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Perhaps the most important function in all mathematics is the Riemann Zeta

function. For almost 150 years Mathematicians have tried to understand the behavior

of the function’s complex zeros. Our main aim is to investigate properties of the

Riemann Zeta Function and Hurwitz Zeta Functions, which generalize the Riemann

Zeta Function. The main goal of this work is to approach this problem from a

traditional and computational approach. We aim to investigate derivatives of Zeta

functions by exploring the behavior of its fractional derivatives and its derivatives,

which has not been sufficiently examined yet.
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CHAPTER I

INTRODUCTION

Perhaps the most important function in all mathematics is the Riemann Zeta

function. For almost 150 years Mathematicians have tried to understand the behavior

of the function’s complex zeros. Our main aim is to investigate properties of the

Riemann Zeta Function and Hurwitz Zeta Functions, which generalize the Riemann

Zeta Function.

The main goal of this work is to approach this problem from a traditional

and computational approach. We aim to investigate derivatives of Zeta functions by

exploring the behavior of its fractional derivatives and its derivatives, which has not

been sufficiently examined yet.

For the traditional approach, our goal is to use these data sets to visually

find patterns between the zeros of higher derivatives of Zeta functions. Using this

visualization to our advantage, we aim to use it to guide new theoretical results.

Another goal is to generalize certain well-known results regarding the distribution of

zeros of the Riemann Zeta function and its higher derivatives in the complex plane.
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Figure I.1: Zeros of derivatives of the Riemann Zeta function where •(k) denotes a
zero of the k-th derivative.

I.1. Fractional Derivatives

Leibniz invented the notation dny
dxn

to denote the nth derivative of y. This

notation prompted L’Hospital to ask Leibniz, “What if n be 1/2?”. Leibniz responded

in 1695 [22] with, “It will lead to a paradox, from which useful consequences will be

drawn, because there are no useless paradoxes.”

Since this time, fractional calculus has attracted the attention of many great

mathematicians such as Abel [1], Riemann [31], and Liouville [25,26].

In [27], the authors define the fractional derivative operator as any extension

of the familiar differentiation operator Dn to arbitrary (integer, rational, or complex)
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values of n. Using this as our definition of a fractional derivative operator, we now

motivate the extension of the fractional derivative operator that we seek. Intuitively,

the fractional derivative of a function is well understood but not explicitly formulated.

To formulate the idea, we describe what is desired. Throughout this discussion

we assume the principle branch of the complex logarithm.

For every function f(z) (belonging to some class of functions) and every α ∈ C,

we wish to assign a new function Dα
z [f(z)] subject to the following criteria:

1. If f(z) is an analytic function of a complex variable z, then Dα
z [f(z)] is an

analytic function of α and z.

2. The operationDα
z [f(z)] must produce the same result as ordinary differentiation

when α is a positive integer.

3. The operation of D0
z [f(z)] leaves the f unchanged. That is, D0

z [f(z)] = f(z).

4. The operation of Dα
z [f(z)] is linear. That is, for arbitrary a, b ∈ C,

Dα
z [af(z) + bg(z)] = aDα

z [f(z)] + bDα
z [g(z)].

5. The law of exponents holds. That is, Dα
z

[
Dβ
z [f(z)]

]
= Dα+β

z [f(z)].

Other criteria could be added to this list, but these are generalizations of some of the

most basic properties of integer order differentiation.

It should be noted that the differentiation operator that meets the above cri-

teria is not necessarily unique. Perhaps the most natural definition of fractional dif-

ferentiation was initiated by Grünwald in 1867 [16] and rigorously examined in 1868

by Letnikov [23]. We have found that the Grünwald-Letnikov fractional derivative is

suited best for our purposes. We introduce it in Chapter III.

In Figures I.1 and I.2 we illustrate how connections between values, in this

example the zeros of higher derivatives of the Riemann Zeta function, become clearer

3



with the use of fractional derivatives. Figure I.1 suggests a zero of the k-th derivative

of the Riemann Zeta function corresponds to a zero of its (k + 1)-st derivative. In-

cluding the zeros of the fractional derivative makes the correspondence more concrete

(Figure I.2).

Figure I.2: Zeros of derivatives and fractional derivatives of the Riemann Zeta func-
tion where •(k) denotes a zero of the k-th derivative and the zeros of the fractional
derivatives are on the curves.

I.2. Overview

In this thesis we cover four topics concerning the Riemann Zeta function or

one of it’s generalizations, namely the Hurwitz Zeta functions and the derivatives or

fractional derivatives of these functions.

In Chapter II we present the zeros of the derivatives, ζ(k)(σ + it), of the Rie-
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mann Zeta function for k ≤ 28 with −10 < σ < 1
2
and −10 < t < 10. Our

computations show an interesting behavior of the zeros of ζ(k), namely they seem to

lie on curves which are extensions of certain chains of zeros of ζ(k) that were observed

on the right half plane. This is joint work with Sebastian Pauli appeared in [11].

The remaining chapters contain orginal results of the author that have been

written up in collaboaration with Sebastian Pauli and Filip Saidak.

Figure I.3: The (integral) Stieltjes constants γm(1) for 25 ≤ m ≤ 35.

In Chapter III we discuss the fractional (or non-integral generalized) Stieltjes

constants γα(a) arising naturally from the Laurent series expansions of the fractional

derivatives of the Hurwitz Zeta functions ζ(α)(s, a). See Figures I.3 and I.4. We prove

that if one defines ha(s) := ζ(s, a) − 1/(s − 1) − 1/as and Cα(a) := γα(a) − logα(a)
a

,
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then Cα(a) = (−1)−αh
(α)
a (1), for all real α ≥ 0, where h(α)(x) denotes the α-th

Grünwald-Letnikov fractional derivative of the function h at x. This result confirms

the conjecture of Kreminski [21], originally stated in terms of the Weyl fractional

derivatives. In article form this chapter is [12].

Figure I.4: The fractional Stieltjes constants γα(1) for 25 ≤ α ≤ 35 with the integral
Stieltjes constants (•).

In Chapter IV we discuss methods of evaluation of non-integral generalized

Stieltjes constants γα(a), arising naturally from the Laurent series expansions of the

fractional derivatives of the Hurwitz Zeta functions ζ(α)(s, a). We give upper bounds

for Cα(a) = γα(a) − logα(a)/a for 1 < α. Evaluation of our bound and previously

known bounds for γn(α) for n ∈ N suggests that our upper bound is lower than known
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bounds for n > 100. In article form this chapter is [13].

