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1 Introduction

These notes are based on lectures given by the author in 2014 at the Uni-
versity of Calgary and in 2015 at the University of N. Carolina Greensboro.
The general theme is convergence, in Section 2 this is studied for Dirichlet
series and in Sections 3-4 for Euler products. Section 5 gives some examples
and concludes with a few questions.

2 Dirichlet Series

By a Dirichlet series we mean an infinite series

f(s) =
∞
∑

n=1

an
ns

=
∞
∑

n=1

ann
−s, an ∈ C.

As usual we write s = σ+it for the complex variable s. A very familiar exam-
ple is the case an = 1, f is then the Riemann zeta function ζ. For t = 0, i.e.
for s = σ ∈ R , it is proved in elementary calculus that ζ(σ) diverges for σ = 1
and is absolutely convergent for σ > 1. This is called the “p-test” (where
p = σ) but should really be called the “ζ-test.” Another familiar example
(again when s = σ ∈ R) is the alternating zeta series η(s) =

∑

(−1)n−1n−s,
known as the Euler-Dedekind function. It is proved in elementary calculus
that this series converges for σ > 0, where the convergence is conditional for
0 < σ ≤ 1 and absolute for 1 < σ. In this section we shall prove that very
similar results hold, with appropriate hypotheses on the coefficients an, for
s ∈ C, i.e. dropping the condition t = 0.

From elementary complex analysis, for any x ∈ R
+, one has |xs| = xσ.

In particular |n−s| = n−σ. Using this together with the zeta-test gives the
next result immediately.

1.1 Proposition : If |an| is bounded then the Dirichlet series
∑

ann
−s is

absolutely convergent for σ > 1.
In particular this holds for ζ(s), η(s) and all L-functions L(s, χ) for any

Dirichlet character χ, indeed |an| = 1 for these functions.
1.2 Examples : The mod 3 character χ3

2 is defined by χ(n) = 0, 1,−1 for
n congruent respectively to 0, 1, 2 modulo 3. One has L(s, χ3

2) = 1− 2−s +
4−s − 5−s + 7−s − 8−s . . . . By the Leibniz alternating series test we see
that both η(s), L(s, χ3

2) converge (conditionally) along the real line s = σ for
0 < σ ≤ 1. The first objective of this section is to show that this remains true
for all t, i.e. Dirichlet series such as in these two examples are convergent for
σ > 0, for all t. The treatment is very close to that of [4].
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1.3 Lemma : Let α, β, σ ∈ R, 0 < σ, 0 < α < β. Then

|e−αs − e−βs| ≤
|s|

σ
(e−ασ − e−βσ) .

Proof: We have e−αs − e−βs = s

∫ β

α

e−usdu, hence

|e−αs − e−βs| ≤ |s|

∫ β

α

|e−us|du = |s|

∫ β

α

e−uσdσ =
|s|

σ
(e−ασ − e−βσ) . �

1.4 Corollary : Set α = log(m), β = log(n) , 0 < m < n, σ > 0, then

|m−s − n−s| ≤
|s|

σ
(m−σ − n−σ) .

1.5 Lemma (Abel’s summation formula) : Let ak, bk ∈ C, n ≥ 1, and set
An = a1 + . . .+ an. Then

n
∑

k=1

akbk = Anbn+1 −

n
∑

k=1

Ak(bk+1 − bk) .

Proof: Let A0 = 0. Then

n
∑

k=1

akbk =
n

∑

k=1

(Ak − Ak−1)bk =
n

∑

k=1

Akbk −

n
∑

k=1

Akbk+1 + Anbn+1

which is the same as the right hand side of Abel’s formula. �

1.6 Corollary : The sum
∞
∑

k=1

akbk converges if both
∞
∑

k=1

Ak(bk+1 − bk) and

{Anbn+1} are convergent.
We remark that Abel’s summation formula can be thought of as a discrete

version of the familiar integration by parts formula from calculus, this should
be clear by writing them side by side as

n
∑

k=1

bkak = Anbn+1 −
n

∑

k=1

Ak(bk+1 − bk) ,

∫

udv = vu−

∫

vdu .

Before turning to the main theorem of this section, we recall some stan-
dard facts about convergence of an infinite series of complex numbers zn.

