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The abc-Conjecture (J.Osterlé, D.Masser, 1985)

I Given any ε > 0, there is a constant K (ε) > 0 such that for
every triple of coprime integers a, b, c , satisfying a + b = c ,
we have,

max(|a|, |b|, |c |) ≤ K (ε)N1+ε,

where
N = rad(abc) =

∏

p prime
p|abc

p.

I Easy to state, difficult to verify.

I Implications: abc ⇒ the Fermat equation xn + yn = zn has at
most finitely many integer solutions.

I abc ⇒ Faltings’ Theorem on Mordell’s Conjecture. (N. Elkies,
1991)



Refinements to the abc-Conjecture

I Notation: Let ω(n) denote the number of distinct prime
factors of an integer n and define ω = ω(abc).

I Refinement (A. Baker, 1996):

max(|a|, |b|, |c|)� N(logN)ω/ω!,

where the implied constant is absolute.

I Explicit abc-Conjecture (A. Baker, 2004): For any coprime
integers a, b, c satisfying a + b = c , we have,

max(|a|, |b|, |c |) < 6

5
N(logN)ω/ω!.



A Problem of Ruderman

I Selfridge noticed that 22 − 2|x2 − x , 22
2 − 22|x22 − x2 and

22
22 − 22

2 |x22
2

− x2
2

for all x ∈ N, and asked the following
question: Find all pairs (m, n) such that 2m − 2n|xm − xn for
all x ∈ N.

I This is true for (m, n) ∈ S , with |S | = 14. (Sun Qi, Zhang
Ming Zhi, 1985)

I There is a finite set S ′ such that for m > n ≥ 0,

2m − 2n|3m − 3n ⇐⇒ (m, n) ∈ S ′.

(Murty and Murty, 2011)

I H. Ruderman (1974): If m > n ≥ 0 are integers such that
2m − 2n|3m − 3n, then 2m − 2n|xm − xn for all x ∈ N.

I Note that Ruderman’s problem is true iff S ′ = S .

My goal is to employ Baker’s explicit abc-Conjecture to find S ′,
and hence resolve Ruderman’s problem.
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Brain-Robot Interface: 
Controlling robots using energy 
emanating from a human brain 

Stevo Bozinovski  
South Carolina State University 



The pioneering work, 1988 
•  S. Bozinovski, M. Sestakov, L. Bozinovska,. “Using EEG alpha rhythm to control a mobile robot,” In G. Harris, 

C. Walker (eds.) Proc 10th Annual Conference of IEEE Engineering in Medicine and Biology Society, New 
Orleans, USA, vol 3,  pp. 1515-1516, 1988 (non-invasive recording, subjects were humans) 

•  The second work on Brain-Robot interface was 11 years later (Chapin et al 1999), (invasive inside brain 
recording, subjects were rats).  

•  Those were the only works in brain-robot interface in 20th century. In 21st century there is explosion of works 
in this area. 

Solving the problem of psychokinesis, using EEG-based psychokinesis 



Recent work, 2015 
•  S. Bozinovski, A. Bozinovski “Mental States, EEG Manifestations, and 

Mentally Emulated Digital Circuits for Brain-Robot Interaction” IEEE 
Transactions on Autonomous Mental Development 7(1): 39-51, 2015 

Controlling several robot motors using single EEG channel 
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Circle Packings and the Riemann zeta function

Study the distribution of Ford circles in a Ford Circle Packing and
obtain asymptotics of various geometric statistics associated to these
circles.

Obtain similar results for other kinds of packings like the Apollonian
Circle Packing (ACP) and generalized ACPs.

Monotonicity properties of derivatives of Riemann zeta function and
L-functions associated to modular forms.

Zeros on the critical line of bounded vertical shifts of the Riemann
zeta function.
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Pair Correlation of Sequences

Study the distribution of gaps between members of a given arithmetic
sequence.

Provide examples of sequences whose pair correlation behaves as that
of random sequences.

For instance, Rudnick, Sarnak and Zaharescu showed that the pair
correlation function for {αxn}, when {xn} is a lacunary sequence
which coincides with that of a random sequence, for almost all real
numbers α.