In Chapter V we present a zero free region about 1 of the fracional derivarives

of the Riemann Zeta function. For any α ∈ R, we denote by Dα
s [ζ(s)] the α-th

Grünwald-Letnikov fractional derivative of the Riemann Zeta function ζ(s). We prove

that

Dα
s [ζ(s)] 6= 0

inside the region |s − 1| < 1. This result is proved by a careful analysis of integrals

involving Bernoulli polynomials and bounds for fractional Stieltjes constants. In

article form this chapter is [14].
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CHAPTER II

MORE ZEROS OF THE RIEMANN ZETA FUNCTION ON THE LEFT HALF

PLANE

Let s ∈ C. We denote the real part of s by σ and the imaginary part of s by

t. For σ > 1 the Riemann Zeta function ζ can be written as

ζ(s) =
∞∑
n=1

1

ns
. (II.1)

By analytic continuation, ζ may be extended to the whole complex plane, with the

exception of the simple pole s = 1. This analytic continuation is characterized by the

functional equation

ζ(1− s) = 2(2π)−s cos
πs

2
Γ(s)ζ(s). (II.2)

It follows directly from the functional equation (II.2) that ζ(−2j) = 0 for all j ∈ N.

These zeros are called the real or trivial zeros of ζ. By the Riemann hypothesis, the

remaining (non-trivial) zeros of ζ are of the form 1
2

+ it.

In this paper we numerically investigate the distribution of zeros of the deriva-

tives ζ(k) of ζ on the left half plane. The results of our computations, that considerably

expands the list of previously published zeros [34,40], can be found in Tables II.1, II.2,

and II.3. For the rectangular region −10 < σ < 1
2
and |t| < 10, Table II.1 contains

the number of zeros of ζ(k), its real zeros, and its zeros with 0 < σ < 1
2
. Tables II.2

and II.3 contain non-real zeros with σ < 0 in that region. We find that some of the

conjectured chains of zeros of the derivatives on the right half plane [6,32] (see Figure

II.1) appear to continue to the left half plane which is illustrated in Figure II.3.

We first recall results about the distribution of the zeros of ζ(k) on the right half
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plane (see Section II.1) and the left half plane (see Section II.2). Section II.3 contains

a description of methods we used to evaluate ζ(k). It is followed by a discussion of

the methods that we used to find the zeros of ζ(k) in Section II.4.

II.1. Zeros on the Right Half Plane

Assuming the Riemann Hypothesis, the non-real zeros of ζ are all on the

critical line σ = 1
2
, while the non-real zeros of ζ(k) appear to be distributed mostly to

the right of the critical line with some outliers located to its left.

Zeros with 0 < σ < 1
2

Speiser related the Riemann Hypothesis to the distribution of zeros of the first

derivative.

Theorem 1 (Speiser [33]). The Riemann Hypothesis is equivalent to ζ ′(s) having no

zeros in 0 < σ < 1
2
.

A simpler and more instructive proof of this result was given by Levinson and

Montgomery [24]. They also proved, assuming the Riemann Hypothesis, that ζ(k)(s)

has at most a finite number of non-real zeros with σ < 1
2
, for k ≥ 2.

Theorem 2 (Yıldırım [40]). The Riemann Hypothesis implies that ζ ′′(s) and ζ ′′′(s)

have no zeros in the strip 0 ≤ σ ≤ 1
2
.

The Riemann Hypothesis also implies that ζ(k) for k > 0 has only finitely

many zeros in 0 ≤ σ ≤ 1
2
[24].

Our computations show that higher derivatives have zeros in this strip, see

Table II.1. Because of the distribution of the zeros of ζ(k) in Figure II.2, we expect

that the zeros listed in the table are the only zeros of ζ(k) for k ≤ 32.
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Zeros with σ > 1
2

The real parts of the zeros of ζ(k) can be effectively bounded from above by

absolute constants. For ζ ′ and ζ ′′ Skorokhodov [32] gives the bounds:

ζ ′(σ + it) 6= 0 for σ > 2.93938,

ζ ′′(σ + it) 6= 0 for σ > 4.02853.

For k ≥ 3 such general upper bounds were given by Spira [34] and later improved by

Verma and Kaur [38]:

ζ(k)(σ + it) 6= 0 for σ > q2k + 2,

where q2 is given by the formula

qM =
log
(

logM
log(M+1)

)
log
(

M
M+1

) .

Spira [34] computed zeros of the first and second derivative of ζ(s) for 0 < t < 100 and

noticed that they occur in pairs. Skorokhodov [32] went further in his computations

and noticed that the zeros of derivatives of ζ seem to form chains, that is for each

zero z(k) of ζ(k) there seems to be a corresponding zero z(k+1) of ζ(k+1). Indeed, for

sufficiently large k the existence of these chains is a direct consequence of the following

theorem.

Theorem 3 (Binder, Pauli, Saidak [6]). Let M ≥ 2 be an integer and let u be a

solution of 1 − 1
eu−1
− 1

eu

(
1 + 1

u

)
≥ 0, that is, u ≥ 1.1879 . . . . If k > u(2M+3)

qM−qM+1
, then

for each j ∈ Z the rectangular region R, consisting of all s = σ + it with

qMk − (M + 1)u < σ < qMk + (M + 1)u (II.3)

10



and
2πj

log(M + 1)− log(M)
< t <

2π(j + 1)

log(M + 1)− log(M)
, (II.4)

contains exactly one zero of ζ(k). This zero is simple.

So, given M ≥ 2, j ∈ Z, and l > u(2M+3)
qM−qM+1

for the zero of ζ(l) in the region

determined by (II.3) and (II.4) for k = l there is a corresponding zero of ζ(l+1) in

the region determined by (II.3) and (II.4) for k = l + 1. Figure II.1 illustrates the

phenomenon of the chains of zeros of derivatives of ζ. The zeros shown in the chains

labeled M = 2, j = 0 and M = 2, j = 1 are in the rectangular regions from Theorem

3 and the zeros in the chain labeled M = 3, j = 1 are in the regions for M = 3 and

j = 1 starting at the 77th derivative. The other chains are labeled by the parameters

M and j of the regions into which higher derivatives in the chains eventually fall

farther to the right.
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50 55 60 65

10

15

20

25

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199200 201 202 203

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

M=2, j=0

M=3, j=0

M=4, j=0

M=5, j=0

M=6, j=0

M=7, j=0

M=8, j=0

M=2, j=1
M=9, j=0

M=10, j=0

M=11, j=0

Figure II.1: The zeros of ζ(k)(σ + it) for 50 < σ < 70, 0 < t < 26, where k denotes
a zero of ζ(k). The conjectured chains of zeros are labeled by M and j (compare
Theorem 3).
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Table II.1: The number of zeros of ζ(k)(σ + it) with k ≤ 32 in −10 < σ < 0, |t| < 10,
the number of complex conjugate pairs of non-real zeros, and the number of real zeros
in this region. Furthermore, the real zeros in this region and the zeros in the strip
0 < σ < 1

2
, |t| < 10 are given. The zeros are rounded to 4 decimal digits.