The partial sums are written Sn :=
n

∑

k=1

zk, and one says that
∞
∑

k=1

zk = S

if and only if limn→∞ Sn exists and equals S, in this case the series is
said to be convergent. A necessary condition for convergence is zn → 0.
A necessary and sufficient condition, the Cauchy convergence criterion, is
that for any given real number ε > 0 there exists N ∈ N such that for all
m,n ≥ N, |Sn − Sm| < ε. As before, An = a1 + . . .+ an.

1.7 Theorem : Consider
∞
∑

n=1

ann
−s, an ∈ C. If {|An|} is bounded then

the series converges for σ > 0.
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Proof: We have |An| ≤ C, for some C > 0 and for all n. We shall use
Corollary 1.6, with an = an and bn = n−s. Then |Anbn+1| = |An| · |bn+1| ≤
C · (n + 1)−σ → 0 as n → ∞. Hence the second condition of Corollary 1.7,
{Anbn+1} converges (in this case to 0), is satisfied.

For the first condition, we apply the Cauchy convergence criterion to
∞
∑

k=1

Ak((k + 1)−s − k−s). Given ε > 0 and using Corollary 1.4 we have

|Sn − Sm| = |

n
∑

k=m+1

Ak((k + 1)−s − k−s)| ≤ C ·

n
∑

k=m+1

|(k + 1)−s − k−s|

≤
C|s|

σ

n
∑

k=m+1

(
1

kσ
−

1

(k + 1)σ
) =

C|s|

σ
(

1

(m+ 1)σ
−

1

(n+ 1)σ
) ≤

C|s|

σ(m+ 1)σ
< ε

for m sufficiently large. �

The first objective of this section is thus accomplished. We give a corol-
lary. Recall that the trivial (also called principal) Dirichlet character modulo
q is given by χ(n) = 0 for all n such that gcd(q, n) > 1, and χ(n) = 1 when
gcd(q, n) = 1.

1.8 Corollary : For η(s) or for L(s, χ) with χ any non-trivial Dirichlet
character χ modulo q, the Dirichlet series converges for σ > 0.

Proof: For η, An ∈ {0, 1} is bounded. For any non-trivial character χ
modulo q one has Aq = χ(1) + . . .+ χ(q) = 0 so {An} is periodic modulo q,
hence finite and bounded. �

We remark that Theorem 1.7 is proved in [4], but the proof is a little less
direct than the one given above, and is restricted to the case an ∈ R (for no
apparent reason).

The second objective of this section is to consider possible strengthening
of the above results, in particular 1.3, 1.7, and their corollaries. It will be seen
in Sections 4-5 that such strengthening could be very useful. First consider
Corollary 1.4. Another obvious (second) upper bound is |m−s − n−s| ≤
|m−s| + |n−s| = m−σ + n−σ. It can be seen that for each fixed values for
m,n, σ there is a t∗ such that the first upper bound (from 1.4) is better for
t < t∗ whereas the second, which is simply a constant, is better for t > t∗.
Indeed the second becomes better and better as t increases. Whether this
can be used in some way to strengthen Theorem 1.7 is presently not known.
It may also be possible to find a third upper bound that improves both the
first and second, of course their minimum will be one such.

It is in fact possible to strengthen Theorem 1.7 using Corollary 1.4 as it
stands, and the next theorem is an example.

1.9 Theorem : Consider
∞
∑

n=1

ann
−s, an ∈ C. If there exists C > 0 such

that |An| < C · log(n), n ≥ 2, then the series converges for σ > 0.
Proof: As in the proof of Theorem 1.7, the second convergence condition

follows since C · log(n) · (n+1)−σ → 0 as n → ∞. For the first convergence
condition, proceeding as in 1.7, we have

|Sn − Sm| =
n

∑

k=m+1

|Ak| · (k
−s − (k + 1)−s) .
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Here m ≥ 1, k ≥ 2, hence from both the hypothesis and Corollary 1.4

n
∑

k=m+1

|Ak| · (k
−s − (k + 1)−s) ≤

C|s|

σ

n
∑

k=m+1

log(k) · (k−σ − (k + 1)−σ) .

For convenience write C|s|/σ = K henceforth, then the last expression, after
a small rearrangement of the terms, equals

K[log(m+1)·(m+1)−σ+
n−1
∑

k=m+1

(log(k+1)−log(k))·(k+1)−σ−log(n)·(n+1)−σ)]

= K[log(m+1) · (m+1)−σ− log(n) · (n+1)−σ+
n−1
∑

k=m+1

log(1+
1

k
) · (k+1)−σ] .

