
UNCG SUMMER SCHOOL PROBLEM LIST

PAUL E. GUNNELLS

(1) (a) Prove that the action of SL2(R) on H by fractional linear transformations
is a left action.

(b) Prove that the action is transitive, and that the stabilizer of i is isomor-
phic to SO(2).

(c) Prove that the left action of SL2(R) on H preserves the hyperbolic metric
ds2 = (dx2 + dy2)/y2 and the area dx dy/y2.

(d) Show that the region D = {z = x + iy | x2 + y2 ≥ 1,−1/2 ≤ x ≤ 1/2}
is a fundamental domain for the action of SL2(Z) on H, and compute
its area (with the hyperbolic measure). (Hint: look at the action of the
matrices S = ( 0 1

−1 0 ) and T±1 = ( 1 ±1
0 1 ) on H and argue that they generate

SL2(Z).)
(2) Let Γ(N) ⊂ SL2(Z) be the principal congruence subgroup of level N .

(a) Show that Γ(N) is torsion-free if N > 2. (Hint: use the fact that Γ(N)
is normal and that all torsion elements of SL2(Z) are the center and the
conjugates of the subgroups generated by ( 0 1

−1 0 ) and ( 0 1
−1 1 )).

(b) Show that the map SL2(Z)→ SL2(Z/NZ) is surjective (look at Shimura
if you get stuck).

(3) The Farey tessellation is the tiling of H by the SL2(Z)-translates of the geo-
desic triangle with vertices at 0, 1, and ∞.
(a) Show that if N > 2, a fundamental domain of Γ(N) can be built from

tiles in the Farey tessellation.
(b) Draw pictures of X(N) = Γ(N)\H∗ for N = 3, 4, 5, 6, 7 with the tri-

angulation induced from the Farey tessellation. (Hint: The vertices of
this triangulation lie at the cusps. 3, 4, 5 are going to look very familiar.
For 6, 7 you probably just want to draw a picture of a union of trian-
gles with identifications on the boundary. It also helps to know that the
cusps of Γ(N) are in bijection with nonzero pairs (a, b) ∈ (Z/NZ)2 with
gcd(a, b,N) = 1 modulo the relation (a, b) ' (−a,−b).)

(4) To get presentation for a group using a fundamental domain, one can use the
following theorem:
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Theorem 1. Let Γ ⊂ PSL2(R) be a discrete group acting properly discontin-
uously on H. Let V ⊂ H be an open connected subset such that

H =
⋃
γ∈Γ

γV,

Σ = {γ | V ∩ γV 6= ∅} is finite.

Then a presentation for Γ can by constructed by taking generators to be sym-
bols [γ] for γ ∈ Σ subject to the relations [γ][γ′] = [γγ′] if V ∩ γV ∩ γ′V 6= ∅.

Use the theorem to get a presentation of PSL2(Z). (Hint: take V to be a
slight “thickening” of the fundamental doman D from class.)

(5) Let H3 be hyperbolic three-space. An “upper halfspace” model for H3 can
by gotten by taking the points (z, r) ∈ C × R>0 and using the metric ds2 =
(dx2 + dy2 + dr2)/r2 (here we are writing z = x + iy). We can also think of
H3 as being the subset of quaternions H = {x + iy + rj + tk | x, y, r, t ∈ R}
with r > 0 and t = 0. Write P = P (z, r) for the quaternion corresponding to
(z, r) ∈ H3.

Let G = SL2(C). For M = ( a bc d ) ∈ G, define a transformation of H3 by

M · P = (aP + b)(cP + d)−1.

In this defintion the operations on the right are to be computed in H.
(a) Show that this is a left action of G on H3.
(b) Show that the action is transitive.
(c) Show that the stabilizer of (0, j) is isomorphic to

SU(2) = {M ∈ G |MM̄ t = I}.

