
WORKING WITH GALOIS GROUPS IN MAGMA

DAVID P. ROBERTS
UNIVERSITY OF MINNESOTA, MORRIS

These notes complement the lectures and aim to give you practical experience in
working with Galois groups in Magma. They are aimed at people for whom working
with Magma is something of a struggle. I myself am still in this category, although
perhaps starting to leave it, having written these notes

Given the aims, the exercises corresponding to the first two lectures are intended to
be easy. They are commonly just running programs and they never present obstruc-
tions to continuing. The point is to increase the comfort level of beginners to Magma.
Another way I keep the computational context simple is that I center everything on
a single datatype, polynomials in Z[x].

If you are truly a rank beginner, I recommend typing in the displayed code as
an aid to understanding it. Some of the most basic Magma constructions are used
repeatedly. If you are past this level and would learn nothing by your own typing,
all the displayed code is available in the file exercisesmagma. If you are fluent at
Magma, a meta-exercise for the first two days is to improve my code!

The exercises corresponding to the third lecture are harder and more open-ended.
If the material in the first two sections becomes too easy for you at some point, feel
free to move ahead.

1. Exercises for Monday’s lecture: Basic practice in Magma

There is little in these notes on the generalities of Magma coding. To find out how
to use say Factorization, type ?Factorization and enter the large Magma index.

Some basics. Magma is very strongly typed, and we need to tell it we will be working
in Z[x].

Zx<x> := PolynomialRing(Integers());

As examples, we will work with the following polynomials:

f5 := x^5-2;

f6 := x^6-x-1;
f7a := x^7-7*x-3;

f7b := x^7-7*x-4;

f8 := x^8-16*x+28;

Exercise 1.1. To what extent can you see irreducibility and bad primes of these
polynomials just by looking? Use Factorization to confirm the polynomials are all
irreducible in Z[x]. Use Discriminant to determine the bad primes belonging to each
polynomial.

1

2 DAVID P. ROBERTS UNIVERSITY OF MINNESOTA, MORRIS

Factorization patterns and guessing exponents of Galois groups. Often only
degrees of factors matter. Accordingly, the following function is helpful.

degrees := func<lis|

Reverse(Sort(

[Degree(lis[i,1]) : i in [1..#lis]]

))>;

This function is meant to be used only as a wrapper around Factorization. As an ex-
ample, degrees(Factorization((x^2+2*x+5)^3*(x-1)*(x-2))) returns [2,1,1],
to be thought of as a partition. Note that the important multiplicity 3 is lost, but
we will be using degrees below mainly in the context of good primes.

Now we can calculate factorization partitions by the following function:

factpat := func<poly,p|

degrees(Factorization(

PolynomialRing(FiniteField(p))!poly

))>;

As examples, factpat(f7a,3) returns [1,1,1] corresponding to the bad factor 13131
with exponents dropped; factpat(f7a,13) returns the entire good factorization par-
tition [4,2,1].

The exponent of a group G is the smallest positive integer e with ge = 1 for all
g ∈ G. The least common multiple LCM(λp) of a good factor partition λp gives the
order of a corresponding Frobenius element g in the Galois group Gal(f). The least
common multiple of all the LCM(λp) is the exponent e of Gal(f).

Exercise 1.2. Use factpat for primes p (arrow keys to edit!) in increasing order to
get improving lower bounds on e for f5, . . . , f8. In each case, at what prime does the
lower bound appear to become exact?

Prematurely guessing orders of Galois groups. To take data more efficiently,
we can use the following command:
factpats := func<poly,cut|

[<i,NthPrime(i),factpat(poly,NthPrime(i))> : i in [1..cut]]

>;

An extremely crude first guess at the order of Gal(f) is N1, where pN1 is the first prime
for which the factorization partition consists of n = degree(f) ones. An improvement,
still crude, is the nearest integer N2 to N1 which

• is a multiple of e;
• has no primes divisors besides those of e;
• divides n!.

Here we assume that the previous guess of e is correct and if a tie occurred we would
break it by taking the smaller option. The correct order |Gal(f)| definitely satisfies
the three bulleted conditions.

Exercise 1.3. Compute the approximations N1 and N2 to |Gal(fi)|. Which N2 do
you think are right?