We consider the fractional parts coming from a class of sequences
that take rational values and show that their pair correlation behaves
in the same way as that of a uniformly distributed random sequence.
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Research Background

Undergraduate Work - Image Processing

Funded project to classify digital image types and develop a
criterion for deciding what filter to use with what parameters.
Worked with images from the Biology Department of ECU
take with a Scanning Electron Microscope.
Conclusion: project was too large and not well enough defined,
did achieve some good results but still had to be
experimentally determined on an image by image basis.

Recent Work - Digital Signal Processing

Attempt to develop a criterion for choosing a packet size of
partitioning signals of length N = 2p and compressing using
the Discrete Haar Wavelet Transform.
Obtained better (though not phenomenally) results than
standard Fourier Transform based compression however
criterion is again elusive and signals needed to be optimized
manually.
Both projects under Dr. Gail Ratcliff.
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Research Interests

Graph Theory (under Dr. Johannes Hattingh)

Part of an ongoing research project seeking to find the
k-Ramsey numbers of certain types of bipartite graphs.
Recently started and not very far along.

General Mathematical Interests

Basically everything!
Most beautiful fields so far, Representation Theory (only really
studied finite dimensional), Hilbert Spaces and Finite Field
Theory.
Summer study topics (hopefully) – Galois Theory,
Error-correcting codes, and Topological Manifolds.
Related topics that I know little of but want to learn more
about:

Cryptography (and related topics)
Computability
Theoretical Computer Science – logic, algorithms, language
theory etc.
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Let d be a squarefree positive integer and Od be the ring of
integers of Q(

p
d).

In my research for my thesis I am working towards computing and
tabulating congruence subgroups of

PSL(2, Od) = SL(2, Od)/{±1}

(Hilbert modular group) using Magma.

Lance Everhart My Research Interest
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Some interesting past work of mine:

Multi-user Dynamic Proofs of Data Possession using Trusted
Hardware

Crytography and programming
Published by CODASPY

3D engine for possible future virtual tours of UNCG

Calculus application
Linear algebra based engine
Curve fitting with B-spline curves

Lance Everhart My Research Interest



Fractional Derivatives of Hurwitz Zeta Functions

Ricky Farr Joint Work With Sebastian Pauli

University of North Carolina at Greensboro

18 May 2015
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Hurwitz Zeta Functions And Their Derivatives

Fractional Derivative of Hurwitz Zeta Functions

Let s = σ + ti where σ > 1, 0 < a ≤ 1, and α > 0

ζ(α)(s, a) = (−1)α
∞∑

n=1

logα(n + a)

(n + a)s
.

Farr (UNCG) Fractional Derivatives of Hurwitz Zeta Functions 18 May 2015 2 / 3



Generalized Non-Integer Stieltjes Constants

Definition

The non-integral generalized Stieltjes Constants is the sequence of
numbers {γα+n(a)}∞n=0 with the property

∞∑

n=0

logα(n + a)

(n + a)s
=

Γ(α + 1)

(s − 1)α+1
+

∞∑

n=0

(−1)nγα+n(a)

n!
(s − 1)n, s 6= 1

Farr (UNCG) Fractional Derivatives of Hurwitz Zeta Functions 18 May 2015 3 / 3
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Self-Introduction and Research Interests

Zhenchao Ge

Advisor: Micah B. Milinovich

Univeristy of Mississippi
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May 18 2015
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Research Interests
Analytic Number theory, Riemann zeta-function, Dedekind
zeta-function and L-functions.

Current Research Focus: Analytic theory of algebraic
numbers

I.M. Vinogradov conjectured the least prime quadratic residue
module p is Oε(pε).
(1966) Yu.V.Linnik and A.I.Vinogradov proved that is
O(p 1

4+ε).
(2014) P.Pollack generalized this in abelian number fields.
The least prime that splits completely in an abelian number
field is O(|D| 1

4+ε). (Burgess’s bound)

Zhenchao Ge Self-Introduction and Research Interests
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The least prime that splits completely in a number field

In some cases, I can generalize Pollack’s results to non-abelian
Galois extension.

