High-precision methods for zeta functions
Part 1: functions, formulas

Fredrik Johansson
INRIA Bordeaux

UNCG Summer School in Computational Number Theory
May 18-22, 2015



Why high precision?

v

Identify special values, e.g. ((20150518) /720150518

v

Investigate behavior for large input / near singularities (catastrophic
cancellation)

v

Guaranteeing correct results (error bounds may blow up)

» Computational complexity



Zeta functions and generalizations

— 1
Riemann zeta function: {(s) = Z P
k=1
= x(k
Dirichlet L-functions: L(s, x) = Z X/((S)
k=1
> 1
Hurwitz zeta function: ((s,a) =
/;o (k+ a)s
Polylogarithm: Lis(z Z
k=1
o)=Y o
Lerch transcendent: ®(z,s,a) = .
— (k+a)
General L-functions: L(s %

n=1



Connection formulas

Hurwitz zeta function (with rational parameter) < Dirichlet L-functions:

% 3 x(n)L(s )

x mod k

L(s;x) = 15 Zx ( )
Hurwitz zeta function < polylogarithms:
, M1l-s) [.4_ 1  In(-2) 1 1 In(-2)
L = *((1-s, = s l1-s, = —
s(2) = oy {’ << e I

Lis(2) + (~1)° Lis(1/2) = (2r7(r51§ 4(157 1 'n(_Z))

(s, n/k) =

[modulo poles, branch cuts]



Supporting functions
Elementary functions: exp, log, sin, cos, atan
Bernoulli numbers B, integer zeta values ¢(2),¢(3), ...

Finite power sums, e.g. Zgzl k

Gamma function: T'(s) and log'(s) # log(T(s))
Incomplete gamma function: (s, z) :/ t*le tdt

Generalized hypergeometric functions:

ad (al),,...(ap),, z"
Fo(ar,...,ap; b1,..., bg;z) =y =20 2%P/0 =
pFa(ar P i 2) nz:(:)(bl),,...(bq),, nl

D-finite (holonomic) functions: Bessel functions, hypergeometric
functions, Meijer G-functions, ...



Software

Open source:
» Sage
> Pari/GP
» Dokchitser's L-function calculator
» mpmath
> Arb
Non-open-source:
» Mathematica

» Magma

Various special-purpose programs...

6/37



Representing numbers in Arb

arb type (real mid-rad interval, “ball”):

[3.14159265358979323846264338328 + 8.65 - 103!

arbitrary-precision floating-point 30-bit precision

acb type (complex rectangular “ball”):

[1.414213562 4 3.74 - 107 1°] 4 [1.732050808 + 4.32 - 1019

Goal

» {cost of interval arithmetic} = (1 + ¢) - {cost of floating-point}
> {effort for error analysis} = ¢ - {effort with floating-point}



Computing functions in Arb

Example (simplified):

—1 Xk 0o Xk
f(X) C [A+ E], A:Z—! ZﬂgE
k=0 k=N
Using ball arithmetic Upper bound
Better error propagation:
N-1 4
m m m ot
f(X) CAL(EAE), A=3 T ] <E, suplem—e¢|<E
k=0 k! teX

Note exp(—100) ~ 10~** but (—100)%° /100! ~ 10*? ~ exp(100)



Toolchain

Fast arithmetic

I

Evaluation of sums/recurrences

I

Evaluation of supporting functions

4

Evaluation of zeta functions
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Fast arithmetic ( “reduce everything to multiplication™)

Bit complexity for multiplying two n-bit integers: My(n)

Arithmetic complexity for multiplying two degree-n polynomials
over a ring R: Mgp,(n)

Classical multiplication: M(n) = O(n?)
Karatsuba multiplication: M(n) = O(n'-5%)
FFT multiplication: M(n) = M(nlog nloglogn) = O~(n)

Bit complexity for multiplying degree-n polynomials over R = Z with
p-bit coefficients: O~ (np)



How high can we go?

» In the critical strip: ((1/2 + ti) for t ~ 10%° — recent work by Hiary
and Bober. Complexity: ~ O(t'/?)

> Precise values of ((")(s) with s small: to about p = 1000000 bits,
or up to n = 100000 without too much effort [more about this
later]. Complexity: ~ O~ (t + p? + n?)

> Very special values (like {(3) or v = 0.577...) to 1000000000 bits
or more. Note: Record for computing ~y is 119 377 958 182 digits, set
by Alexander Yee in 2013. Complexity: O~ (p)



Effective formulas for computing zeta functions

v

Integral representations (numerical integration)

v

Infinite series (directly or using convergence acceleration)

Euler-Maclaurin summation

v

v

The Riemann-Siegel formula

v

The approximate functional equation



Integral representations

Contour integrals:

_T(1—5s) o1
) = =5 % et 1%

1 i —s _—t
r(s)—zﬂy{(—t) e tdt

On the real axis (valid at least for $(a) > 0):

S za

(z,s,a) i 1 + IOgs_lﬁl'(l —s,alog(1l/z2))
= (

t

2 /°° sin(satan(t) — talog(z)) J

a1 (1 + t2)s/2(e27rat _ 1)
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High-precision integration algorithms

v

Trapezoidal rule (on closed contours)

v

Gaussian quadrature

v

Clenshaw-Curtis quadrature (Chebyshev series)

v

Taylor series methods

v

Double exponential
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Double exponential integration

For an analytic integrand on (—1,+1), the change of variables
x = tanh(7sinh t) gives an integral on (—oo, +00) that is extremely
well approximated by a simple step sum.