# of zeros of ζ(k)(σ + it) zeros of ζ(k)(σ + it)
k −10 < σ < 0 −10 < σ < 0 0 < σ < 1/2

|t| < 10 0 < t < 10 t = 0 t = 0 |t| < 10
0 4 0 4 −2 -4 -6 -8
1 3 0 3 −2.7173 -4.9368 -7.0746
2 5 1 3 −3.5958 -6.0290 -8.2786
3 5 2 3 −4.7157 -7.2920 -9.6047
4 6 2 2 −6.1265 -8.7016
5 5 2 1 −7.7119 0.2876± 4.6944i
6 7 2 3 −4.3284 -6.6083 -9.3445
7 8 3 2 −5.6191 -8.4425
8 7 3 1 −7.5186 0.4183± 5.4753i
9 9 3 3 −4.7059 -6.5553 -9.3794
10 10 4 2 −5.7309 -8.5500
11 9 4 1 −7.7120 0.4106± 6.1502i
12 11 4 3 −5.1849 -6.8533 -9.6751
13 12 5 2 −6.1124 -8.9100
14 11 5 1 −8.1400 0.3447± 6.7636i
15 12 5 2 −5.6697 -7.3600
16 14 6 2 −6.6469 -9.4393
17 13 6 1 −8.7229 0.2494± 7.3344i
18 14 6 2 −6.1556 -8.0019
19 15 7 1 −7.3040
20 15 7 1 −9.4151 0.1378± 7.8732
21 16 7 2 −6.6561 -8.7394
22 17 8 1 −8.0675
23 16 8 0 0.0163± 8.3861i
24 18 8 2 −7.1929 -9.5491 0.4681± 8.7645i
25 19 9 1 −8.9089
26 20 9 2 −7.3618 -8.2504
27 19 9 1 −7.8131 0.3116± 9.244i
28 21 10 1 −9.8049
29 22 10 2 −7.7492 -9.1919
30 21 10 1 −8.6103 0.1516± 9.7083i
31 22 11 0
32 23 11 1 −8.2087
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Figure II.2: The zeros of ζ(σ + it) and its derivatives ζ(k)(σ + it) for k ≤ 80 in
−10 < σ < 1, 0 < t < 10, where 0 denotes a zero of ζ and k denotes a zero of ζ(k).
All zeros shown are simple.
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II.2. Zeros on the Left Half Plane

It follows immediately from the functional equation (II.2) that ζ(s) = 0 for

s = −2n where n ∈ N. The zeros of the first derivative are exactly the zeros postulated

by the theorem of Rolle.

Theorem 4 (Levinson and Montgomery [24]). For n ≥ 2 there is exactly one zero of

ζ ′ in the interval (−2n,−2n+ 2) and there are no other zeros of ζ ′ with σ ≤ 0.

Unlike on the right half plane, on the left half plane there is no general (left)

bound for the non-real zeros of ζ(k). Spira showed:

Theorem 5 (Spira [35]). For k > 0 there is an αk so that ζ(k) has only real zeros

for σ < αk, and exactly one real zero in each open interval (−1 − 2n, 1 − 2n) for

1− 2n < αk.

The location of a zero of the second derivative on the left half plane shows up

in [34]. For both ζ ′′(s) and ζ ′′′(s) Yıldırım [40] proved the existence of exactly one

pair of conjugate non-trivial zeros with σ < 0 and gave their location.

Theorem 6 (Levinson and Montgomery [24]). If ζ(k) has only a finite number of

non-real zeros in σ < 0 then ζ(k+1) has the same property.

Hence, the absolute value of the non-real zeros of ζ(k) on the left half plane

can be bounded. This can be done by iteratively generalizing Yıldırım’s methods for

the second and third derivatives to higher derivatives.

Table II.2 contains all the zeros of ζ(k)(σ+ it) with −10 < σ < 0, 0 < |t| < 10

for 2 ≤ k ≤ 29. The patterns of the distribution of zeros in Figure II.2 suggest that

these are all the zeros for these derivatives on the left half plane.
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II.3. Evaluating ζ(k) on the Left Half Plane

Methods for evaluating ζ and ζ(k) include Euler-Maclaurin summation (see, for

example [10]) or convergence acceleration for alternating sums [7]. Implementations

for the evaluation of ζ can be found in various computer algebra systems. The Python

library mpmath [18] contains functions for evaluating derivatives of Hurwitz Zeta

functions, and thus ζ(k), on the right half plane using Euler-Maclaurin summation.

We considered two different approaches for evaluating ζ(k) in the left half plane.

Because of speed and ease of implementation we use Euler-Maclaurin summation

rather than the derivatives of the functional equation (see [4] for formulas for these).

Using Euler-Maclaurin summation we obtain for σ = <(s) > 1 that

(−1)kζ(k)(s) =
∞∑
n=2

logk(n)

ns
=

N−1∑
n=2

logk(n)

ns
+

∞∑
n=N

logk(n)

ns

=
N−1∑
n=2

logk(s)

ns
+

∫ ∞
N

logk(x)

xs
dx+

1

2

logk(N)

N s

+
v∑
j=1

B2j

(2j)!

d2j−1

dx2j−1

logk(x)

xs

∣∣∣∣∞
x=N

+R2v

=
N−1∑
n=2

logk(s)

ns
+

∫ ∞
N

logk(x)

xs
dx+

1

2

logk(N)

N s

−
v∑
j=1

B2j

(2j)!

d2j−1

dx2j−1

logk(x)

xs

∣∣∣∣
x=N

+R2v,

where N ∈ N>2, v ∈ N>2, and R2v is the error term. Repeated integration by parts

yields: ∫ ∞
N

logk(x)

xs
dx =

logk(N)

(s− 1)N s−1

k∑
r=0

k!

(k − r)!
log−r(N)

(s− 1)r
.
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Thus,

ζ(k)(s) = (−1)k
N−1∑
n=2

logk(s)

ns
+

logk(N)

(s− 1)N s−1

k∑
r=0

k!

(k − r)!
log−r(N)

(s− 1)r
+

1

2

logk(N)

N s

−
v∑
j=1

B2j

(2j)!

d2j−1

dx2j−1

logk(x)

xs

∣∣∣∣
x=N

+R2v,

(II.5)

The error term R2v is given by

R2v =
1

(2v)!

∫ ∞
N

B̂2v(x)f (2v)(x)dx,

with f(x) = logk(x)
xs

as discussed in [10]. We use the non-central Stirling numbers of

the first kind (see [17]), to represent the derivatives of f . The non-central Stirling

numbers of the first kind S(r, i, s) satisfy the recurrence

S(1, 0, s) = −s

S(1, 1, s) = 1

S(r + 1, 0, s) = (−s− r)S(r, 0, s)

S(r + 1, i, s) = (−s− r)S(r, i, s) + S(r, i− 1, s) for 1 ≤ i ≤ r

S(r + 1, r + 1, s) = S(r, r, s)

With these, the derivatives of f can be written as

f (r)(x) = x−s−r
r∑
i=0

S(r, i, s)(k)i logk−i(x)

where (k)i denotes the i-th falling factorial of k [17].
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Figure II.3: Zeros of ζ(k)(σ+ it). The zeros of ζ(k) are at the center of the numbers k.
The first eight chains of zeros that we followed from the right to the left half plane
are labeled M = 2, . . . , M = 9 (see Section II.1).

