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1. Frobenius Computations: Example with
G = Si15875. A criterion of Jordan says that if
a Frobenius partition Ap = n contains a prime
j € (n/2,n — 3] then a transitive G is all of Ay,
or Sn. If the Galois group is really S, then a
given Ap has a Jordan prime 3 with probability

2.

je(n/2,n—3]
Other more complicated criteria have weaker
hypotheses and give the same conclusion.

1 N log 2
7 -~ logn

(= 7% for n = 15875).

Example: Several years ago we found a polyno-
mial with degree n = 15875 and discriminant
D = —2130729563437 T4 prove that its Galois
group is all of Si5g75 we used a criterion of
Manning and four Frobenius partitions:

\p - 15875
10194 3365 2123 155 20 10 5 3
7332 2492 1642 1388 1077 1011 818 72 2
0784 3238 1272 648 480 1431391331
6808 4493 3803 626 74 39 13 8
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2. Three-point covers and specialization:
Malle’s M, cover. The theory of three-point
covers proves the existence of one-parameter
families of number fields with quite varied generic
Galois group (e.g. the monster sporadic group
M with |M|~ 8-10°3). The place v = oo plays

a central role in this theory.

As an example, the polynomial
flt,z) =
3 2 2
(19x — 1222 428z + 32) -
4
(5m4 43423 — 11922 42122 — 164)
11
— 222 (acQ —x + 3)

has discriminant —248411253(¢ — 1)7¢1>. For
generic t it has Galois group the Mathieu group
M»~> of order

22.21.20-48 = 443,520 =27.32.5.7.11.
Note that f(1,z) factors as f7(z)?fs(x).



Solving for t gives t = ¢(x). Thinking of the ra-
tional function ¢ geometrically as a map from
P% to P,} we can look at the preimage of [1, oo].
This dessin has 22 edges:

Rotation operators about endpoints are
b=(2,21)(3,9)(6,8)(10,13)(11,12)(14,20)(15,17)

(1)(4)(5)(7)(16)(18)(19)(22),
c=(1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19, 20, 21, 22).

They satisfy (b,c) = Mp>. The operator a de-
fined by abc = 1 has cycle structure 4% 23.



For all t € Q — {0,1} let F(t) be the number
field Q[z]/f(t,z). Fort e (1,00), the set X (t)
is identified with the set of edges. One has
G(t)oo € Moo with equality generically.

For generic t, Frobenius elements suffice to
prove Goo(t) = Mos.

If pg {2,11}, ramification of F(t) is tame, with
mp being [a'], [b], or [¢!], according to whether ¢
Is p-adically -close to O, 1, or co. The general
version of this statement lets one understand
tame specialization of general three-point cov-
ers, even without an equation.

T here are non-generic specialization points. For
example F'(2401/192) has Galois group PGL>(Fq11).
It has the same splitting field as

12 — 4411 _ 4410 -+ 162° -+ 2448 — 302" — 782°
—18z° + 722% 4+ 8623 + 5222 + 16z + 2.
The root discriminant of the splitting field is

27/635/6113/4 ~ 52.75. This is the lowest
known GRD of a PGL»(Fq1) field.



3. Coarse vs. fine comparison: Bosman’s
PGL-(¢/) polynomials. In a series of papers,
Bosman starts with classical modular forms
and numerically computes associated degree
0t + 1 polynomials. For example, from the
unique modular form Y arg® € Z[[g]] of weight
22 and level 1, considered modulo ¢ = 23, he
gets

% — 11223 + 46222 — 11272°° + 6555x1° — 7222418
—140737z'" 4+ 11707002'® — 24903712 — 16380692
499341324213 4+ 109304533z1% — 2612466661zt
4426531796120 + 487749192262° — 244688866763x°
—88695572727x" + 4199550444457 x°
—106063480531442° — 252034146530242*
4185843346182048x> — 2288229551238831°
—1021047515459130z 4+ 2786655204876088.

Assuming the numerical computation introduces
no errors, the set of bad primes and the Galois
group are known from the source, here {23}
and PGL»(23). Even Frobenius classes are al-
most completely known from the ap.



The field discriminant of the computed poly-
nomial is —2343. Frobenius partitions )\, agree
with their ap through very large p, and hence
agree with PG L5 (F»3)-statistics.

as/p € Fo3 e Type Xy #  Freq
5,10,17,22 — 1 24 2046 4/24
7,20 - 1 83 1032 2/24
9,18 + I 122 1022 2/24

3 + I 64 520 1/24

2 + I 4% AT4 1/24

1 + 1 38 520 1/24

0 + 1 212 252 1/48
11,14,15,19,21 — S 2212 2725 5/22
0 — s 2112 277 1/44
6,8,12,13,16 + S 11212 2783 5/22
4 + U 231 491 1/23

4 + ISU 124 0 1/|G]

This absolutely enormous agreement does not
by itself rigorously confirm that the computed
polynomial is correct. One way to obtain rig-
orous confirmation is to verify that the Galois
group is indeed PGL5(F>3). Then the Khare-
Wintenberger Serre result can be applied.



In general, let FF be a number field, v a place
of @, and index roots in Cy, so that X, =
{1,...,n}. Suppose one highly suspects Gy is
in @ conjugacy class g of subgroups G C Sy,
say self-normalizing. Then |G| = n!/|G|. One
wants to identify G, among all its conjugates
in G.

Knowledge that G, contains the Frobenius el-
ement o, € S, cuts down the possibilities for
Gy to a smaller set G(oy). Suppose that oy
has cycle type \y. Let |Sp[\v]| be the number
of permutations of cycle type Ay in S;,. Let
|G[\v]| be the number of such permutations in
any G € G. Then the savings is a factor of

91 _ ISalel]

G(ow)| 1G]]
For \y = 1", these ratios are one and in this
case there is of course no savings.




In general, for G = PGL2(£) C Sy41 one has
4+ 1)!
(L+1)(f—1)

For e.g. ¢ and o of cycle types 2(/+1)/2 and
¢+ 1 respectively,

4 = (£ —2)!

_ |
90 = L2 _oernp it
(L —2)N 2
(¢ — 2)!
G(o)| = =1

(0 —2)!
D Ap poss Timing
2 112172 22 (poly bad)
3 11212 22 17.55 sec
5 24 1 3.96 sec
7 2212 2 5.22 secC
) 11 2212 2 5.24 sec
Time to 13 11212 22 18.47 sec
17 83 128 25.04 sec
compute 19 2212 2 4.63 sec
. 20 _ — (field bad)
Gp in our 29 46 122880 7757.54 sec
example: 31 38 11022480 (error)
37 24 1 3.79 sec
43 2212 2 4.57 sec
47 11212 22 23.46 sec
53 21112 7431782400 (error)
59 64 1296  138.83 sec
61 24 1 3.93 sec

Using C' = pr instead of €' = C can be crucial!