Factorization in Artin L-functions
Burgess bound unavailable
When are they automorphic?
Use the subconvexity bound for automorphic L-functions in
place of Burgess

Sample Result
The least prime that splits completely in a S3-sextic extension is
O(|D|0.499).
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Primes in Quadratic Progressions

Does the quadratic polynomial f(n) = n2 + 1 produce infinitely many
primes?

1, 5, 10, 17, 26, 37, 50, 65, 82, 101, 122, 145, 170, 197, 226, 257, . . .

Consider the elliptic curve E : y2 = x3 − x, and consider the trace of
Frobenius for certain primes p.

Prime p ap(E)

5 -2
17 2
37 -2

101 -2
197 -2
257 2

Luke Giberson Distributions of Primes and Lang-Trotter UNCG Summer School
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The Lang-Trotter Conjecture

Conjecture (Hardy-Littlewood F, 1923)

Let f(n) = an2 + bn+ c be a “reasonable” quadratic progression. Then

#{p < x : p = f(n) for some n ∈ N} ∼ Df

√
x

log x
,

where the constant Df is explicitly predicted.

Conjecture (Lang-Trotter, 1976)

Let E/Q be an elliptic curve without complex multiplication. Fix an
integer r 6= 0. Then

#{p < x : ap(E) = r} ∼ CE,r

√
x

log x
,

where the constant CE,r is explicitly predicted.
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Zeros of ζ as spectral parameters
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History

1977 Haas attempted to numerically compute solutions to

(∆− λs)u = 0

with λs = s(s − 1) on Γ\H.
Shortly after, zeros of ζ and L(s, χ−3) were observed on
the list of spectral parameters.

1979-1981 Hejhal more scrupulously computed the values only to
notice that all and exactly the zeros of ζ and L(s, χ−3)
were missing from the list.
Wait... did you just say zeros of ζ showed up as
garbage?!
Hejhal observed that what Haas had actually solved was

(∆− λs)u = δafcω

for δafcω the automorphic dirac delta at the corners of the
fundamental domain of Γ\H.
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What now?

1982-1983 Colin de Verdiere showed how to make a genuinely
self-adjoint operator plausibly related to the problem.

The status of Colin de Verdiere’s speculation was
unclear until recent work of Bombieri and Garrett gave a
precise formulation in terms of distributions and Sobolev
spaces.

For more information visit: math.umn.edu/˜garrett
math.umn.edu/˜kling202

or e-mail: kling202@umn.edu
Thank you!
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Explicit formula of a generalized Ramanujan sum
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Generalize the Ramanujan sum by introducing a parameter β ∈ N:

c
(β)
q (n) =

∑

(h,qβ)β=1

e2πihn/q
β
.

In a recent paper, we proved

C(β)(n, x) =
∑′

q≤x
c
(β)
q (n) = −2σ(β)1 (n) + lim

ν→∞

∑

|γ|≤Tν

σ
(β)
1−ρ/β(n)

ζ ′(ρ)
xρ

ρ

+
∞∑

k=1

(−1)k(2π/x)2k
(2k)!kζ(2k + 1)

σ
(β)
1+2k/β(n)

(1)

where σ
(β)
z (n) =

∑
dβ |n d

βz . Note that this formula generalizes

Titchmarsh explicit formula for n = 1 since c
(β)
q (1) = µ(q):

M ′(x) = −2 + lim
ν→∞

∑

|γ|≤Tν

xρ

ρζ ′(ρ)
+
∞∑

k=1

(−1)k(2π/x)2k
(2k)!kζ(2k + 1)
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Patrick Kühn, Universität Zürich Explicit formula of a generalized Ramanujan sum



2/3

Generalize the Ramanujan sum by introducing a parameter β ∈ N:

c
(β)
q (n) =

∑

(h,qβ)β=1

e2πihn/q
β
.

In a recent paper, we proved

C(β)(n, x) =
∑′

q≤x
c
(β)
q (n) = −2σ(β)1 (n) + lim

ν→∞

∑

|γ|≤Tν

σ
(β)
1−ρ/β(n)

ζ ′(ρ)
xρ

ρ

+
∞∑

k=1

(−1)k(2π/x)2k
(2k)!kζ(2k + 1)

σ
(β)
1+2k/β(n)

(1)

where σ
(β)
z (n) =

∑
dβ |n d

βz . Note that this formula generalizes

Titchmarsh explicit formula for n = 1 since c
(β)
q (1) = µ(q):

M ′(x) = −2 + lim
ν→∞

∑

|γ|≤Tν

xρ

ρζ ′(ρ)
+
∞∑

k=1

(−1)k(2π/x)2k
(2k)!kζ(2k + 1)
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Compare L.H.S. with R.H.S. for β = 2:

Figure: In blue: C(2)(24, x), in red: R.H.S. of (1) with 5 and 25 pairs of
zeros and 1 ≤ x ≤ 100.