Next note that for 0 ≤ u ≤ 1, log(1+u) = u−u2/2+u3/3+. . . = u+βu, where
|βu| ≤ u2/2, as in the Leibniz convergence test for series with alternating signs
(in fact this remains true for 0 ≤ u). The previous sum thus equals

K ·

[

log(m+ 1)

(m+ 1)σ
−

log(n)

(n+ 1)σ
+

n−1
∑

k=m+1

(
1

k
+ βk) · (k + 1)−σ

]

≤ K ·

[

log(m+ 1)

(m+ 1)σ
+

∞
∑

k=m+1

k−1−σ +
1

2

∞
∑

k=m+1

k−2−σ

]

.

For σ > 0 the two summations are absolutely convergent, so clearly taking
m sufficiently large will guarantee that each of the three terms in the above
formula will be smaller than ε/(3K), completing the proof. �

Since the derivative of ns is log(n) ·ns, we can use Theorem 1.9 to obtain
a corollary similar to 1.8.

1.10 Corollary : For f(s) = η(s) or for f(s) = L(s, χ) with χ any non-
trivial Dirichlet character modulo q, the Dirichlet series for f ′(s) converges
for σ > 0.

3 Convergence of Euler Products for σ > .5

In this section we simply present some numerical evidence for convergence
of many Euler products in the half plane σ > .5. The Euler products for
any Dirichlet L-function and the Riemann zeta function are well known to
converge absolutely for σ > 1. We now give some numerical evidence here
that for an L-function coming from a primitive character χ mod q, q ≥ 3,
the Euler product converges for σ > .5 and diverges for smaller σ. Three
primitive characters are considered, χ3

2 which takes values 0, 1,−1 as n is
respectively congruent to 0, 1, 2 modulo 3, χ4

2 which takes values 0, 1, 0,−1
as n is respectively congruent to 0, 1, 2, 3 modulo 4, and χ5

2 which takes
values 0, 1, i,−i,−1 as n is respectively congruent to 0, 1, 2, 3, 4 modulo 5. We
consider s = σ+30i, for σ = .4 (showing divergence) and for σ = .6, .7, .9, 1.1,
which show stronger and stronger convergence as σ increases. Of course for
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σ = 1.1 convergence is known and is absolute. We choose t = 30 as a fairly
typical t value, similar results can be seen for other t values.

The tables show the s values, and ∆(10k) is the absolute value of the
error in computing the Euler product to 10k terms.

5



Table 1. χ3

2

s ∆(102) ∆(103) ∆(104) ∆(105) ∆(106) ∆(107)

.4 + 30i 2.63 .948 1.038 1.527 1.279 .92895

.6 + 30i .3834 .1310 .1071 .0628 .03348 .02217

.7 + 30i .1667 .04784 .03132 .01389 .005819 .003036

.9 + 30i .03522 .00646 2.64× 10−3 7.015× 10−4 1.798× 10−4 5.655× 10−5

1.1 + 30i .008014 .000889 2.28× 10−4 3.63× 10−5 5.653× 10=6 1.056× 10−6

Table 2. χ4

2

s ∆(102) ∆(103) ∆(104) ∆(105) ∆(106) ∆(107)

, 4 + 30i .5990 .9698 1.4292 1.8426 .57275 1.2107
.6 + 30i .09977 .11541 .05695 .048676 .012220 .02360
.7 + 30i .042703 .041387 .013952 .010361 .0019669 .0032676
.9 + 30i .008350 .005571 .009151 .0005152 6.1523× 10−5 6.6160× 10−5

1.1 + 30i .0017451 .0007744 6.6285× 10−5 2.6603× 10−5 2.1386× 10−6 1.377× 10−6

Table 3. χ5

2

s ∆(102) ∆(103) ∆(104) ∆(105) ∆(106) ∆(107)