Confidently guessing orders of Galois groups. The output of factpats keeps
track of which primes give rise to which factpats. This is certainly fundamental
information in many contexts, such as the construction of Dedekind zeta functions.

WORKING WITH GALOIS GROUPS IN MAGMA 3

But one can also forget the source primes and just keep track of what factpats arise
and with what multiplicity. First, as a data management function,

tally := function(seq)

set := Seqset(seq);

return Sort([<s,Multiplicity(seq,s)> : s in set]);

end function;

This function tallies, with e.g. tally(["a","b","a"]) returning [<"a",2>,<"b",1>].
Now as the main function,

factpatstats:=func<poly,cutoff|

tally([factpat(poly,NthPrime(j)) : j in [1..cutoff]])

>;

The Chebotarev density theorem says that the all-ones factorization partition occurs
with asymptotic frequency 1/|Gal(f)|. Using this fact at a heuristic level, and keeping
in mind that |Gal(f)| satisfies the bulleted conditions above, one can make confident
guesses at |Gal(f)|.

Exercise 1.4. Use factpatstats with moderately large cutoffs to heuristically de-
termine |Gal(fi)|.

Corresponding group theory. Now we switch gears and consider permutation
groups. The number of conjugacy classes of transitive degree n permutation groups
is given in Magma by the command NumberOfTransitiveGroups. There are e.g.
50 such groups in degree 8, and TransitiveGroup(8,35) gives you the 35th on
the standard list, partially sorted by increasing order. One of many group-theoretic
commands is Order with e.g. Order(TransitiveGroup(8,35)) returning 128.

For each group, one has its corresponding distribution of cycle types. To get it in
Magma, we again first use a data management command

untally := func<tallied|

[tallied[i,1] : j in [1..tallied[i,2]], i in [1..#tallied]]

>;

This function turns [<"a",2>,<"b",1>] back into ["a","a","b"] which is more
readable in our context. The cycle distribution command is then

grpstats := func<n,i|

tally([untally(CycleStructure(g)) : g in TransitiveGroup(n,i)])

>;

(Two notes: First, the prettification commands tally and untally are applied in dif-
ferent contexts and do not undo each other. Second, the command grpstats is
intended to be run only for small groups, as we are looping over group elements;
for larger groups, one would modify grpstats to loop only over representatives of
conjugacy classes).

Exercise 1.5. It can happen that different transitive groups nTi have the same dis-
tribution of cycle types, e.g. 8T10 and 8T11. Find all such multiplets among octic
transitive groups.

4 DAVID P. ROBERTS UNIVERSITY OF MINNESOTA, MORRIS

Comparing factorization statistics with cycle structure statistics. Now we
can compare our functions for polynomials with our functions for groups:

Exercise 1.6. For each fj find the only (n, i) with the output of factpatstats match-
ing grpstats, thereby determing Gal(fj) with great confidence.

Some Galois-related Magma commands. So far, we have not used any Galois-
theory specific Magma commands. Magma—as opposed to say Mathematica—has
such commands, and the main one is GaloisGroup. This command operates at a
deeper level than our viewpoint today, and so we surround it with two more Magma
commands to get a function matching today’s viewpoint:

galgrp := function(f)

G := GaloisGroup(f);

return <Degree(f),TransitiveGroupIdentification(G),

TransitiveGroupDescription(G)>;

end function;

Typing e.g. galgrp(f6) returns the degree n = 6, the “T -number” i = 16, and the
more descriptive name S6. (Feel free to look at GaloisGroup itself now; we will be
discussing it on Wednesday!)

Magma has a small database consisting of one polynomial for each nTi with
n ≤ 15. After loading it via load galpols you can access the polynomials via
e.g. PolynomialWithGaloisGroup(13,7). Since we might want to use this command
a lot, we abbreviate

examp := PolynomialWithGaloisGroup;

Exercise 1.7. Use galgrp to confirm that your answer to Exercise 1.6 is correct.
Then check that the small database gives a polynomial gi defining a different field
(either by finding a disagreeing good factpat or checking that discriminants do not
agree modulo squares).