We now bound the error term, R2v. Observe that

|R2v| =
∣∣∣∣ 1

(2v)!

∫ ∞
N

B̂2v(x)f (2v)(x)dx

∣∣∣∣
≤ |B2v|

(2v)!

∫ ∞
N

|f (2v)(x)|dx

=
|B2v|
(2v)!

∫ ∞
N

∣∣∣∣∣x−s−2v

2v∑
i=0

S(2v, i, s)(k)i logk−i(x)

∣∣∣∣∣ dx.
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Using the triangle inequality,

|R2v| ≤
|B2v|
(2v)!

2v∑
i=0

∫ ∞
N

∣∣∣∣S(2v, i, s)(k)i
logk−i(x)

xs+2v

∣∣∣∣ dx
=
|B2v|
(2v)!

2v∑
i=0

|S(2v, i, s)|(k)i

∫ ∞
N

logk−i(x)

xσ+2v
dx

The error term R2v converges for σ + 2v > 1 and N ∈ N>2, thus (II.5) can

be used to evaluate ζ(k) for σ > 1 − 2v. Since we are evaluating ζ(k) on a bounded

region with |σ| ≤ 10, the error can be bounded on the entire region. We set v = 101

which yields σ+ 2v > 1 in the region and gives a good balance of the values for v and

N . To determine the value N should take, we evaluate the bound given above for

N = 200, 300, . . . until the error is as small as desired. For example, if s = −10 + 10i,

k = 100, v = 101, and N = 200 then |R2v| < 1.769892 · 10−100. If N = 1500 then

|R2v| < 1.245704 · 10−253.
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Table II.2: All zeros of ζ(k)(σ + it) with 2 ≤ k ≤ 26 in −10 < σ < 0, 0 < |t| < 10.
The column # contains the number of conjugate pairs of zeros. All zeros listed are
simple and rounded to 4 decimal digits.

k # Zeros of ζ(k)(σ + it) with −10 < σ < 0 and 0 < |t| < 10
2 1 −0.3551± 3.5908i
3 1 −2.1101± 2.5842i
4 2 −0.8375± 3.8477i −3.2403± 1.6896i
5 2 −2.1841± 3.0795i −4.2739± 0.6624i
6 2 −1.2726± 4.0742i −3.1694± 2.2894i
7 3 −0.4133± 4.8453i −2.3934± 3.4063i −3.8750± 1.4918i
8 3 −1.6703± 4.2784i −3.2523± 2.7170i −4.5682± 0.8112i
9 3 −0.9672± 4.9985i −2.6410± 3.6749i −3.9459± 2.0452i
10 4 −0.2748± 5.6133i −2.0391± 4.4684i −3.4229± 3.0609i −4.5121± 1.3321i
11 4 −1.4413± 5.1493i −2.9062± 3.9132i −4.0769± 2.4384i −5.0310± 0.7641i
12 4 −0.8452± 5.7473i −2.3874± 4.6486i −3.6307± 3.3459i −4.6218± 1.8307i
13 5 −0.2500± 6.2811i −1.8653± 5.2971i −3.1788± 4.1283i −4.2445± 2.7740i,

−5.1019± 1.1817i
14 5 −1.3402± 5.8783i −2.7202± 4.8199i −3.8543± 3.5969i −4.7812± 2.1996i,

−5.5404± 0.6780i
15 5 −0.8124± 6.4056i −2.2551± 5.4415i −3.4521± 4.3265i −4.4411± 3.0614i,

−5.2367± 1.6383i
16 6 −0.2827± 6.8886i −1.7845± 6.0069i −3.0400± 4.9834i −4.0887± 3.8241i,

−4.9528± 2.5231i −5.6490± 1.0311i
17 6 −1.3092± 6.5262i −2.6197± 5.5821i −3.7242± 4.5121i −4.6486± 3.3161i,

−5.4130± 1.9836i −6.0680± 0.5743i
18 6 −0.8299± 7.0068i −2.1924± 6.1331i −3.3491± 5.1402i −4.3279± 4.0324i,

−5.1468± 2.8068i −5.8098± 1.4611i
19 7 −0.3475± 7.4543i −1.7592± 6.6440i −2.9648± 5.7192i −3.9939± 4.6871i,

−4.8654± 3.5483i −5.5889± 2.2963i −6.1583± 0.88585i
20 7 −1.3211± 7.1206i −2.5729± 6.2569i −3.6489± 5.2913i −4.5694± 4.2268i,

−5.3472± 3.0608i −5.9945± 1.7820i −6.6140± 0.43943i
21 7 −0.8787± 7.5677i −2.1744± 6.7594i −3.2944± 5.8530i −4.2605± 4.8536i,

−5.0870± 3.7617i −5.7837± 2.5734i −6.3545± 1.2934i
22 8 −0.4328± 7.9887i −1.7703± 7.2313i −2.9319± 6.3785i −3.9406± 5.4371i,

−4.8118± 4.4095i −5.5554± 3.2943i −6.1750± 2.0870i −6.6413± 0.7581i
23 8 −1.3613± 7.6765i −2.5625± 6.8727i −3.6113± 5.9836i −4.5240± 5.0128i,

−5.3115± 3.9611i −5.9806± 2.8250i −6.5366± 1.5912i −7.1892± 0.1700i
24 8 −0.9481± 8.0980i −2.1871± 7.3395i −3.2737± 6.4980i −4.2254± 5.5784i,

−5.0539± 4.5827i −5.7671± 3.5097i −6.3712± 2.3553i −6.8798± 1.1259i
25 9 −0.5313± 8.4984i −1.8064± 7.7820i −2.9291± 6.9843i −3.9174± 6.1112i,

−4.7841± 5.1658i −5.5378± 4.1485i −6.1844± 3.0574i −6.7253± 1.8906i,
−7.1206± 0.6504i

26 9 −0.1113± 8.8798i −1.4211± 8.2028i −2.5782± 7.4458i −3.6013± 6.6153i,
−4.5038± 5.7155i −5.2952± 4.7478i −5.9817± 3.7117i −6.5664± 2.6042i,
−7.0463± 1.4126i
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II.4. Finding Zeros

We found the zeros on the left half plane by following the chains of zeros of

derivatives of ζ from the right half plane (see Figures II.1 and II.3). Given M ≥ 2,

j ∈ Z, and sufficiently large k, the center

s = qMk +
2π(j + 0.5)

log(M + 1)− log(M)

of the rectangular region from Theorem 3 is a good approximation to the zero in this

region which we improved using Newton’s method.

