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1. Frobenius Computations: Example with
G = S15875. A criterion of Jordan says that if
a Frobenius partition λp ` n contains a prime
j ∈ (n/2, n− 3] then a transitive G is all of An
or Sn. If the Galois group is really Sn then a
given λp has a Jordan prime j with probability∑
j∈(n/2,n−3]

1

j
≈

log 2

logn
(≈ 7% for n = 15875).

Other more complicated criteria have weaker
hypotheses and give the same conclusion.

Example: Several years ago we found a polyno-
mial with degree n = 15875 and discriminant
D = −2130729563437. To prove that its Galois
group is all of S15875 we used a criterion of
Manning and four Frobenius partitions:

p λp ` 15875
3 10194 3365 2123 155 20 10 5 3
7 7332 2492 1642 1388 1077 1011 818 72 24 10 9

11 9784 3238 1272 648 480 143 139 133 17 12 9
13 6808 4493 3803 626 74 39 13 8 6 3 2



2. Three-point covers and specialization:

Malle’s M22 cover. The theory of three-point

covers proves the existence of one-parameter

families of number fields with quite varied generic

Galois group (e.g. the monster sporadic group

M with |M | ≈ 8 ·1053). The place v =∞ plays

a central role in this theory.

As an example, the polynomial

f(t, x) =(
19x3 − 12x2 + 28x+ 32

)2
·(

5x4 + 34x3 − 119x2 + 212x− 164
)4

−222t
(
x2 − x+ 3

)11

has discriminant −248411253(t − 1)7t15. For

generic t it has Galois group the Mathieu group

M22 of order

22 · 21 · 20 · 48 = 443,520 = 27 · 32 · 5 · 7 · 11.

Note that f(1, x) factors as f7(x)2f8(x).



Solving for t gives t = φ(x). Thinking of the ra-
tional function φ geometrically as a map from
P1
x to P1

t we can look at the preimage of [1,∞].
This dessin has 22 edges:
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Rotation operators about endpoints are
b=(2,21)(3,9)(6,8)(10,13)(11,12)(14,20)(15,17)

(1)(4)(5)(7)(16)(18)(19)(22),
c=(1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22).

They satisfy 〈b, c〉 = M22. The operator a de-
fined by abc = 1 has cycle structure 44 23.



For all t ∈ Q − {0,1} let F (t) be the number
field Q[x]/f(t, x). For t ∈ (1,∞), the set X(t)∞
is identified with the set of edges. One has
G(t)∞ ⊆M22 with equality generically.

For generic t, Frobenius elements suffice to
prove G∞(t) = M22.

If p 6∈ {2,11}, ramification of F (t) is tame, with
τp being [ai], [bi], or [ci], according to whether t
is p-adically i-close to 0, 1, or ∞. The general
version of this statement lets one understand
tame specialization of general three-point cov-
ers, even without an equation.

There are non-generic specialization points. For
example F (2401/192) has Galois group PGL2(F11).
It has the same splitting field as

x12 − 4x11 − 4x10 + 16x9 + 24x8 − 30x7 − 78x6

−18x5 + 72x4 + 86x3 + 52x2 + 16x+ 2.

The root discriminant of the splitting field is
27/6 35/6 113/4 ≈ 52.75. This is the lowest
known GRD of a PGL2(F11) field.



3. Coarse vs. fine comparison: Bosman’s
PGL2(`f) polynomials. In a series of papers,
Bosman starts with classical modular forms
and numerically computes associated degree
`f + 1 polynomials. For example, from the
unique modular form

∑
akq

k ∈ Z[[q]] of weight
22 and level 1, considered modulo ` = 23, he
gets

x24 − 11x23 + 46x22 − 1127x20 + 6555x19 − 7222x18

−140737x17 + 1170700x16 − 2490371x15 − 16380692x14

+99341324x13 + 109304533x12 − 2612466661x11

+4265317961x10 + 48774919226x9 − 244688866763x8

−88695572727x7 + 4199550444457x6

−10606348053144x5 − 25203414653024x4

+185843346182048x3 − 228822955123883x2

−1021047515459130x+ 2786655204876088.

Assuming the numerical computation introduces
no errors, the set of bad primes and the Galois
group are known from the source, here {23}
and PGL2(23). Even Frobenius classes are al-
most completely known from the ap.



The field discriminant of the computed poly-
nomial is −2343. Frobenius partitions λp agree
with their ap through very large p, and hence
agree with PGL2(F23)-statistics.

a2
p/p ∈ F23 ε Type λp # Freq

5,10,17,22 − I 24 2046 4/24
7,20 − I 83 1032 2/24
9,18 + I 122 1022 2/24

3 + I 64 520 1/24
2 + I 46 474 1/24
1 + I 38 520 1/24
0 + I 212 252 1/48

11,14,15,19,21 − S 22 12 2725 5/22
0 − S 211 12 277 1/44

6,8,12,13,16 + S 112 12 2783 5/22
4 + U 23 1 491 1/23
4 + ISU 124 0 1/|G|

This absolutely enormous agreement does not
by itself rigorously confirm that the computed
polynomial is correct. One way to obtain rig-
orous confirmation is to verify that the Galois
group is indeed PGL2(F23). Then the Khare-
Wintenberger Serre result can be applied.



In general, let F be a number field, v a place

of Q, and index roots in Cv so that Xv =

{1, . . . , n}. Suppose one highly suspects Gv is

in a conjugacy class G of subgroups G ⊂ Sn,

say self-normalizing. Then |G| = n!/|G|. One

wants to identify Gv among all its conjugates

in G.

Knowledge that Gv contains the Frobenius el-

ement σv ∈ Sn cuts down the possibilities for

Gv to a smaller set G(σv). Suppose that σv

has cycle type λv. Let |Sn[λv]| be the number

of permutations of cycle type λv in Sn. Let

|G[λv]| be the number of such permutations in

any G ∈ G. Then the savings is a factor of

|G|
|G(σv)|

=
|Sn[λv]|
|G[λv]|

.

For λv = 1n, these ratios are one and in this

case there is of course no savings.



In general, for G = PGL2(`) ⊆ S`+1 one has

|G| =
(`+ 1)!

(`+ 1)`(`− 1)
= (`− 2)!

For e.g. c and σ of cycle types 2(`+1)/2 and
`+ 1 respectively,

|G(c)| =
(`− 2)!

(`− 2)!!
= 2(`+1)/2(

`+ 1

2
)!

|G(σ)| =
(`− 2)!

(`− 2)!
= 1!

Time to

compute

Gp in our

example:

p λp poss Timing
2 112 12 22 (poly bad)
3 112 12 22 17.55 sec
5 24 1 3.96 sec
7 22 12 2 5.22 sec

11 22 12 2 5.24 sec
13 112 12 22 18.47 sec
17 83 128 25.04 sec
19 22 12 2 4.63 sec
29 − − (field bad)
29 46 122880 7757.54 sec
31 38 11022480 (error)
37 24 1 3.79 sec
43 22 12 2 4.57 sec
47 112 12 22 23.46 sec
53 211 12 7431782400 (error)
59 64 1296 138.83 sec
61 24 1 3.93 sec

Using C = Qpf instead of C = C can be crucial!