(6) (a) Let Γ = PSL2(Z[i]) ⊂ PSL2(C). Then Γ acts on H3. Show that the set

D√−1 = {(x+ iy, r) ∈ H3 | 0 ≤ |x|, y ≤ 1/2, x2 + y2 + r2 ≥ 1}

is a fundamental domain for the action of Γ on H3. (Hint: generalize the
algorithm from above that used S = ( 0 1

−1 0 ) and T±1 = ( 1 ±1
0 1 ) to move

points into the fundamental domain for PSL2(Z)).
(b) If you try to construct a fundamental domain of Γ′ = SL2(Z[

√
−5]) using

something like the above, it doesn’t work. What goes wrong?
(c) Use the fundamental domain D√−1 to find a presentation of Γ (you prob-

ably want to use a computer, but by hand is possible too).
(7) (a) Suppose a Dirichlet series

∑
n≥1 a(n)/ns with a(1) = 1 can be written as

an infinite product of the form∑
n≥1

a(n)

ns
=
∏
p

(1− a(p)p−s + pk−1−2s)−1,
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where the product is taken over primes p and k is a fixed positive integer
(This is an example of an Euler product). Prove

(i) a(mn) = a(m)a(n) if m and n are relatively prime.
(ii) a(pn) can be computed in terms of a(pn−1) and a(pn−2). Compute

the explicit formula for a(pn).
(b) Verify that the Dirichlet series attached to the Eisenstein series Ek(z),

k ≥ 4, has an Euler product. (Hint: relate the Dirichlet series to the
Riemann zeta function somehow.)

(c) Let ∆ = q
∏

n≥1(1 − qn)24 be the cuspform of weight 12 for SL2(Z).
Putting ∆(q) =

∑
n≥1 a(n)qn, check the recursion for the p-power coeffi-

cients a(pn) for ∆ for all p powers less than 100 (you probably want to
use a computer for this).

(8) The coefficients in the q-expansion of ∆ are called the Ramanujan τ -function.
In particular one writes

∆(q) = q
∏
n≥1

(1− qn)24 =
∑
n≥1

τ(n)qn.

Here are some amusing facts about τ that can be verified (up to some point)
by computer experiments:
(a) τ(n) ≡ σ11(n) mod 691.
(b) τ(n) ≡ nσ9(n) mod 7 for n ≡ 0, 1, 2, 4 mod 7.
(c) For p 6= 23 a prime, we have (i) τ(p) ≡ 0 mod 23 if

(
p
23

)
= −1; (ii)

τ(p) ≡ σ11(p) mod 232 if p is of the form a2 + 23b2; and (iii) τ(p) ≡
−1 mod 23 otherwise.

(d) (Lehmer’s conjecture) τ(n) 6= 0.
(9) The E8 root lattice Λ8 can be described as the set of vectors in R8 with

all components xi either integral or half-integral (meaning odd integer/2)
and such that

∑
xi is an even integer. (Note that the xi can’t be a mix-

ture of integers and half-integers . . . only one or the other). For instance
(1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2) ∈ Λ8, as is (1, 1, 0, 0, 0, 0, 0, 0).
(a) Verify that the q-expansion for the modular form built from the theta

series for Λ8 agrees with the Eisenstein series E4(z) up to as high a
q-power as you dare. (qn for n ≤ 3 is probably possible without too
much trouble by hand, but beyond this is probably going to require a
computer.)

(b) Challenge: is it possible to prove equality of this modular form with
E4(z), without using M4(SL2(Z)) = CE4(z)?

(10) (a) Use a computer and the fact that M∗(SL2(Z)) = C[E4, E6] to find a basis
of Mk(SL2(Z)) for k ≤ 36. (Take each basis vector to be a q-series up to
q30.)
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(b) Find an expression for the theta series of the Leech lattice in terms of
your basis (this is an even unimodular lattice, in fact the unique one
in R24 up to rotation and scaling such that all minimal nonzero vectors
have squared length 2). You can get the first coefficients of the theta
series at http://oeis.org/A008408, but don’t look at the bottom of
this encyclopedia entry, or you’ll see spoilers.

(c) Find the unique polynomials in E4, E6 giving the q-expansions you found
in parts (b) and (c) (if that wasn’t what you did for part (a)).

(11) Let θ(z) be the classical theta function

θ(z) =
∑
n∈Z

qn
2

.

(a) Show that θ(z)m = 1+
∑

k≥1 ρm(k)qk, where ρm(k) is the number of ways
of representing k as a sum of m squares.