Now assume that we know a zero z(k)
M of ζ(k) and a zero z(k+1)

M of ζ(k+1) in the

chain given by some M and j. We used

s = z
(k)
M −

(
z

(k+1)
M − z(k)

M

)
as a first approximation for the zero of ζ(k−1) in that chain, which again was improved

with Newton’s method.

By using the argument principle, we assured that we had found all zeros of

ζ(k) with 0 < k ≤ 61 in −10 < σ < 1
2
, |t| < 10 by counting the zeros using contour

integration. The only pole of ζ(k) is at one and thus outside our region of interest. So

for any simple closed contour C in −10 < σ < 1
2
, |t| < 10, by the argument principle,

the number of zeros of ζ(k) inside C is

n =
1

2πi

∫
C

(
ζ(k+1)

ζ(k)

)
(s) ds.

For 0 < k ≤ 61 we counted the zeros of ζ(k) by integrating along the border of the

rectangular region −10 < σ < 1
2
, |t| < 10. We also integrated along the sides of

a square region with side length 10−6 centered around each approximation z of the

zeros to make sure that this region contained exactly one zero.
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Table II.3: All zeros of ζ(k)(σ + it) with 27 ≤ k ≤ 32 in −10 < σ < 0, 0 < |t| < 10.
The column # contains the number of conjugate pairs of zeros. All zeros listed are
simple and rounded to 4 decimal digits.

k # Zeros of ζ(k)(σ + it) with −10 < σ < 0 and 0 < |t| < 10
27 9 −1.0318± 8.6041i −2.2218± 7.8850i −3.2780± 7.0941i −4.2144± 6.2361i,

−5.0410± 5.3132i −5.7647± 4.3261i −6.3901± 3.2731i −6.9206± 2.1489i,
−7.3814± 0.9448i

28 10 −0.6389± 8.9878i −1.8606± 8.3044i −2.9484± 7.5503i −3.9169± 6.7308i,
−4.7767± 5.8489i −5.5353± 4.9061i −6.1978± 3.9018i −6.7680± 2.8338i,
−7.2490± 1.7019i −7.6182± 0.5486i

29 10 −0.2428± 9.3554i −1.4951± 8.7056i −2.6132± 7.9860i −3.6122± 7.2024i,
−4.5034± 6.3583i −5.2947± 5.4558i −5.9918± 4.4954i −6.5986± 3.4759i,
−7.1165± 2.3954i −7.5353± 1.2495i

30 10 −1.1257± 9.0905i −2.2729± 8.4034i −3.3013± 7.6533i −4.2222± 6.8443i,
−5.0444± 5.9789i −5.7739± 5.0583i −6.4149± 4.0822i −6.9700± 3.0489i,
−7.4393± 1.9531i −7.8300± 0.7596i

31 11 −0.7529± 9.4602i −1.9282± 8.8039i −2.9846± 8.0854i −3.9340± 7.3091i,
−4.7854± 6.4781i −5.5454± 5.5941i −6.2186± 4.6575i −6.8081± 3.6673i,
−7.3161± 2.6210i −7.7489± 1.5152i −8.1557± 0.4150i

32 11 −0.3770± 9.8161i −1.5795± 9.1891i −2.6629± 8.5003i −3.6395± 7.7548i,
−4.5188± 6.9560i −5.3075± 6.1058i −6.0109± 5.2053i −6.6324± 4.2542i,
−7.1745± 3.2514i −7.6387± 2.1955i −8.0192± 1.0955i

All computations and plotting were conducted with the computer algebra sys-

tem Sage [36]. We evaluated ζ(k) with our implementation of the method described in

Section II.3 which was verified, on the right half plane, with the Hurwitz Zeta function

in mpmath [18] and our implementation of ζ(k) based on convergence acceleration for

alternating series. For the integration we used the numerical integration function of

Sage which calls the GNU Scientific Library [19] using an adaptive Gauss-Kronrod

rule.
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CHAPTER III

FRACTIONAL STIELTJES CONSTANTS

The Hurwitz Zeta function is defined, for <(s) > 1 and 0 < a ≤ 1, as ζ(s, a) =
∞∑
n=0

1
(n+a)s

. It can be extended to a meromorphic function with a simple pole at s = 1

with residue 1 (see [3], [8]). Moreover, the function has a Laurent series expansion

about s = 1, given by

ζ(s, a) =
1

s− 1
+
∞∑
n=0

(−1)nγn(a)(s− 1)n

n!
, (III.1)

where γn(a) are the generalized Stieltjes constants. The original Stieltjes constants

were defined in 1885 (see [37]), but are themselves a generalization of Euler’s constant

γ:

γ = γ0(1) = lim
m→∞

(
m∑
n=1

1

n
− logm

)
= 0.57721 56649 · · · .

In 1972, Berndt [5] showed that for the generalized Stieltjes constants in (V.1) we

have:

γk(a) = lim
m→∞

{
m∑
n=0

logk(n+ a)

n+ a
− logk+1(m+ a)

k + 1

}
. (III.2)

Furthermore, it was established by Williams and Zhang [39] that

γk(a) =
m∑
r=0

logk(r + a)

r + a
− logk+1(m+ a)

k + 1
− logk(m+ a)

2(m+ a)
+

∞∫
m

P1(x)f ′k(x)dx, (III.3)

where fα(x) = logα(x+a)
x+a

and P1(x) = x− bxc − 1
2
.

More recently, Kreminski [21] has given a generalization of γr(a) for all r > 0,

the so-called fractional Stieltjes constants. Kreminski found a method of computing
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γr(a), by first computing the function

Cr(a) = γr(a)− logr(a)

a
. (III.4)

He also defined the function,

ha(s) = ζ(s, a)− 1

s− 1
− 1

as
, (III.5)

and by doing so, Kreminski conjectured that Cr(a) = (−1)rh
(r)
a (1) where f (r)(x) is

interpreted as the r-th (Weyl) fractional derivative of f at x.

The aim of our paper is to first introduce the Grünwald-Letnikov fractional

derivative. Using some basic properties of the Grünwald-Letnikov fractional derivative

we will then generalize the results from Berndt [5] and Williams & Zhang [39] to the

fractional case. We will then restate the conjecture by Kreminski [21, Conjecture IIIa]

in terms of the Grünwald-Letnikov fractional derivative and prove this restatement.

We end this paper by discussing the relationship between the Grünwald-Letnikov and

Weyl fractional derivatives and how using this relationship also proves the original

version of [21, Conjecture (IIIa)].

