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1. The factpat problem. Let f(x) ∈ Z[x] be
a monic polynomial. For every prime p, one
can reduce it to fp(x) ∈ Fp[x] and factor it into
irreducibles. Let λp be the object capturing
degrees and multiplicities as in the example of
f(x) = x7 − 7x− 3:

p fp(x) λp
2 x7 + x+ 1 7

3 (x+ 1)3(x+ 2)3x 13 13 1
5 x7 + 3x+ 2 7

7 (x+ 4)7 17

11 x7 + 4x+ 8 7

13 (quart)
(
x2 + 12x+ 2

)
(x+ 2) 4 2 1

17 3 3 1
19 3 3 1
23 3 3 1
29 7

A natural and very large question is the “fact-
pat” problem: what can be said about the se-
quence λ2, λ3, λ5 . . . in general? The central
role in the ongoing effort to respond to this
question is played by number fields.



2. Polynomial Discriminants. We say that

a factor is bad if the multiplicities are greater

than 1, as in 13 13 1 or 17. We say it is good

otherwise, in which case the symbol λp is just

a partition of the degree n.

The distinction bad vs. good can easily under-

stood via the polynomial discriminant of f(x)

defined via its complex roots αi as

Df =
∏
i<j

(αi − αj)2 ∈ Z.

As an example, Dx7−7x−3 = 3878.

In general,

p is bad⇐⇒ p | Df .

Henceforth we restrict attention to separable

f , meaning f with distinct roots, or equiva-

lently f with Df 6= 0. Then there are only

finitely many bad primes.



3. Global factorizations. Suppose f(x) ∈
Z[x] factors into irreducibles as

∏
fi(x). Then

for all primes there are induced factorizations
f(x) =

∏
i fi,p(x). At a good prime p there is

a corresponding factorization λp =
∏
λi,p. For

example, the bad primes for

f(x) = x5 + 3x3 + 2x2 + 6

are 2, 3, and 31. The factor partitions for
the first 100 good primes have the following
statistics

λ # λ1 λ2
2 2 1 51 2 1 2
3 1 1 32 3 1 1

1 1 1 1 1 14 1 1 1 1 1

Only three of the seven partitions of five have
arisen in the λ column. This behavior is in part
trivially explained by the factorization

f(x) = (x3 + 2)(x2 + 3).

Because of this simple phenomenon, one fo-
cuses mainly on irreducible f .



4. Generic factorization statistics. A key
insight into the factpat problem concerns generic
degree n polynomials f(x). Here the frequency
that a partition λ arises as λp is asymptotically
the same as the frequency it arises as the cycle
structure λg of g ∈ Sn. Examples with n = 7
and the first 7! = 5040 primes:

# of g # of p for # of p for
λ in S7 x7 − 7x− 4 x7 − 7x− 3
7 720 749 1448
43 420 423
52 504 499
61 840 865
322 210 174
331 280 261 1687
421 630 659 1271
511 504 501
2221 105 104
3211 420 389
4111 210 214
22111 105 116 604
31111 70 67
211111 21 14
1111111 1 1 28



5. Resolvents confirming non-genericity.
The non-generic behavior of x7 − 7x− 3 is ex-
plained by the factorization of a resolvent built
from its roots:

g(x) =
∏

i<j<k

(x− (αi + αj + αk))

= (x7 − 14x4 + 42x2 − 21x− 9)f28(x)

In general, any deviation of a degree n polyno-
mial from Sn statistics is caused by the non-
generic factorization of some resolvent.

The statistics governing factpats for x7−7x−3
are those coming from the transitive permuta-
tion group GL3(F2) ⊂ S7 of order 168. Com-
puting with 168, 1680, 16800, and 168000
primes gives the following data:

λ 168 1680 16800 168000
7 40 47.6 48.16 48.085
331 58 56.3 56.14 55.956
421 46 43.6 41.97 41.909
22111 22 19.4 20.78 21.085
1111111 0 0.9 0.93 0.963



6. Galois groups. The groups S7 and GL3(F2)

appearing on the last two slides are examples

of Galois groups. In general, let f(x) ∈ Q[x] be

a separable polynomial with complex roots α1,

. . . , αn. Let

Fgal
f = Q(α1, . . . , αn) ⊂ C

be its splitting field. Let Gal(Fgal
f /Q) be its

group of automorphisms. One can think of

Gal(Fgal
f /Q) as the group of permutations of

the roots which preserve all algebraic relations.