1 o0 [ee)
/ f(x)dx = / g(x)dx =~ Z wi f (xk)
-1 oo k=—o0
ta h(l sinh kh) %hw cosh kh
Xk = tanh(37sin . Wk = :
g 2 g cosh?® (% sinh kh)

Halving the step size h typically doubles the number of correct digits!
This still works when f(x) has (sufficiently nice) singularities at the
endpoints.

[D. H. Bailey and J. M. Borwein, Effective Error Bounds in
Euler-Maclaurin-Based Quadrature Schemes, 2008]

[P. Molin, Intégration numérique et calculs de fonctions L, PhD thesis,
2010]



Direct summation

((s) ~ ki H

k=1

This is only good if Re(s) ~ prec!=¢. In fact, this is a good way to
compute the Bernoulli numbers B, for n large.

For polylogarithm, Lerch transcendent:

3
>

Lis(z) =~

ok

k=1

works well when, say, |z| < 0.9
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Methods based on convergence acceleration

Some methods to approximate

> (k)

from just a few terms when f (k) decreases slowly:

» Richardson extrapolation
» Alternating series convergence acceleration

» Shanks transformation (Wynn's e-algorithm)
> Euler transformation
> Chebyshev polynomial algorithm

» Euler-Maclaurin summation

Try the nsum function in mpmath on your favorite slowly converging (or
diverging) series!
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Alternating series convergence acceleration

n(s) =Y =127
_ 1R (DM ) E(nti— W
W(S)——d*n W+ nlz: n—/)l 2/
For Re(s) > 3,

] < —2 L
G+ vB) [(1— 29 (s)

[Cohen, Rodriguez Villegas, Zagier, Convergence acceleration of
alternating series, 2000]
[P. Borwein, An efficient algorithm for the Riemann zeta function, 2000]




The Euler-Maclaurin formula

For any sufficiently differentiable function f,

U
S fk)=1+T+R

i
=

I:/NUf(t)dt
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Computing ((s, a) using Euler-Maclaurin

1
C(S, a) Z k)+ Z f ) f(k (a+ k)s

k=0
—— H/—/

S I+T+R

N—-1 1
$=> %
— (a+k)
oo 1—s
|- / 1 dr (a+ N)

v @+t s—1
1 1 & By (s)oket
TGy (z 2 (aw)zu)

< Bam(t) _ (s)
R=- /N oMy G ;;in o

[This also provides the analytic continuation.]



The Riemann-Siegel formula

Other methods essentially need O(t) operations at height t

La] 1 K
R(9=Y L [z

k=0

t/(2m)

[Arias de Reyna, High precision computation of Riemann's zeta function
by the Riemann-Siegel formula, I, 2011]

M(K+1)/2)
((10/11)a)*

At height t, we can compute about 0.057t digits rigorously

‘R5K| S C1

Implementation (semi-heuristic) in mpmath by Juan Arias de Reyna (plus
code to locate zeros)



Saving time in the power sum

The terms f(k) = k=< in Zﬁzl (k) are completely multiplicative, i.e.
f(kika) = f(ki)f(k2). Only need values at prime k.

Can also extract multiples of small primes. Extracting powers of two
gives a polynomial in 7(2), e.g. for Zioil f(k) =

Need w(N) ~ N/log N evaluations of f(k) and N/2 multiplications.
Must store about N//6 function values.



Fast computation for large t (low precision)

[Hiary, Fast methods to compute the Riemann zeta function, 2011]:
¢(1/2 + it) can be evaluated to within t= for any fixed \ using
t4/13+0x(1)  $0-307 3rithmetic operations

Basic idea: break zeta sum into blocks of a well-chosen size K, and use
Taylor expansion

K—1 K—1
exp(it log(ng + k)) = exp(it log(ng) Z exp(itlog(1 + k/no))
k=0 k=0
K—1
= exp(it log(no)) Z exp(itk/no — itk? /(2n3) + ...)
k=0

Fast way to compute such exponential sums when the expansion is
truncated to a quadratic or cubic polynomial.



The approximate functional equation

1
s(s—1)

7S2((s)M(s/2) = 725y + nleTD/2G, 4

Zn*sr s/2,mn? Zns N —s)/2,7n%)

oo
F(s,z):/ t57te7tdt ~ zle7? 7z 400
z

Only need O(p'/?) terms for p-bit precision (but the terms are
complicated)



The incomplete gamma function

Convergent series:

s S,A—2Z

[(s,z) = [(s) — z?lFl(s,er 1,-z)=Tr(s) — 2°

1F1(1,S+ 1,2)

Continued fraction:

z°e™?