III.1. Fractional Derivatives

Fractional derivative operators are generalizations of the familiar differentia-

tion operator Dn to arbitrary (integer, rational, or complex) values of n. To motivate

this generalization, let N ∈ N, and recall ∆N
h f(z) = (−1)N

N∑
k=0

(−1)k
(
N
k

)
f(z + kh)

is the finite difference of f at z. It is known that, (see [29], for example) f (n)(z) =

lim
h→0

∆n
hf(z)

hn
for all n ∈ N. This can be naturally extended for any α ∈ C (cf. [9]) via

∆α
hf(z) = (−1)α

∞∑
k=0

(−1)k
(
α

k

)
f(z + kh)
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where
(
α
k

)
= Γ(α+1)

Γ(k+1)Γ(α−k+1)
. Hence, for any α ∈ C, the so-called reverse αth Grünwald-

Letnikov derivative of a function f(z) is now defined as (see [16]):

Dα
z [f(z)] = lim

h→0+

∆α
hf(z)

hα
= lim

h→0+

(−1)α
∞∑
k=0

(−1)k
(
α
k

)
f(z + kh)

hα
(III.6)

whenever the limit exists. Thus defined, Dα
z [f(z)] coincides with the standard deriva-

tives for all α ∈ N. Also, they are analytic functions of α and z (as long as f(z) is

analytic) and satisfy: D0
z [f(z)] = f(z) and Dα

z

[
Dβ
z [f(z)]

]
= Dα+β

z [f(z)].

Although the Grünwald-Letnikov derivative is defined for all α ∈ C, we only

consider α ∈ R with α ≥ 0 in this paper. The following two useful results can be

found in [29].

Lemma 7. Let α ∈ R, β < 0, and z ∈ C with <(z) > 1. Then,

Dα
z

[
(z − 1)β

]
=

(−1)αΓ(α− β)

Γ(−β)
(z − 1)β−α.

Lemma 8. Let α ≥ 0, a > 0, and z ∈ C. Then Dα
z [e−az] = (−1)αaαe−az.

For the Hurwitz Zeta function for 0 < a ≤ 1 and <(s) > 1, we have

ζ(s, a)− 1

as
=
∞∑
n=0

1

(n+ a)s
− 1

as

=
∞∑
n=1

1

(n+ a)s

=
∞∑
n=1

e−s log(n+a).

Since 0 < a ≤ 1, we have log(n+ a) > 0, applying lemma 8, we have

Dα
s [ζ(s, a)− 1/as] =

∞∑
n=1

(−1)α logα(n+ a)e−s log(n+a)

= (−1)α
∞∑
n=1

logα(n+ a)

(n+ a)s
.
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We have thus shown the following corollary.

Corollary 9. Let 0 < a ≤ 1, and s ∈ C with <(s) > 1. The Grünwald-Letnikov

fractional derivative of order α ≥ 0 with respect to s of ζ(s, a)− 1/as is

Dα
s [ζ(s, a)− 1/as] = (−1)α

∞∑
n=1

logα(n+ a)

(n+ a)s
. (III.7)

As previously noted, Kreminski developed Corollary IIIa in [21] in terms of

the Weyl fractional derivative. In the following, we let Wα
z [f(z)] denote the α − th

Weyl fractional derivative of f at z, where α ∈ C. As noted in [21], the Weyl analog

of lemma 7 for β = −1 yields Wα
z

[
1
z−1

]
= (−1)−α απ csc(πz)

Γ(1−α)(z−1)α+1 . Since Γ(z)Γ(1− z) =

π
sin(πz)

= π csc(πz) [3], we can write

Wα
z

[
1

z − 1

]
= (−1)−α

απ csc(πz)

Γ(1− α)(z − 1)α+1

= (−1)−α
Γ(α + 1)

(z − 1)α+1
. (III.8)

Also, as noted in [21], the Weyl analog of lemma 8 states for α ≥ 0, a > 0,

and z ∈ C,

Wz

[
e−az

]
= (−1)−αaαe−az. (III.9)

Comparing III.8 and III.9 to lemmas 7 and 8, we see a difference by only a constant

multiple of −1. In view of this, Kreminski conjectured that Cr(a) = (−1)rh
(r)
a (1)

whereas we will prove Cr(a) = (−1)−rh
(r)
a (1). Whether using Weyl or Grünwald-

Letnikov fractional derivatives the proof will only differ by this same constant multiple

of −1.

We chose to use the Grünwald-Letnikov fractional derivatives because not only

is it easily motivated, but also as noted in [] the fractional derivative of a constant

is undefined. Due to this difficulty, it is not clear how to apply the Weyl fractional

derivative of, ζ(s) =
∑∞

n=1
1
ns

for <(s) > 1, since the first term is constant. We can
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overcome this difficulty using the Grünwald-Letnikov fractional derivative, since for

any c ∈ C and α > 0, Dα
z [c] = 0, as shown in [29].

III.2. Fractional Stieltjes Constants

Let α > 0 and 0 < a ≤ 1. For s 6= 1, we define the fractional Stieltjes constants

to be the coefficients of the expansion

∞∑
n=0

logα(n+ a)

(n+ a)s
=

Γ(α + 1)

(s− 1)α+1
+
∞∑
n=0

(−1)nγα+n(a)

n!
(s− 1)n. (III.10)

To relate γα(a) to Cα(a) observe that

(−1)−αDα
s [ζ(s, a)− 1/as] =

∞∑
n=1

logα(n+ a)

(n+ a)s

=
∞∑
n=0

logα(n+ a)

(n+ a)s
− logα(a)

as

=
Γ(α + 1)

(s− 1)α+1
+
∞∑
n=0

(−1)n
γα+n(a)

n!
(s− 1)n − logα(a)

as

=
Γ(α + 1)

(s− 1)α+1
+
∞∑
n=0

(−1)n
γα+n(a)

n!
(s− 1)n

− logα(a)e−s log(a)

=
Γ(α + 1)

(s− 1)α+1
+
∞∑
n=0

(−1)n
γα+n(a)

n!
(s− 1)n

− logα(a)e−s log(a) e
log(a)

elog(a)

=
Γ(α + 1)

(s− 1)α+1
+
∞∑
n=0

(−1)n
γα+n(a)

n!
(s− 1)n

− logα(a)

a
e−(s−1) log(a).
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Expanding the exponential about s = 1, we have

(−1)−αDα
s [ζ(s, a)− 1/as] =

Γ(α + 1)

(s− 1)α+1
+
∞∑
n=0

(−1)n
γα+n(a)

n!
(s− 1)n

− logα(a)

a

∞∑
n=0

(−1)n
logn(a)

n!
(s− 1)n

=
Γ(α + 1)

(s− 1)α+1
+
∞∑
n=0

(−1)n
γα+n(a)

n!
(s− 1)n

− 1

a

∞∑
n=0

(−1)n
logα+n(a)

n!
(s− 1)n

=
Γ(α + 1)

(s− 1)α+1
+
∞∑
n=0

(−1)n
(
γα+n(a)− logα+n

a

)
(s− 1)n

n!