Moreover, RH is connected to the rate of growth of C(β)(n, x):

Theorem (RH equivalence)

RH is true if and only if C(β)(n, x)�β,n x1/2+ε
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n=1
1
ns
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Fermat’s Last Theorem

Conjecture (Fermat, 1637)

No three positive integers a, b, and c can satisfy the equation
an + bn = cn for any integer value of n greater than two.

Theorem (Frey’s Equation/ Ribet’s Theorem, 1984)

If Fermat’s equation had any solution (a, b, c) for exponent p > 2, then it
could be shown that the elliptic curve (now known as a Frey curve)

y2 = x(x − ap)(x + bp)

is not modular.

Theorem (Modularity Theorem/ Taniyama-Shimura-Weil conjecture)

Any elliptic curve over Q can be obtained via a rational map with integer
coefficients from the classical modular curve X0(N) for some integer N.

Huixi Li, Clemson University ζ(s) =
∑∞

n=1
1
ns

May 18, 2015 1 / 2



ζ(s) =
∞∑

n=1

1

ns
,
ζ(2n)

(2π)2n
=

(−1)n+1B2n

2(2n)!
∈ Q.

Theorem (Shimura, 1976)

Let f =
∑∞

n=−m ane2πinz ∈ Sk(N, χ) be primitive, then there exist two
complex numbers c+(f ) and c−(f ), such that for 1 ≤ m ≤ k − 1,

L(m, f )

(2π)mc±(f )
∈ Q(af ) ⊆ Q.

Theorem (Saito-Kurokawa Lift)

The Saito-Kurokawa lifting σk takes level 1 modular forms f of weight
2k − 2 to level 1 Siegel modular forms of degree 2 and weight k,

S2k−2(SL2(Z )) ∼= S+
k− 1

2

(Γ0(4)) ∼= Jc
k,1(SL2(Z)) ∼= Sk(Sp4(Z)).

Huixi Li, Clemson University ζ(s) =
∑∞

n=1
1
ns

May 18, 2015 2 / 2
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Approximations of Riemann zeta-function

I. Approximations by Dirichlet series
Definition 1 FN(s) =

∑X
n=1

1
ns .

Knopp Every point of σ = 1, the line of convergence for ζ(s), is an
accumulation point of the zeros of the partial sum FN(s).

Turán Riemann Hypothesis is valid if there are positive numbers
n0 and K such that for N > n0 the truncated zeta function
FN(s) does not vanish in the half-plane σ ≥ 1 + K√

N
.

Montgomery For given 0 < c < 4/π − 1, and N large enough, FN(s)

always has a zero in the half plance σ > 1 + c log log N
log N .

Definition 2 ζN(s) = FN(s) + χ(s)FN(1− s).
Spira For N = 1 and 2, all the zeros of ζN(s) lie on the critical line.

For N ≥ 3, there may be infinite many zeros off the line.
II. Approximations by finite Euler Product

Definition 3 ζX (s) = PX (s) + χ(s)PX (s̄)

Gonek ζ(s) = PX (s)ZX (s)
(

1 + O
(

X−σ−2

τ2 log2 X

))

Gonek There is a positive absolute constant C0 such that if
|χ(σ + it)| = 1 with 0 ≤ σ ≤ 1 and |t | ≥ C0, then σ = 1

2 .
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Approximations of L-functions

L-functions: Dirichlet L-functions , Dedekind zeta-functions ,
Hecke L-functions , Artin L-functions , Automorphic L-functions,
the Selberg class.

Equivalent statements of corresponding conjectures.
Various approximations and error estimations.
Zero free regions, pair correlations and density.
Numerical computations.

L-functions of elliptic curves.
L-function associated with Ramanujan τ function.