Supplementary commands. The next two commands let one use some of Magma’s
number field commands without leaving the gentler environment of univariate poly-
nomials.

cleanup := func<f|Zx!DefiningPolynomial(

OptimizedRepresentation(NumberField(f)))>;

fielddisc := func<f|Discriminant(MaximalOrder(NumberField(f)))>;

As a simple example, cleanup(x^5-486) returns the polynomial f5 = x5−2 defining
the same field. While f5 has polynomial and field discriminant D = d = 24 55, the
original polynomial x5 − 486 has D = 24 320 55 and d = 24 55.

(Note: OptimizedRepresentation aims to minimize D while Pari’s comparable
polredabs aims to minimize the sum of the absolute squares of the roots. An important
problem is to improve the implementation of OptimizedRepresentation so that it
successfully works in the larger range that polredabs currently does.)

One often has two polynomials simultaneously under consideration with coordi-
nated factpats. As an aid to seeing the coordination quickly:

factpatstats2:=function(poly1,poly2,cutoff)

ugly := tally([[factpat(poly1,NthPrime(j)),

WORKING WITH GALOIS GROUPS IN MAGMA 5

factpat(poly2,NthPrime(j))] : j in [1..cutoff]]);

return [<u[1,1],u[1,2],u[2]> : u in ugly];

end function;

For example, factpatstats2(x^3+2,x^2+3,100) reproduces one of the tables in the
lecture.

For those wanting a modest programming exercise:

Exercise 1.8. a) The programs cleanup and fielddisc work only for irreducible
polynomials. Write better versions which accept general separable polynomials (so
that e.g. fielddisc would return the algebra discriminant).

b) Similarly, one often has more than two polynomials simultaneously under con-
sideration. Extend factpatstats2 accordingly.

2. Exercises for Wednesday’s lecture: Galois theory at three levels

In the lecture, we talked about two levels at which you can do Galois theory over
Z. Here we’ll introduce an intermediate level as well:

Coarse level. One works purely algebraically in Z[x], never actually seeing roots any-
where.

Intermediate level. One works numerically with roots but is still content to compute
Galois groups only up to conjugation.

Fine level. One works numerically with roots, and wants to identify the Galois group
as an actual permutation group on the roots.

The exercises take place at these levels in order. Our goal is to get to the fine level,
which Magma supports very well. The two earlier levels present some of the ideas in
easier contexts.

Coarse-level exercises. The discpoly resolvent from the lecture can be clunkily
implemented in Magma as follows.

Zxy<x1,y> := PolynomialRing(Integers(),2);

discpoly := function(poly)

return Zx ! Evaluate(

Resultant(Evaluate(poly,y),Evaluate(poly,x1+y),y)/

x1^Degree(poly),[x,0]);

end function;

discpolypat := function(f)

dp := discpoly(f);

return [<Degree(s[1]),s[2]> : s in Factorization(dp)];

end function;

The first line complements our earlier and still-needed definition of Zx. The middle
chunk is the main program. The last chunk suppresses information and outputs the
numerical invariants that we care most about.

Let f7a := x^7-7*x-3 and f7b := x^7-7*x-4 be as before. The next exercise
shows that carelessly going into quite high degrees is actually ok in some circum-
stances:

6 DAVID P. ROBERTS UNIVERSITY OF MINNESOTA, MORRIS

Exercise 2.1. Verify the following statements: a) discpolypat() gives the same
answer on f7a and f7b; b) discpolypat(discpoly()) gives different answers on
f7a and f7b, but these answers correspond to inseparable polynomials.

Because of the repeated factors, the output of discpolypat(discpoly()) leaves
many possibilities for the corrected factorization pattern (e.g. <21,2> could be cor-
rected to either [21, 21] or [42]). Is the ambiguous information given just by
discpolypat(discpoly()) enough to say that f7a and f7b have different Galois
groups?

To avoid inseparability issues, one can replace a polynomial by a field-equivalent
polynomial at any step. The next function clunkily does this (assuming separability
of the output!):

messup := function(f)

compmat := CompanionMatrix(f);

return CharacteristicPolynomial(compmat + compmat*compmat);

end function;

The program messup typically makes coefficients bigger. Again this is not desirable
but often not a problem:

Exercise 2.2. Use messup to conceptually simplify the last computation, thus cleanly
showing that f7a and f7b have different Galois groups without entering into insepara-
bility issues.