=
Γ(α + 1)

(s− 1)α+1
+
∞∑
n=0

(−1)nCα+n(a)
(s− 1)n

n!
. (III.11)

III.3. Kreminski’s Conjecture

Now we are ready to prove the main result of this chapter, namely [21, Con-

jecture (IIIa)], stated in terms of the Grünwald-Letnikov fractional derivative as dis-

cussed earlier:

Theorem 10. Let ha(s) = ζ(s, a)− 1
s−1
− 1

as
and let h(α)

a (s) = Dα
s [ha(s)] be the α-th

Grünwald-Letnikov fractional derivative of ha. Then

Cα(a) = γα(a)− logα(a)

a
= (−1)−αh(α)

a (1).

Proof. We have by linearity of the fractional derivative operator:

h(α)
a (s) = Dα

s [ha(s)]

= Dα
s

[
ζ(s, a)− 1

as
− 1

s− 1

]
= Dα

s

[
ζ(s, a)− 1

as

]
−Dα

s

[
1

s− 1

]
. (III.12)
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Applying Corollary 9 and (III.10) to the first term of right hand side of (III.12),

we have:

(−1)−αDα
s

[
ζ(s, a)− 1

as

]
=
∞∑
n=1

logα(n+ a)

(n+ a)s

=
∞∑
n=0

logα(n+ a)

(n+ a)s
− logα(a)

as

=
Γ(α + 1)

(s− 1)α+1
+
∞∑
n=0

(−1)nγα+n(a)

n!
(s− 1)n − logα(a)

as

(III.13)

Applying lemma 7 to the last term of (III.12) we see that

(−1)−αDα
s

[
1

s− 1

]
=

Γ(α + 1)

(s− 1)α+1
. (III.14)

Substituting (III.13) and (III.14) into (III.12), we see that:

(−1)−αh(α)
a (s) =

Γ(α + 1)

(s− 1)α+1
+
∞∑
n=0

(−1)nγα+n(a)

n!
(s− 1)n − logα(a)

as
− Γ(α + 1)

(s− 1)α+1

=
∞∑
n=0

(−1)nγα+n(a)

n!
(s− 1)n − logα(a)

as
(III.15)

Evaluating (−1)−αh
(α)
a (s) at the point s = 1 using (III.15), we obtain

(−1)−αh(α)
a (s) = γα(a)− logα(a)

a
= Cα(a)

as desired.

III.4. Generalization of a Theorem from Zhang-Williams

We end this paper with a generalization of (III.3). As discussed in [13], the

following theorem will lead naturally to a method of evaluating the fractional Stieltjes

constants.
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Theorem 11. Let α ∈ R with α > 0, 0 < a ≤ 1, and m ∈ N. We have

γα(a) =
m∑
r=0

logα(r + a)

r + a
− logα+1(m+ a)

α + 1
− logα(m+ a)

2(m+ a)
+

∞∫
m

P1(x)f ′α(x)dx,

(III.16)

where fα(x) = logα(x+a)
x+a

and P1(x) = x− bxc − 1
2
.

Letting m → ∞ yields, for all α > 0 and 0 < a ≤ 1, a natural generalization

of (III.2):

Cα(a) := γα(a)− logα(a)

a
= lim

m→∞

{
m∑
r=1

logα(r + a)

r + a
− logα+1(m+ a)

α + 1

}

which Kreminski [21] uses to define γα(a) for α ∈ R.

Proof. We use the following form of the Euler-Maclaurin summation formula:

n∑
k=m

g(k) =

n∫
m

g(x)dx+
v∑
k=1

(−1)kBk

k!
g(k+1)(x)

∣∣∣∣n
m

+(−1)v+1

n∫
m

Pv(x)g(v)(x)dx, (III.17)

where v ∈ N, g(x) ∈ Cv [m,n], and Pk(x) is the kth periodic Bernoulli polynomial

Pk(x) =
Bk(x− bxc)

k!
.

We take v = 1 in (III.17) and choose g(x) = logα(x+a)
(x+a)s

, for <(s) > 1.
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Letting n→∞, we obtain:

∞∑
r=0

logα(r + a)

(r + a)s
=

m−1∑
r=0

logα(r + a)

(r + a)s
+

∞∫
m

logα(x+ a)

(x+ a)s
dx+

logα(m+ a)

2(m+ a)s

+

∞∫
m

P1(x)g′(x)dx

=
m∑
r=0

logα(r + a)

(r + a)s
+

∞∫
m

logα(x+ a)

(x+ a)s
dx− logα(m+ a)

2(m+ a)s

+

∞∫
m

P1(x)g′(x)dx

= A(s) +B(s)−D(s) +G(s).

For the first term A(s) we have:

A(s) =
m∑
r=0

logα(r + a)

(r + a)s
=

m∑
r=0

logα(r + a)

r + a
e−(s−1) log(r+a)

=
m∑
r=0

logα(r + a)

r + a

∞∑
n=0

(−1)n logn(r + a)

n!
(s− 1)n

=
∞∑
n=0

(−1)n(s− 1)n

n!

m∑
r=0

logα+n(r + a)

(r + a)
.

Now, since α ≥ 0, m ∈ N, and 0 < a ≤ 1, for all s ∈ C with <(s) > 1, the second

term B(s) can be written in terms of the Upper Incomplete Gamma function Γ(α, s).
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We obtain (compare with [15, p. 346] and [2, 6.5.3]):

B(s) =

∞∫
m

logα(x+ a)

(x+ a)s
dx =

Γ(α + 1, (s− 1) log(m+ a))

(s− 1)α+1

=
1

(s− 1)α+1

[
Γ(α + 1)

− (s− 1)α+1 logα+1(m+ a)
∞∑
n=0

(−1)n(s− 1)n logn(m+ a)

(α + 1 + n)n!

]

=
Γ(α + 1)

(s− 1)α+1
− logα+1(m+ a)

∞∑
n=0

(−1)n(s− 1)n logn(m+ a)

(α + 1 + n)n!

=
Γ(α + 1)

(s− 1)α+1
−
∞∑
n=0

(
logα+n+1(m+ a)

α + n+ 1

)
(−1)n(s− 1)n

n!
.

For the third term D(s), we write:

D(s) =
logα(m+ a)

2(m+ a)s
=

logα(m+ a)

2(m+ a)
e−(s−1) log(m+a)

=
logα(m+ a)

2(m+ a)

∞∑
n=0

(−1)n logn(m+ a)(s− 1)n

n!

=
∞∑
n=0

(
logα+n(m+ a)

2(m+ a)

)
(−1)n(s− 1)n

n!
.