M(s,z) = .

z+

2—s
z+

1+

Asymptotic expansion:

-1
M(s,z) ~ 2z te? (1 42 +.. )

z



More general L-functions

[T. Dokchitser, Computing special values of motivic L-functions, 2004]

> a
n
L(S) = ;
n=1
Given: Dirichlet coefficients a, € C, weight w > 0, sign € = £1,
exponential factor A > 0, dimension d, constants A1,...,Aqy € C such
that

=TI (357). r@=20Us. U6 =dw-

The singularities L*(s) are assumed to be a finite list of simple poles p;
with residues r;.
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Computational formula

Define ¢(t) as the inverse Mellin transform of 7(s),

=Awaﬂﬁ“

Then ¢(t) decays exponentially, and

L*(s) = /Ooo o

o) = Y ant ()
n=1

We have the functional equation

O(1/t) = et"O(t Zrt”f

where



Computational formula

:/1 o(t t—+/ et)t—
)= [Cemed v [Tewe ety
This gives
s):ianGs <2)+E§Q”GWS (—) Z

where

pj—s

p—s



Dirichlet L-functions

If xisa primitive Dirichlet character mod N, then the data for

Z - consnsts of:

N/m, el =1

[How does this algorithm compare to Euler-Maclaurin summation
evaluation of ((s, z) for large N7]
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The function G4(z)

Numerical evaluation of G,(z) in general is analogous to I'(s, z) (see
Dokchitser's paper for formulas):

» Convergent series
» Continued fraction

> Asymptotic series

Effective error bounds for continued fractions and asymptotic series are
an open problem (except in special cases).

The function G,(z) is a special case of the Meijer G-function

m,n aly.--,dn,dpt1---4p
p.a bl,...,bm;bm+1...bq

/ b+S)HJ ll'(l—aj—s) —s/r
] z ds
27” H_/ n+1 aJ + S) ]._L m+1 (1 - bj - 5)



D-finite (holonomic) functions

A formal power series (or function) f(x) is called D-finite (or holonomic)
if there are polynomials a,, ..., ag such that

ar(x)FO(x) + ... + a1 (x)f'(x) + ao(x)f(x) = 0

A sequence g(n) is called P-recursive (or holonomic) if there are
polynomials b, ..., by such that

bs(n)g(n+s)+ ...+ bi(n)g(n+ 1)+ by(n)g(n) =0

If f(x) = r"y&(n)x", then
f(x) is D-finite < g(n) is P-recursive

(In general, with r # s.)
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Examples of holonomic functions

exp(x) is D-finite, as is exp(x?/(x — 1)) + x*/2 [ tlog(1 + t)dt

I'(s,z) is D-finite in z:

zZlM"(s,z)+ (1 —s+2)[(s,z) =0

I(s, z) is P-recursive in s:

Ms+2,z)+(-1-s—2z)I(s+1,z) + sz (s,z) =0

(Inhomogeneous version: (s + 1,z) = sl(s, z) + z°e~ %)

The generalized hypergeometric function

= (a1)n---(ap)n 2
qu(al"”’ap;bl’”"bq;z):ZEbi;(p)
pors e !

as well as the Meijer G-function are also D-finite in z.



Closure properties for holonomic functions

If f(x) and g(x) are D-finite, then so are:
» Cf(x) + Dg(x), where C, D are constants
> F(x)g(x)
> f'(x)
> [ f(x)dx
> f(A(x)), where A(x) is an algebraic function

Annihilating operators for the results of these operations and others can
be computed effectively (linear algebra)
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Computation

In general, D-finite and P-recursive functions/sequences permit fast
evaluation (numerically or in an exact setting).

Very large numerical values: asymptotic expansions (details are subtle)
In general: complexity-reduction techniques [more on this later]
Useful symbolic software:

» ore_algebra (Sage)
» gfun (Maple)
> HolonomicFunctions (Mathematica)

Numerical evaluation:

» numgfun (Maple)



Analytic continuation

Initial values: F(z;) = (f(za), f’

(2a), -, U1 (z,))
Desired values: F(zp) = (f(zp), f'(2p

NETER)

Transition matrix: A, _,,,

F(z1) = A20—>21F(ZO)

F(Z2) = A21*>22AZ()*>21’:(20)

Each transition matrix can be computed numerically using local Taylor
expansion of the differential equation.

Baby example: exp(—20) = exp(—10) exp(—10) exp(0)
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Non-examples of holonomic functions

The function
X ad Bk k

1 Zakl”
k=0

is not D-finite & the Bernoulli numbers B,, are not P-recursive.

The functions I'(s) and ((s) are not D-finite.

The sequence log(n), the prime numbers p(n) and the partition numbers
p(n) are examples of sequences that are not P-recursive.
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Computing the gamma function

The workhorse method is the Stirling series
N—1

log [(s) = (s — 1/2) log(s) — s + 27” +> 2k(2k€2;)52’<1 + Ru(s)
k=1

> Boy — Bon(t)
— [ v =Ml
Ru(s) /0 2n(t + )"

Argument reduction:
FMs+n)=T(s) - (s(s+1)+---(s+n—-1))

For p bits: N~ n~p
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