In general, of course, one wants to keep degrees as small as possible. A simple
modification in the present case is to note that if Df (x) is the discpoly of f(x) then
one can write Df (x) = SDf (x

2). We’ll call SDf (x) the small discpoly.

half := function(f)

coeffs := Eltseq(f);

return &+[coeffs[i]*x^((i-1) div 2) : i in [1..#coeffs by 2]];

end function;

smalldiscpoly := func<f | half(discpoly(f))>;

smalldiscpolypat := function(f)

sdp := smalldiscpoly(f);

return [<Degree(s[1]),s[2]>:s in Factorization(sdp)];

end function;

(Pretty obvious room for coding improvement on the last page and a half, but maybe
a little repetition is occasionally good...)

Exercise 2.3. Always inserting messup as necessary to stay away from inseparability,
a) What is the partition of {1, . . . , 16} corresponding to the ability of

smalldiscpolypat() by itself to distinguish different 6Ti?
b) Same question for smalldiscpolypat(smalldiscpoly())

Intermediate-level exercises. The program just discussed passes from a polyno-
mial f(x) to its discriminant polynomial Df (x) purely algebraically. As a consequence
there are universal formulas. One such formula is that for f(x) = x3 + ax2 + bx + c
the corresponding discpoly is

Df (x) = x6 + (6b− 2a2)x4 + (a4− 6a2b+ 9b2)x2 + (4a3c− a2b2− 18abc+ 4b3 + 27c2).

WORKING WITH GALOIS GROUPS IN MAGMA 7

The resolvent constructionD corresponds to the subgroup Sn−2 of Sn while the smaller
resolvent construction SD corresponds to the larger subgroup Sn−2 × S2. In general,
for any H ⊂ Sn one can make a similar construction f 7→ fH . Here the degree of
fH is the index [Sn : H]. These other constructions also have universal formulas, but
they can be very unwieldy. Instead, one can carry them out non-algebraically, using
say complex roots.

Important cases correspond to the subgroups Sn−k, Sk×Sn−k, and, in the case that
n = 2k, the wreath product Sk o 2 = (Sk × Sk).2. We denote the resolvents of f(x)
under these constructions by fk(x), f [k](x), and fmid(x). If f has roots αi then we
define e.g. f 3(x) to have roots αi1 + 2αi2 + 3αi3 with i1, i2, i3 distinct. The smaller
resolvents f [k] are similar, with f [3] having roots αi1 + αi2 + αi3 with i1 < i2 < i3.
The special case fmid is modeled after the classical k = 2 case, where the roots are
α1α2+α3α4, α1α3+α2α4, and α1α4+α2α3. The somewhat arbitrary explicit formulas
at the level of polynomials correspond to canonical operations at the level of algebras.
At the level of algebras, F 7→ F 2 and F 7→ F [2] agree with the discpoly and the small
discpoly.

The resolvent f 7→ f [k] can be implemented using complex roots as follows:

coercedown := function(f)

coeffs := Eltseq(f);

return &+[Round(Real(coeffs[i]))*x^(i-1) : i in [1..#coeffs]];

end function;

resk := function(f,k,prec)

Cprec := ComplexField(prec);

Cprecz<z> := PolynomialRing(Cprec);

fprecz := Cprecz ! f;

rootpairs := Roots(fprecz);

roots := {rp[1] : rp in rootpairs};

newroots := {&+s : s in Subsets(roots,k)};

resz := &*{z - n : n in newroots};

return coercedown(resz);

end function;

The input to coercedown is a polynomial with coefficients which are typed by Magma
as complex, but mathematically should be integral except for round-off errors. The
function resk then essentially has input (f, k) and output f [k]. However a third
argument, the decimal digits of precision of the numerical steps, is needed. It may
need to be considerably more than Magma’s standard 30 for the output to be the
desired algebraically-correct resolvent.

As a variant,

resmid := func<f,prec |half(resk(f,Degree(f) div 2,prec))>;

does f 7→ fmid, where f is required to be traceless: f(x) = xn + 0xn−1 + · · · .