The Chebotarev density theorem says that good

factorization patterns are asymptotically dis-

tributed according to the cycle types of ele-

ments in Gal(Fgal
f /Q). This works for reducible

polynomials as well. For example, the statis-

tics of the factorization of (x3 + 2)(x2 + 3)

are governed by its six-element Galois group

S3 × S2 ∩A5.



7. Number fields. A fundamental phenomenon
not discussed so far is that two different poly-
nomials can have the same factorization pat-
terns at their common good primes for com-
pletely trivial reasons.

To work more intrinsically, we focus not on the
given separable polynomial f(x), but rather on
its associated number algebra

F = Q[x]/f(x)

The good factorization patterns of f(x) are
invariants of F .

The factorization f(x) =
∏
fi(x) into irreducibles

induces a factorization F =
∏
Fi into number

fields, where Fi = Q[x]/fi(x).

The set of roots of f(x) canonifies into the
set Hom(F,C) of homomorphisms from F into
C. Thus Fgal

f depends only on F and and can

be denoted Fgal. When F is a field, all the
homomorphisms are embeddings. At the other
extreme, for F = Qn, one has Fgal = Q.



8. Field discriminants In the shift of focus
from polynomials f to algebras F , the polyno-
mial discriminant Df is lost. An ideal substi-
tute is the field discriminant dF as follows.

An element k in a number algebra F has a
minimal polynomial fk(x) ∈ Q[x], namely the
unique monic polynomial of smallest degree
with fk(k) = 0. In fact, as k runs over gener-
ators of F , the minimal polynomials run over
defining polynomials of F .

The element k in a number algebra F is called
integral if its minimal polynomial fk(x) is in
Z[x]. The set of integral elements form a sub-
ring O of F . For any algebraic integer k gener-
ating F , the index cf = [O : Z[k]] is finite. The
quantity

dF = Df/c
2
f

is independent of f and is the field discriminant
of F . One source of its importance is O sits
as a lattice inside F∞ = Q⊗R, and

√
|dF | is the

volume of the quotient torus F∞/O.



9. Local invariants. We can now be more

sophisticated about the factpats λp. Let F be

a number algebra, typically a number field in

practice. Let v ∈ {∞,2,3,5, . . . } be a place of

Q. Let Fv = F ⊗Q Qv be its v-adic completion.

For v = ∞, one necessarily has Fv = Rr ×
Cs with r + 2s = n. One can define λ∞ =

2 . . .2 1 . . .1 in analogy with other λp.

For p - d, the algebra Fp is unramified. If λp =

f1 · · · fk then Fp
∼= Q

pf1
×· · ·×Q

pfk
with Qpf the

unramified degree f extension of Qp.

For p|D, the situation is more complicated.

But still Fp factors into fields and each field

has a residual degree f , a ramification index

e, and a local discriminant c. We use the fec
to redefine λp, so that for the Trinks field one

now has λ3 = 13
3 13

3 1 and λ7 = 17
8.



10. The factpat problem revisited. With
the slightly modified λv, the factpat problem
now is now asking for a classification of number
fields (up to arithmetic equivalence rather than
isomorphism, with e.g. Q[x]/(x7 − 7x− 3) and
its dual Q[x]/(x7−14x4 +42x2−21x−9) being
non-isomorphic but having the same factpats).

Focusing on the main invariants d and G only,
one can ask for the set NF (d,G) of all num-
ber fields with discriminant d and Galois group
G ⊆ Sn. 1) These are finite sets. 2) They can
be effectively tabulated for n small via com-
puter searches. 3) They can be effectively
tabulated for G solvable and of moderate size,
via class field theory. 4) They can be pursued
for say G ⊆ PGL2(F`f) via automorphic forms.
5) Their size for G fixed and |d| increasing is
expected to obey simple asymptotics, proved
for some G. 6) The symbols λv are naturally
packaged into a zeta function ζF (s), and one
expects that all λv can be determined analyti-
cally from a sufficiently large initial segment.