Junxian Li Approximations of L-functions



Approximations of L-functions

L-functions: Dirichlet L-functions , Dedekind zeta-functions ,
Hecke L-functions , Artin L-functions , Automorphic L-functions,
the Selberg class.

Equivalent statements of corresponding conjectures.
Various approximations and error estimations.
Zero free regions, pair correlations and density.
Numerical computations.

L-functions of elliptic curves.
L-function associated with Ramanujan τ function.

Junxian Li Approximations of L-functions



Approximations of L-functions

L-functions: Dirichlet L-functions , Dedekind zeta-functions ,
Hecke L-functions , Artin L-functions , Automorphic L-functions,
the Selberg class.

Equivalent statements of corresponding conjectures.
Various approximations and error estimations.
Zero free regions, pair correlations and density.
Numerical computations.

L-functions of elliptic curves.
L-function associated with Ramanujan τ function.

Junxian Li Approximations of L-functions



Representations of integral Hermitian forms by sums of norms

Representations of integral Hermitian forms by
sums of norms

Jingbo Liu

Wesleyan University

May 2015



Representations of integral Hermitian forms by sums of norms

Quadratic forms over Z

Quadratic forms over Z

Lagrange (1770) Every positive integer can be represented by the sum of
four squares.

Mordell and Ko (1930,1937) Every positive definite integral quadratic
form of n variables can be represented by the sum of n + 3 squares,
where 2 ≤ n ≤ 5.

Mordell (1937) q(x) =
6∑

i=1

x2i + (
6∑

i=1

xi )
2 − 2x1x2 − 2x2x6 cannot be

represented by a sum of squares.

Let gZ(n) be the smallest number of squares whose sum represents all
positive definite integral quadratic forms of n variables over Z that are
represented by sums of squares.

Kim and Oh (1997,2002)
gZ(6) = 10, 11 ≤ gZ(7) ≤ 24, 13 ≤ gZ(8) ≤ 37.

Kim and Oh (2005) gZ(n) = O(3n/2n log n) when n is large.



Representations of integral Hermitian forms by sums of norms

Quadratic forms over Z

Quadratic forms over Z

Lagrange (1770) Every positive integer can be represented by the sum of
four squares.

Mordell and Ko (1930,1937) Every positive definite integral quadratic
form of n variables can be represented by the sum of n + 3 squares,
where 2 ≤ n ≤ 5.

Mordell (1937) q(x) =
6∑

i=1

x2i + (
6∑

i=1

xi )
2 − 2x1x2 − 2x2x6 cannot be

represented by a sum of squares.

Let gZ(n) be the smallest number of squares whose sum represents all
positive definite integral quadratic forms of n variables over Z that are
represented by sums of squares.

Kim and Oh (1997,2002)
gZ(6) = 10, 11 ≤ gZ(7) ≤ 24, 13 ≤ gZ(8) ≤ 37.

Kim and Oh (2005) gZ(n) = O(3n/2n log n) when n is large.



Representations of integral Hermitian forms by sums of norms

Quadratic forms over Z

Quadratic forms over Z

Lagrange (1770) Every positive integer can be represented by the sum of
four squares.

Mordell and Ko (1930,1937) Every positive definite integral quadratic
form of n variables can be represented by the sum of n + 3 squares,
where 2 ≤ n ≤ 5.

Mordell (1937) q(x) =
6∑

i=1

x2i + (
6∑

i=1

xi )
2 − 2x1x2 − 2x2x6 cannot be

represented by a sum of squares.

Let gZ(n) be the smallest number of squares whose sum represents all
positive definite integral quadratic forms of n variables over Z that are
represented by sums of squares.

Kim and Oh (1997,2002)
gZ(6) = 10, 11 ≤ gZ(7) ≤ 24, 13 ≤ gZ(8) ≤ 37.

Kim and Oh (2005) gZ(n) = O(3n/2n log n) when n is large.



Representations of integral Hermitian forms by sums of norms

Quadratic forms over Z

Quadratic forms over Z

Lagrange (1770) Every positive integer can be represented by the sum of
four squares.

Mordell and Ko (1930,1937) Every positive definite integral quadratic
form of n variables can be represented by the sum of n + 3 squares,
where 2 ≤ n ≤ 5.