Exercise 2.4. How does fmid(x) factor for polynomials with Galois group S4, S6,
8T48 = E(8):L(7) = AL(8), and 12T295 = M12? What precision is necessary for the
program to work on the M12 polynomial

f12 := x^12 - 6*x^10 - 10*x^9 - 90*x^8 - 150*x^7 + 430*x^6

- 720*x^5 + 900*x^4 + 1350*x^3 - 1350*x^2 + 4050*x + 675;

8 DAVID P. ROBERTS UNIVERSITY OF MINNESOTA, MORRIS

of the lecture? From the M12 factorization and some group theory, what must the
factorization for an A12 polynomial be? Confirm this in an example.

Fine-level calculations. The command GaloisGroup has been highlighted in the
lectures. It is the core command in a bigger package. Here we illustrate how the
supplementary (and strangely named) command GaloisSubgroup can be used to
compute general resolvents.

The group S6 has a transitive subgroup PGL2(5) isomorphic to the standard in-
transitive subgroup S5 × S1. The corresponding operator f 7→ fPGL2(5) is involutory
on the level of algebras. This particular operator really takes place at the previously
discussed intermediate level, but we implement it using GaloisGroup to illustrate the
general fine-level approach:

sextictwin := function(f)

G,r,S := GaloisGroup(f);

H := Subgroups(G:IndexEqual:=6,IsTransitive:=true)[1]‘subgroup;

return GaloisSubgroup(S,H);

end function;

Because of the quick-and-dirty method to pick out the right H, this program doesn’t
work on all sextics; it does work for sextics with Galois group A6 and S6.

Exercise 2.5. How do the factpats of f6:=x^6-x-1 and its twin compare? Confirm,
using cleanup, that the twinning operator is involutory at the level of algebras in
this case. Does this one instance really suffice to demonstrate that it is involutory in
general?

The command sextictwin models what can be done in general.

Exercise 2.6. Make tiny changes to sextictwin, the largest being dropping the
IsTransitive part, to turn it into a much more general program res. This program
should take (f, i, j) as input, and return the jth degree i resolvent of f in Magma
ordering.

(The program res as described is not ideal when Gal(f) has more than one conjugacy
class of subgroups of index i, because we don’t have control over the ordering; this is
related to the unsatisfactory aspect of sextictwin).

Exercise 2.7. Take a cleaned-up 11T6 = M11 polynomial, turn it via your program
res into a cleaned-up 12T272 = M t

11 polynomial, and then use res again to go back
into the original polynomial.

The general program res essentially supercedes the previous resk and resmid. For
example, Part a of the next exercise gets the interesting output of resmid and Part
b goes beyond the range of intermediate-level techniques.

Exercise 2.8. a) Get the smaller degree factor of the degree 462 resolvent fmid
12 (x)

directly. b) Get the degree 12 twin f t12 of f12 (cleanup does not work quickly here).
c) Run factpatstats2 on the pair (f12, f

t
12). From the output, do you expect field

discriminants to be necessarily the same? d) Compute the two field discriminants.

WORKING WITH GALOIS GROUPS IN MAGMA 9

3. Exercises for Friday’s lecture

Rapidly recognizing fullness. Let f(x) ∈ Z[x] be a polynomial with Galois group
Sn. How many Frobenius partitions λp can one expect to have to compute to prove
that the Galois group is Sn?

Proving that the Galois group is indeed Sn by Jordan’s method is not optimal. As
described in the lecture, λp contains a Jordan prime j with probability

∑
j∈(n/2,n−2]

1
j
≈

log 2
logn

. One has to simultaneously use the collected λp to ensure that f(x) is irreducible

and also that the Galois group is not in An. Improvements like Manning’s method
mentioned in the lecture are also suboptimal.

There are canonical numbers associated with this situation as follows. Let Mn

be the set of conjugacy classes of maximal subgroups in Sn, so that e.g. M5 =
{S4 × S1, S3 × S2, F5, A5}. Each M ∈ Mn has an “imitation factor” I(M), namely
the chance that a single λp allows M to continue as a possible Galois group. The
chance c(k) that computation of k Frobenius elements suffices to prove the Galois
group is all of Sn then satisfies

c(k) ≥ 1−
∑

M∈Mn

I(M)k.

For k large, one can expect near-equality because the remaining terms in the exact
inclusion-exclusion expression for c(k) are small.