(b) One can show that θ(z)4 is a modular form of weight 2 for the group
Γ0(4). Furthermore, one knows that the space M2(Γ0(4)) is spanned by
the two weight two Eisenstein series E∗2(z)−2E∗2(2z) and E∗2(z)−4E∗2(4z),
where E∗2(z) = 1−24

∑
n≥1 σ1(n)qn. (In particular these combinations of

E∗2 , a scalar multiple of E2, are actually modular.) Write θ(z)4 in terms
of these Eisenstein series.

(c) Use part (b) to prove a famous formula of Jacobi:

ρ4(n) = 8
∑
d|n

d 6≡0 mod 4

d.

(d) Deduce Lagrange’s theorem: every positive integer can be written as a
sum of four squares.

(12) The notation for this problem is taken from Problem (11). This time we
consider θ(z)8 ∈ M4(Γ0(4)). This space of modular forms is spanned by
E4(az) for a = 1, 2, 4. Prove

ρ8(n) = 16
∑
d|n

d6≡2 mod 4

d3 + 12
∑
d|n

d≡2 mod 4

d3.

(13) Let η(z) be the Dedekind eta-function η(z) = q1/24
∏

n≥1(1− qn). Let f(z) be

the eta-product (η(z)η(11z))2.
(a) Compute the q-expansion of f up to q100.
(b) Verify that the coefficients of this q-expansion agree with the coefficients

a(n) of the L-function of the elliptic curve y2 + y = x3 − x2 − 10x − 20
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up to q100. In particular, these coefficients are determined by∑
a(n)n−s = (1− 11−s)−1 ·

∏
p6=11

(1− a(p)p−s + p1−2s)−1

where the product is taken over primes p 6= 11, and for p 6= 11 we put
a(p) = p + 1 − #E(Fp). (Hint: #E(Fp) is the number of solutions of
y2 + y = x3− x2− 10x− 20 mod p plus 1; the extra solution comes from
the “point at infinity” on the projecive closure of the this affine curve.)

(14) The ring of quasi-modular forms on SL2(Z) is the polynomial ring QM∗ =
C[E2, E4, E6] (in particular, there are no polynomial relations among these
Eisenstein series). Define Ramanujan’s theta operator Θ by

Θ(f) = q
df

dq
.

f Thus if f(z) =
∑

n a(n)qn, then Θ(f) =
∑
na(n)qn. Show that Θ takes

QM∗ into itself. (Hint: to show two modular forms are equal you can check
equality of q-expansions up to some degree. Going up to q50 is more than
enough.)

(15) For k > 2 an even integer and for any nonnegative integer ∆, define

fk(∆, z) =
∑
a,b,c∈Z

b2−4ac=∆

1

(az2 + bz + c)k
.

(We omit a, b, c = 0 if ∆ = 0). This sum converges absolutely.
(a) Show that fk vanishes unless ∆ ≡ 0, 1 mod 4.
(b) Show that fk(∆, z) satisfies the transformation law of a modular form of

weight 2k on SL2(Z). (In fact fk is a modular form.)
(c) Show that fk(0, z) is a constant multiple of the Eisenstein series E2k(z).

(16) In this problem, we learn more about Dirichlet series built from elementary
arithmetic functions. (If you don’t know the definitions, try Wikipedia.) For
each multiplicative function f(n) below, express the associated Dirichlet series∑
f(n)n−s in terms of the Riemann zeta function. (Hint: these functions are

all multiplicative, so you just have to match the factors for the primes p.
It might help first to work out the coefficients of a product of two Dirichlet
series.)
(a) µ(n), the Möbius function. (Hint: to get you started on this problem,

the answer is 1/ζ(s).)
(b) d(n), the number of positive divisors of n.
(c) ϕ(n), Euler’s phi-function.
(d) λ(n) = (−1)ν(n), where ν(pr11 · · · p

rk
k ) = r1 + · · ·+ rk.

(e) µ(n)2.
(f) d(n)2.
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(g) d(n2).
(17) Let G(n) be the number of finite abelian groups of order n, up to isomorphism.

Build the associated Dirichlet series L(s,G) =
∑

n≥1G(n)n−s.
(a) Prove that G(n) is multiplicative.
(b) Find a formula for G(pr) in terms of partitions.
(c) Show (at least formally) that L(s,G) = ζ(s)ζ(2s)ζ(3s)ζ(4s) · · · .
(d) Prove that

∑
n<X G(n) ∼ Cn, where C is a constant. (Hint: Tauberian

theorem.)
(e) Compute the constant C accurate to 5 places past the decimal.