Mordell (1937) q(x) =
6∑

i=1

x2i + (
6∑

i=1

xi )
2 − 2x1x2 − 2x2x6 cannot be

represented by a sum of squares.

Let gZ(n) be the smallest number of squares whose sum represents all
positive definite integral quadratic forms of n variables over Z that are
represented by sums of squares.

Kim and Oh (1997,2002)
gZ(6) = 10, 11 ≤ gZ(7) ≤ 24, 13 ≤ gZ(8) ≤ 37.

Kim and Oh (2005) gZ(n) = O(3n/2n log n) when n is large.
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Hermitian forms over OE

Let E = Q(
√
−`) where ` is a square free positive integer and OE be the

ring of integers of E . An integral Hermitian form over OE is of the form

h(x1, ..., xn) =
∑

1≤i,j≤n

aijxixj

where aij = aji ∈ OE .

Let gE (n) be the smallest number of norms whose sum represents all
positive definite integral Hermitian forms of n variables over OE that
are represented by sums of norms.

Goal: Find an upper bound of gE (n).

Theorem (L-2015)

gE (n) = O
(
(p + 5)n+2(n log(n`) + `B3,χ + `3)

)

when n is large, where p is the smallest prime that is inert in E .
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The Computation of Galois Groups over

Local Fields
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May 18, 2015
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OM Related Things

1. Splitting Field (Milstead, Pauli, Sinclair)

Variation of OM Algorithm

Brute Force method

2. Ramification Polygon: Newton polygon of
φ(αx + α)

αn
.

Interested in 1 or 2 segment cases (Grieve, Pauli).
Blocks (∆i ,j):
.



α′ :

φ(α′) = 0 and either

vL(α′ − α1) > mi + 1 or

vL(α′ − α1) = mi + 1 and aj

(
(−1 + α′

α1
)ei

αhi
1

)
= 0





Jonathan Milstead The Computation of Galois Groups over Local Fields



Polynomials over Q

3. Stauduhar’s method (1973):

Key Challenge: finding a G -relative H-invariant
F ∈ Z[X1, ...,Xn], i.e., F so that StabGF :=
{σ ∈ G | F σ = F} = H where H < G ≤ Sn

Construct resolvent RF :=
∏

σ∈G//H
(T − F σ(α1, ..., αn))

to see if Gal(f ) ≤ Hg .

4. Fieker, Klüners

The ”first” practical degree independent algorithm.

Special Invariants: invariants in terms of invariants of
smaller degree (Blocks).

Generic Invariants: Double Coset Decomposition (ladder)
and Orbit Sums. Basis or probabilistic.

Jonathan Milstead The Computation of Galois Groups over Local Fields



Some Additive Combinatorics

Hans Parshall

University of Georgia

May 18, 2015 at UNCG



Additive Structure in the Integers

If A ⊆ Z is “additively structured”, then it should contain long
arithmetic progressions, {n + D, n + 2D, . . . , n + `D}.

• Subgroups of Z are long arithmetic progressions.
• |A + A| < 2|A| ⇔ A = {n + D, n + 2D, . . . , n + `D}

(Szemerédi, 1975) If A has positive density in Z, then A contains
arbitrarily long arithmetic progressions.

(Bourgain, 1990) Even if A is fairly sparse, A + A contains fairly
long arithmetic progressions.
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Additive Structure in the Primes
(Green-Tao, 2004) For any ` ∈ N, there exist infinitely many
n, D ∈ N for which the following are all prime:

n + D, n + 2D, . . . , n + `D

(Maynard, Tao, 2013) For any m ∈ N, there exist d1, . . . , dm ∈ N
such that there exist infinitely many primes p for which the
following are all prime:

p, p + d1, . . . , p + dm

Adding ideas of Pintz, one can find prime configurations:
n + D n + 2D . . . n + `D
n + D + d1 n + 2D + d1 . . . n + `D + d1
... ... . . . ...
n + D + dm n + 2D + dm . . . n + `D + dm

and there is a satisfying Fq[t] analogue (P, 2015).
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Summer School in Computational Number Theory