.4 + 30i 1.396 1.753 1.491 1.801 .7668 1.8641

.6 + 30i .3098 .1627 .07835 .08715 .02307 .03472

.7 + 30i .1455 .05550 .01905 .01846 .003667 .004391

.9 + 30i .03254 .006930 1.197× 10−3 8.735× 10−4 9.447× 10−5 7.376× 10−5

1.1 + 30i .007414 .0009013 8.134× 10−5 4.339× 10−5 2.549× 10−6 1.328× 10−6

4 Theory of Euler Product Convergence

We start this section with a brief discussion of infinite products and the
related convergence issues, and conclude with a theorem that seems to give
an approach to proving that Euler products of the type considered in Section
3 converge, for σ > 1/2. Intuitively one would say that Π∞

n=1un, un ∈ C,
converges when lim

N→∞
ΠN

n=1un = L exists, and then define Π∞
n=1un = L.
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But this has complications, especially if any un = 0. For the most general
definition see Apostol’s text [1], p. 207. This definition has quite a few cases
and even a few surprises, e.g. if un = 1/n we say Π∞

n=1un diverges to 0. For
our purposes it suffices to avoid these complications by using a subset of the
Apostol definition and requiring :
(a) un 6= 0 for all n, and
(b) lim

n→∞
un = 1.

Then convergence of Π∞
n=1un is now equivalent to convergence of the

infinite series Σ∞
n=1 log(un) provided we are a little careful with the multi-

valued logarithmic function, as follows. From (a) log(un) is defined for all
n, and from (b), discarding a finite number of terms if so required (which
has no effect on convergence issues), we can suppose |un − 1| < 1/2 for all
sufficiently large n. We then choose the branch of the logarithm for which
log(1) = 0. This also implies lim(log(un)) = 0. In case Π∞

n=1un = L con-
verges it is now clear that Σ∞

n=1 log(un) = log(L), furthermore that L 6= 0 and
that Π∞

n=1u
−1

n = L−1. It is also standard to call Π∞
n=1un absolutely conver-

gent if and only if Σ∞
n=1 log(un) is absolutely convergent, i.e. Σ∞

n=1| log(un)|
is convergent.

We shall henceforth write un = 1 − αn, and next give two results that
connect the convergence of Π∞

n=1un with the convergence of Σ∞
n=1αn. The

first concerns absolute convergence and is found in many texts, cf. [3]. The
second concerns convergence and can be found in [2], p.405, at least for the
case un ∈ R.

4.1 Theorem : Let αn ∈ C \ {1} and suppose Σ∞
n=1αn is absolutely con-

vergent. Then Π∞
n=1un is absolutely convergent.

Sketch of proof (following [3]): The hypotheses on αn imply conditions (a),
(b) for un hold, so we consider Σ∞

n=1 log(un) = Σ∞
n=1 log(1− αn). Discarding

a finite number of αn if necessary we have |αn| < 1/2, whence

log(1− αn) = −αn −
α2
n

2
−

α3
n

3
− . . . = −αn(1 +

αn

2
+

α2
n

3
+ . . .) .

It is then easily seen that | log(1− αn)| ≤ (3/2) · |αn| and the convergence
of Σ∞

n=1αn thus implies convergence of Σ∞
n=1 log(un). �

The proofs of next lemma and theorem follow Bartle’s proofs for the case
αn ∈ R (cf. [2], given as a “Project”), with a couple of changes that are
discussed in Remark 4.5 below.

4.2 Lemma : Let z ∈ C, |z| < 1/2. Then (1/6)|z|2 < |z + log(1− z)| <
(5/6)|z|2 .

Proof: We have

z+ log(1− z) = z− z−
z2

2
−

z3

3
− . . . = −

z2

2
(1+R), where R =

∞
∑

n=1

2zn

n+ 2
.

Now |R| ≤ (2/3)|z|+ (2/4)|z|2 + (2/5)|z|3 ≤ (2/3)|z|(1 + |z|+ |z|2 + . . .)

=
2|z|

3

1

1− |z|
<

2

3
·
1

2
·

1

1− 1/2
=

2

3
, whence 1/3 < |1+R| < 5/3. Multiply-

ing by |z|2/2 completes the proof. �

4.3 Theorem : Let αn ∈ C\{1} and suppose Σ∞
n=1αn is convergent. Then

Π∞
n=1un is convergent if Σ∞

n=1|αn|
2 is convergent.
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Proof: We start as in the proof of 4.1 and have (again n is assumed
sufficiently large so |αn| < 1/2) log(1 − αn) = −αn + βn, where βn =
αn + log(1 − αn), so by Lemma 4.2 (1/6)|αn|

2 < |βn| < (5/6)|αn|
2. By

hypothesis Σ∞
n=1αn converges, thus Σ∞

n=1 log(1− αn) converges if and only
if Σ∞

n=1βn converges. But by the above (right-hand) inequality this will follow
from the convergence of Σ∞

n=1|αn|
2, indeed Σ∞

n=1βn is absolutely convergent
here. �

4.4 Corollary : Let αn ∈ C\{1} and suppose Σ∞
n=1αn is convergent. Then

Π∞
n=1un is convergent if αn = O(n−r), r > 1/2.