(18) Show that the Hecke operators Tn satisfy

TnTm =
∑
d|n,m

Tmn/d2

when applied to any modular form for SL2(Z).
(19) This problem gives another perspective on Hecke operators. Fix an integer q.

Let T be the infinite tree of degree q + 1. Thus T is a graph with infinitely
many vertices and no cycles; each vertex of T is joined to q+1 others. Define
the distance d(v, v′) between two vertices v, v′ to be the length of the shortest
path connecting them, where each edge is defined to have length 1. Finally
define two sequences of correspondences θk, Tk, k ≥ 0 on the set of vertices of
T by

θk(v) =
∑

d(v,v′)=k

v′

and

Tk = θk + Tk−2 (k ≥ 2),

with the initial conditions T0 = θ0, T1 = θ1.
(a) Show that the θk satisfy

θ1θ1 = θ2 + (q + 1)θ0,

θ1θk = θk+1 + qθk−1 (k ≥ 2).

(b) Show that the Tk satisfy

TkT1 = Tk+1 + qTk−1 (k ≥ 1).
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(20) Let f ∈ Mk(N) have Fourier expansion
∑
anq

n. Show that Tnf =
∑
bmq

m,
where

bm =



a0

∑
d|n

(d,N)=1

dk−1 if m = 0,

an if m = 1,∑
d|m,n

(d,N)=1

dk−1amn/d2 otherwise.

(21) Fix a level N and consider the Hecke operators acting on weight k modular
forms of level N . Write Up for the operator Tp when p|N .
(a) Show that the operators satisfy

(i) TpTpr = Tpr+1 + pk−1Tpr−1 if (p,N) = 1,
(ii) Tpr = (Up)

r if p|N .
(iii) TmTn = Tmn if (m,n) = 1.

(b) Conclude that if f =
∑
anq

n is a simultaneous eigenform for all Tp, Up,
and a1 = 1, then L(s, f) has the Euler product

L(s, f) =
∏

(p,N)=1

(1− app−s + pk−1−2s)−1
∏
p|N

(1− app−s)−1.

(22) (a) Suppose N ′|N and M |(N/N ′). Suppose f(z) ∈ Sk(N
′). Prove that

f(Mz) ∈ Sk(N).
(b) Suppose that f is a Hecke eigenform for all Hecke operators Tp with

(p,N) = 1. Then prove each f(Mz) is a Hecke eigenform with the same
eigenvalues for all Tp with (p,N) = 1.

(23) Define P1(Z/NZ) to be the space of primitive pairs (α, β) ∈ (Z/NZ)2 modulo
the action of (Z/NZ)×. (Primitive means that after lifing back to Z2, we have
Zα + Zβ = Z). Write (α : β) for the point corresponding to the pair (α, β).
Show that P1(Z/NZ) is in bijection with the cosets Γ0(N)\SL2(Z) via the
“bottom row map:” ( a bc d ) 7→ (c : d).

(24) Let p be a prime and count the orbits of S = ( 0 −1
1 0 ) and R = ( 0 1

−1 1 ) in
P1(Z/pZ). (Hint: the answer depends on p mod 12.)

(25) Implement the modular symbol algorithm in the computer software of your
choice: given a modular symbol {α, β} that is not unimodular, write {α, β} =∑

i{αi, βi} where each modular symbol on the right hand side is unimodular.
(26) Show that there are no weight 2 cusp forms of level 13. (Hint: X0(p) has 2

cusps for p prime.)
(27) Compute the space of modular symbols M2(23) and the eigenvalues of the

operators T2, T3, T5. Show that there is a weight 2 cuspidal eigenform of level
23 whose q-expansion begins q + αq2 − (2α+ 1)q3 − (α+ 1)q4 + 2αq5 + (α−
2)q6 + · · · where α2 + α− 1 = 0.
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(28) Use modular symbols to show that there are no weight 2 cusp forms of level
2 ≤ N ≤ 10. (You will need to look up how many cusps X0(N) has.)

(29) Use modular sumbols to find the weight 4 cusp form of level 5.