Zeros of Derivatives of ζ – Right Half Plane
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the red box contains one zero of ζ(k)(s).
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Summer School in Computational Number Theory

Zeros of Derivatives of ζ – Left Half Plane

with Ricky Farr
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Some Areas of Interest 

• Graph Theory 

– Graph Coloring 

– Pebbling 

– Bunk Bed Graphs 

• Percolation, Connectivity 

• Game Theory 

– Combinatorial Games 

• Nim, Dynamic Nim 

 



Current Research 

Bunk Bed Conjecture – Given a bunk bed graph with a probability 

function defined on the edges, the probability that s is connected to t is 
greater than the probability that s is connected to t’. 

s 

t’ 

s’ 

t 



What is the Maximum Amount of Information on
Field Arithmetic that We Can Get out of

L-Functions?

Jonathan W. Sands

University of Vermont, visiting UNCG

UNCG Workshop, May 2015

J. W. Sands Arithmetic Information from L-Functions



Zeta Functions and Number Fields

Let

I F be a number field, a finite degree extension of the rationals.

I OF be the subring of elements satisfying a monic polynomial
over Z.

I hF be the finite number of isomorphism classes of nonzero
ideals of O(F ).

I wF be the number of roots of unity in F .

I RF be the regulator determinant obtained from the units of
OF .

I ζF (s) =
∑

I |OF /I|−s, which converges to an analytic
function when the real part of s is greater than 1, and has an
analytic continuation to the entire complex plane except for a
pole at s=0.

J. W. Sands Arithmetic Information from L-Functions



Connections between Arithmetic and L-Values

Fundamental Theorem: The leading Taylor-McLaurin coefficient of
ζF (s) is ζ

∗
F (0) = −hFRF /wF

Questions:
I What similar results exist for the values at negative integers?

(Lichtenbaum’s Conjecture for the algebraic K-groups of OF ).
I Can we decompose both sides of the equation into matching

pieces using characters of a group of automorphisms of F?
(Stark’s conjecture for Artin L-functions.)

I Can we get information on how such automorphisms act on
the ideal classes of F from the L-functions? (Generalized
Brumer-Stark conjecture.)

I What if F is not a commutative field, but a skew field?
(Generalized Eichler Mass-formula?)

I Mix and match all of the above! Refine! (Generalized
Coates-Sinnott conjecture for K-groups, Conjectures of
Snaith, Buckingham, Burns, Gross, Rubin, Popescu,
Emmons-Popescu ...)

J. W. Sands Arithmetic Information from L-Functions



Enumerating Invariants and Extensions of p-adic

Fields

Brian Sinclair

University of North Carolina at Greensboro

18 May 2015
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Additional Invariants

Beyond considering degree and discriminant:

Rami�cation Polygons: Newton Polygon of
ϕ(αx + α)

αn

Residual Polynomials of the Rami�cation Polygon (A)

Algorithms for enumerating invariants

Finding rami�cation polygons given degree and discriminant.

Finding A given a rami�cation polygon.

Algorithms for enumerating extensions with additional invariants

A specialization of the algorithm of Pauli and Roblot.

Generating polynomials are reduced Eisenstein (Monge 2011).

Algorithms for counting extensions with additional invariants

Specializations of Krasner's mass formula given rami�cation

polygon or both the polygon and its residual polynomials.

Brian Sinclair (UNCG) Enumerating Invariants and Extensions of p-adic Fields
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Example: Totally rami�ed over Q3 with n = 9,disc = 315

We can enumerate extensions by considering reduced (in the

Monge sense) Eisenstein polynomials having given rami�cation

polygon and residual polynomials.

Rami�cation Polygon Rep. of A Polys. Extensions

{(1, 7), (9, 0)} (z + 1) 6 54 54

162{(1, 7), (3, 3), (9, 0)} (z2 + 1, z3 + 1) 6 54
108

(2z2 + 1, z3 + 2) 18 54

Compare Pauli-Roblot:

31222 = 2 125 764 polynomials to generate 162 extensions.