Exercise 3.1. Use Magma to compute I(M) for all M ∈Mn for say n ≤ 100. Pur-
sue this situation further. Natural questions include identifying what what type of M
gives the largest I(M) and finding good asymptotic expressions for the corresponding
I(M). Also it is natural to consider the analog for ambient groups An.

Note that Magma gives maximal subgroups as a bare list. The O’Nan-Scott theorem
divides this list into six sublists, and thereby adds considerable structure to this
situation. (Search on O’Nan-Scott Cameron for a good brief introduction).

Computing discriminants of splitting fields. Let Q be say Q or one of the
Qp. Let f(x) ∈ Q[x] be a separable polynomial with a splitting field L = F gal.
For each G-set X one has a corresponding algebra FX characterized by the equality
Hom(FX , F

gal) = X of G-sets. The corresponding discriminants behave multiplica-
tively: d(FX1

∐
X2) = d(FX1)d(FX2). The general case reduces to the case of transitive

X and a choice of x ∈ X with stablizer H then identifies X with G/H. In this case,
FG/H is the classical fixed field LH . This formalism lets one compute discriminants
of large-degree fields in terms of discriminants of smaller-degree fields.

Exercise 3.2. For G = S3 and then some other G of your choice, find small index
subgroups H1, . . .Hk of G and then rational numbers α1, . . . , αk such that d(L) =
d(FH1)

α1 · · · d(FHk
)αk .

The character table of G should be very useful.

Specializing three-point covers. Consider Malle’s one-parameter family f22(t, x)
from the lecture, with discriminant −228411253(t − 1)7t15 and generic Galois group
M22. Interpreting t ∈ Q − {0, 1}, one has a number algebra F (t) = Q[x]/f22(t, x).
When considering the p-adic behavior of these number algebras it is natural to let t

10 DAVID P. ROBERTS UNIVERSITY OF MINNESOTA, MORRIS

vary over all of Qp − {0, 1}. Both the global and the local aspects of specialization
have many points of interest, and the exercise alternates between local and global
subparts.

To always stay in the univariate polynomial ring Z[x] we implement f22(t, x) as a
function:

f22 := func<t|

(-4194304*Numerator(t)*(3 - x + x^2)^11

+ Denominator(t)*(32 + 28*x - 12*x^2 + 19*x^3)^2

*(-164 + 212*x - 119*x^2 + 34*x^3 + 5*x^4)^4)

>;

(Other implementations would work too, but need to deal with things such as Magma’s
refusal to give meaning to Factorization(1/6) or even Factorization(6) when 6
is typed as a rational number.)

Exercise 3.3. a) As a simple illustration of local constancy, the number r of real
roots of f22(t, x) depends only on the interval (−∞, 0), (0, 1), (1,∞) containing t.
What is r in each case?

b) Do a computer search to find what seems to be all rational t keeping the polyno-
mial discriminant of the form ±2a11b.

c) The lecture indicated how ordp(d(F (t)) is an explicit continuous function of the
p-adic variable t ∈ Qp − {0, 1} for p 6∈ {2, 11}. Write a formula for this function.

d) Using the results of c, do a longer computer search to find what seems to be all
rational t keeping the field discriminant of the form ±2a11b.

e) Interpolate specializations to make a guess at ordp(d(F (t))) as continuous func-
tions on Qp − {0, 1} for the wild primes p = 2 and p = 11.

f) Find specialization points giving groups besides M22 (the example t = 2401/192
with Galois group PGL2(11) and field discriminant −2203201119 is a good model).

Note: Parts a-f are interesting things to do for any three-point cover. For many such
covers, there is no non-generic specialization. Malle’s covers was chosen from among
many because the answer to f is more interesting than usual.

Transferring knowledge from Gp to G∞. Knowledge of any single Gv for a given
f(x) ∈ Z[x] can be used to facilitate computation of factors of resolvents fH(x) ∈ Z[x].
In turn, these factors can be used to compute Gw for other places w.

Exercise 3.4. For Bosman’s polynomial f24 considered in the lecture with complex
roots, compute G∞ as a subgroup of S24.

To do this exercise, one needs to use root-manipulation commands in Magma’s Galois
group package beyond what we have talked about.