4.5 Remark : In the real case αn ∈ R, as in [2], one actually obtains
the following stronger result : Let αn ∈ R, αn < 1, and suppose Σ∞

n=1αn

is convergent. Then Π∞
n=1un is convergent if and only if Σ∞

n=1|αn|
2 is

convergent. To see this one simply observes, for n sufficiently large, that

βn = −
α2
n

2
−

α3
n

3
− . . . = −

α2
n

2

(

1 +
2αn

3
+

2α2
n

4
+ . . .

)

< 0 .

Hence
∑

βn converges if and only if
∑

|βn| converges, and then the left hand
side of the inequality mentioned in the above proof can be used, showing
that

∑

βn converges implies
∑

|αn|
2 converges.

5 Examples and Questions

Our first example is standard. Here as usual Πp (respectively
∑

p) denotes a
product (respectively sum) over the prime numbers, and pn is the n’th prime.

5.1 Example : The Euler product for ζ(s), or for any Dirichlet L-function
L(s, χ), is absolutely convergent for σ > 1.

To see this, e.g. for ζ(s), consider the Euler product ζ−1(s) = Πp(1−p−s).
Then, using the notation of Section 4, αn = p−s

n so
∑

n αn is clearly
absolutely convergent for σ > 1, and Theorem 4.1 then implies that ζ−1(s) =
Πn(1− αn) is absolutely convergent. As seen in Section 4 this is equivalent
to absolute convergence of the Euler product for ζ. The proof for the L-
functions is similar.

The following examples will involve Theorem 4.3 (or its Corollary 4.4)
and be less straightforward. As in Example 5.1 we will generally look at the
inverse of the function in question for convergence, without specific mention.

5.2 Example : Let f(s) = Πn≥2

1

1− (−1)nn−s
=

1

1− 2−s
·

1

1 + 3−s
· · · .

Then the infinite product f(s) converges for σ > 1/2.
Proof: Here αn = (−1)nn−s, n ≥ 2. Using Theorem 1.7 shows Σn≥2αn

is convergent, σ > 0. The convergence of f(s) follows by Corollary 4.4. �

The next example is very similar to Example 5.2 but n is replaced by pn
so that it is an Euler type product.

5.3 Example : Let

g(s) = Πn≥1

1

1 + (−1)np−s
n

=
1

1− 2−s
·

1

1 + 3−s
·

1

1− 5−s
·

1

1 + 7−s
·

1

1− 11−s
· · · .
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Then the infinite product g(s) converges for σ > 1/2.
Proof: Similar to that of Example 5.2.
We now turn to Euler products that arise from Dirichlet L-functions. For

the next example we consider L(s, χ3
2), defined in Section 4.

Example 5.4 : Let χ = χ3
2 and consider

L(s, χ) = Πn≥1

1

1− χ(pn) · p−s
n

=
1

1 + 2−s
·

1

1 + 5−s
·

1

1− 7−s
·

1

1 + 11−s
· · · .

Here αn = χ(pn) · p
−s
n . The second condition for convergence in Corollary

4.4 is satisfied, but unfortunately the first condition, that
∑

αn is convergent
(at least for σ > 1/2), appears to be very difficult to prove.

The same situation holds for any primitive Dirichlet character χ modulo
q , where q ≥ 3.

We close this section with some potentially interesting questions.

Question 5.5 : Do the functions f, g in Examples 5.2, 5.3 (particularly
5.3), also satisfy a functional equation relating the function values at z, 1−z.
Are they in the Selberg class? If so they may give an example of a function
in the Selberg class that satisfies RH. Is there another example of this type?

Question 5.6 : As mentioned in Example 5.4, can one prove
∑

αn con-
vergent here, or in similar examples for primitive Dirichlet characters mod
q, q ≥ 3? The difficulty seems to be, e.g. for χ3

2, that although density theo-
rems imply the density of primes congruent to 1 mod 3 is 1/2, and similarly
for primes congruent to 2 mod 3, there could be arbitrarily long sequences of
each type. Of course any such proof would imply GRH for the corresponding
L-function(s).
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