(13 122 per extension)

Brian Sinclair (UNCG) Enumerating Invariants and Extensions of p-adic Fields



Stark’s Conjecture as it relates to
Hilbert’s 12th Problem

Brett A. Tangedal

University of North Carolina at Greensboro, Greensboro NC, 27412, USA
batanged@uncg.edu

May 18, 2015



Let F be a real quadratic field, OF the ring of integers in F, and
m an integral ideal in OF with m 6= (1). There are two infinite
primes associated to the two distinct embeddings of F into R,
denoted by p

(1)
∞ and p

(2)
∞ . Let H2 := H(mp

(2)
∞ ) denote the ray

class group modulo mp
(2)
∞ , which is a finite abelian group.

Given a class C ∈ H2, there is an associated partial zeta
function ζ(s, C) =∑Na−s, where the sum runs over all integral
ideals (necessarily rel. prime to m) lying within the class C. The
function ζ(s, C) has a meromorphic continuation to C with
exactly one (simple) pole at s = 1. We have ζ(0, C) = 0 for all
C ∈ H2, but ζ ′(0, C) 6= 0 (if certain conditions are met).



First crude statement of Stark’s conjecture: e−2ζ
′(0,C) is an

algebraic integer, indeed this real number is conjectured to be a
root of a palindromic monic polynomial

f(x) = xn + a1x
n−1 + a2x

n−2 + · · ·+ a2x
2 + a1x+ 1 ∈ Z[x].

For this reason, e−2ζ
′(0,C) is called a “Stark unit”. By class field

theory, there exists a ray class field F2 := F(mp
(2)
∞ ) with the

following special property: F2 is an abelian extension of F with
Gal(F2/F) ∼= H2. Stark’s conjecture states more precisely that
e−2ζ

′(0,C) ∈ F2 for all C ∈ H2.
This fits the general theme of Hilbert’s 12th problem: Construct
analytic functions which when evaluated at “special” points
produce algebraic numbers which generate abelian extensions
over a given base field.
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Applications of Reduction Theory to
Automorphic Forms

Dan Yasaki

The University of North Carolina Greensboro

May 18–22, 2015
UNCG Summer School 2015

Zeta Functions – New Theory and Computations



“Modular forms” (f (z) =
∑

anqn)
Manin:

H1(X0(N), ∂X0(N);Q) 'M2(Γ0(N))

Generalize: F a number field of degree r + 2s

GL2 /Q GL2 /F
Γ0(N) ⊂ GL2(Z) Γ0(n) ⊂ GL2(OF )

h hr × hs
3 × Rr+s−1

modular symbols sharblies



Torsion plots: δ = 1 examples
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Research Interest: Gaps between the zeros of the
Riemann zeta function

Kam-hung Yau

University of Auckland

May 12, 2015

Kam-hung Yau (University of Auckland) May 12, 2015 1 / 3



Things I like to think about

Let N(T ) be the number of zeros of ζ(s), then one can deduce

N(T ) :=
T

2π
log

T

2πe
+ O(logT ),

with s = σ + it in the rectangle 0 ≤ σ ≤ 1, 0 ≤ t ≤ T . Define
λ := lim sup(γ′ − γ) log γ

2π and µ := lim inf (γ′ − γ) log γ
2π , where γ runs over

all the ordinates of the zeros of the ζ(s).

Natural question to ask:

Is µ = 0 and λ = +∞?

Progress toward gaps:

Montgomery and Odlyzko (1984): µ < 0.5179.
Conery, Ghosh, and Goneck (1984): µ < 0.5172.
Bui, Milinovich, and Ng (2010): µ < 0.5155.
Feng and Wu (2012): µ < 0.5154.
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How to detect gaps?

Define
A(t) :=

∑

k≤K
akk
−it

with T being large and K := T (logT )−2.

M1 :=

∫ 2T

T/2
|A(t)|2dt and M2(c) :=

∫ πc/ log T

−πc/ log T

∑

T/2≤γ≤2T

|A(γ + α)|2dα.

Then M2(c) is monotonically increasing and M2(µ) ≤ M1 ≤ M2(λ). If
M2(c) > M1 for some c and A(t) then µ < c . With a little working one
can show M2(c)/M1 = h(c) + o(1), where

h(c) = c − <(
∑

nk≤K ak ¯ankgc (n)Λ(n)n−1/2)∑
k≤K |ak |2

, and gc(n) =
2 sin(πc log n

log T
)

π log(n) .
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