is a finite abelian group.

Given a class C 2 H2, there is an associated partial zeta
function ⇣(s, C) =

P
Na�s, where the sum runs over all integral

ideals (necessarily rel. prime to m) lying within the class C. The
function ⇣(s, C) has a meromorphic continuation to C with
exactly one (simple) pole at s = 1. We have ⇣(0, C) = 0 for all
C 2 H2, but ⇣ 0(0, C) 6= 0 (if certain conditions are met).



First crude statement of Stark’s conjecture: e�2⇣0(0,C) is an
algebraic integer, indeed this real number is conjectured to be a
root of a palindromic monic polynomial

f(x) = xn + a1x
n�1 + a2x

n�2 + · · ·+ a2x
2 + a1x+ 1 2 Z[x].

For this reason, e�2⇣0(0,C) is called a “Stark unit”. By class field
theory, there exists a ray class field F2 := F(mp(2)1 ) with the
following special property: F2 is an abelian extension of F with
Gal(F2/F) ⇠= H2. Stark’s conjecture states more precisely that
e�2⇣0(0,C) 2 F2 for all C 2 H2.
This fits the general theme of Hilbert’s 12th problem: Construct
analytic functions which when evaluated at “special” points
produce algebraic numbers which generate abelian extensions
over a given base field.
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Research Interests

Analytic number theory, in particular the Riemann zeta-function

and its generalizations, called L-functions.

Moments of the Riemann zeta-function:

Ik(T ) :=

Z T

0

��⇣(1
2

+it)
��2k dt

Moments can be used to study:

the growth of a function on average

the behavior of zeros of the function

the zeros of ⇣(s)  ! the prime numbers

Moments are also intriguing objects of study in their own right!
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L-functions (generalizations of the Riemann zeta-function)

Some examples:

L(s,�) Dirichlet L-function of a primitive character �

⇣K (s) Dedekind zeta-function of a number field K

L(s,E ) L-function of an elliptic curve E over Q

Moments of products of automorphic L-functions:

Z T

0

��L(1
2

+it,⇡
1

)

��2k1 · · ·
��L(1

2

+it,⇡r )
��2kr dt

Moments in families:

X

|d |X

L(1
2

,⇡
1

⌦ �d)
k
1 · · · L(1

2

,⇡r ⌦ �d)
kr
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Modular forms over Q

A holomorphic function f : h ! C is a weight 2 modular form of
level N if

f (� · z) = (cz + d)2f (z) for every � =


a b
c d

�
2 �0(N), and

f satisfies certain growth conditions.

f (q) =
X

n�0

anqn, q = e2⇡iz .

There is a link between elliptic curves and certain cusp
forms

ap(f ) = p + 1 �#E(Fp).

The ap are eigenvalues of Hecke operators.
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Tessellation of h

Cusp forms and Hecke operators can be described
cohomologically

H1(�0(N)\h;C) ' S2(N)� S2(N)� Eis2(N).

Generalize...
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