If we now define

Eα,m(n) :=
m∑
r=0

logα+n(r + a)

r + a
− logα+n+1(m+ a)

α + n+ 1
− logα+n(m+ a)

2(m+ a)
,

then combining the above expressions for A(s), B(s) and D(s) we get:

m∑
r=0

logα(r + a)

(r + a)s
+

∞∫
m

logα(x+ a)

(x+ a)s
dx− logα(m+ a)

2(m+ a)s

=
Γ(α + 1)

(s− 1)α+1
+
∞∑
n=0

Eα,m(n)
(−1)n(s− 1)n

n!
.
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For the last term we have:

G(s) =

∞∫
m

P1(x)g′(x)dx =

∞∫
m

P1(x)

[
−s logα(x+ a)

(x+ a)s+1
+ α

logα−1(x+ a)

(x+ a)s+1

]
dx.

From the definition of the fractional Stieltjes constants we have:

∞∑
n=0

Eα,m(n)
(−1)α+n(s− 1)n

n!
+G(s) =

∞∑
n=0

(−1)α+nγα+n(s− 1)n

n!
.

Taking successive derivatives with respect to s, of both sides, and then evaluating

them at s = 1, we see that for all n ∈ N ∪ {0},

γα+n(a) = Eα,m(n) +G(n)(1). (III.18)

Setting n = 0 in (III.18) and noting that G(1) = fα(x) = logα(x+a)
x+a

, we obtain

γα(a) = Eα,m(0) +G(1)

=
m∑
r=0

logα(r + a)

r + a
− logα+1(m+ a)

α + 1
− logα(m+ a)

2(m+ a)
+

∞∫
m

P1(x)f ′α(x)dx,

which proves the result.

III.5. Continuity of the Fractional Stieltjes Constants

We end with a theorem concerning the continuity of γα(a) as a function of α.

Throughout this section, we let a = 1 and write γα to denote γα(1). The following

theorem will show that γα as a function of α is not continuous at α = 0. On the other

hand, in view of (III.2), γα is a continuous on α > 0.

Theorem 12. As α→ 0+, γα → γ − 1 where γ = γ0 is Euler’s constant.

Proof. Observe that, with a = 1, the left-hand sum in (III.10) becomes

∞∑
n=0

logα(n+ 1)

(n+ 1)s
=
∞∑
n=1

logα(n)

ns
=
∞∑
n=2

logα(n)

ns
. (III.19)
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Letting α→ 0+, (III.19) becomes

∞∑
n=2

1

ns
=

(
∞∑
n=1

1

ns

)
− 1 = ζ(s)− 1. (III.20)

Also, the right hand side of (III.10) with a = 1 becomes

Γ(α + 1)

(s− 1)α+1
+
∞∑
n=0

(−1)n
γα+n

n!
(s− 1)n. (III.21)

Thus, in order for (III.10) to be true, we need

ζ(s)− 1 = lim
α→0+

[
Γ(α + 1)

(s− 1)α+1
+
∞∑
n=0

(−1)n
γα+n

n!
(s− 1)n

]
. (III.22)

From the Laurent series expansion of ζ(s) about s = 1, (V.1), we have

ζ(s)− 1 =

[
1

s− 1
+
∞∑
n=0

(−1)n
γn
n!

(s− 1)n

]
− 1. (III.23)

Since lim
α→0+

Γ(α+1)
(s−1)α+1 = Γ(1)

s−1
= 1

s−1
, thus (III.22) holds if and only if

[
∞∑
n=0

(−1)n
γn
n!

(s− 1)n

]
− 1 = lim

α→0+

∞∑
n=0

(−1)n
γα+n

n!
(s− 1)n. (III.24)

Letting s = 1 in (III.24) we obtain, γ0 − 1 = lim
α→0+

γα, as desired.
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CHAPTER IV

A BOUND FOR FRACTIONAL STIELTJES CONSTANTS

The Hurwitz Zeta function is defined, for <(s) > 1 and 0 < a ≤ 1, as ζ(s, a) =
∞∑
n=0

1
(n+a)s

. It can be extended to a meromorphic function with a simple pole at s = 1

with residue 1 (see [3], [8]). Moreover, the function has a Laurent series expansion

about s = 1, given by

ζ(s, a) =
1

s− 1
+
∞∑
n=0

(−1)nγn(a)(s− 1)n

n!
, (IV.1)

where γn(a) are the generalized Stieltjes constants. Kreminski [21] has given a gen-

eralization of γα(a) to α ∈ R≥0 called fractional Stieltjes constants. As we will see,

defining γα(a) for α ∈ R≥0 will allow us to use the power of continuity to derive a

bound for γn(a). In other words, later in this paper we will apply the Lambert W

function to find an upper bound. Without continuity, we would be unable to ap-

ply the Lambert W function. This continuity thus gives us insight into the overall

behavior of the Stieltjes constants.

These can be defined as the coefficients of the Laurent expansion of the α-th

Grünwald-Letnikov fractional derivative [16] of ζ(s, a)− 1/as for s 6= 1 [12]:

Dα
s [ζ(s, a)− 1/as] = (−1)−α

∞∑
n=0

logα(n+ a)

(n+ a)s

= (−1)−α
Γ(α + 1)

(s− 1)α+1
+
∞∑
n=0

(−1)nγα+n(a)

n!
(s− 1)n.

The fractional Stieltjes constants generalize the Stieltjes constants.
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In [12, Corollary 3.2] we show

α→ 0+, γα(1)→ γ − 1 = −0.42278 43350 . . . (IV.2)

where γ = γ0 = γ0(1) = 0.57721 46649 . . . is Euler’s constant. In [12] we also prove a

conjecture of Kreminski [21, Conjecture IIIa]:

Let 0 < α ∈ R, Cα(a) := γα(a)− logα(a)
a

, and ha(s) := ζ(s, a)−1/(s−1)−1/as

then

Cα(a) = (−1)−αDα
s [ha](1).

Figure IV.1: The fractional Stieltjes constants γα(1) plotted for 2.6 ≤ α ≤ 25.8 with
(integral) Stieltjes constants (•).
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The goal of this paper is to compute γα(a) by evaluating Cα(a) and to find

an uppper bound for |Cα(a)|. We start by recalling and proving some results about

Stirling numbers (section IV.1) that we employ in a method for evaluating Cα(a)

(section IV.2). In section IV.3 we give an upper bound for Cα(a) for α > 1 which is a

generaliziation of [39, Theorem 3] to fractional Stieltjes constants and show how our

bound can be minimized.

IV.1. Complex Non-Central Stirling Numbers of the First Kind

For α ∈ R let (α)i = Γ(α+1)
Γ(α−i+1)

, denote the falling factorial of α. We denote by

S(n, i, s) where n ∈ N0, 0 ≤ i ≤ n, and s ∈ C the non-central Stirling numbers of the

first kind satisfy the recurrence relations:

S(0, 0, s) = 1, S(1, 0, s) = −s, S(1, 1, s) = 1

S(n+ 1, 0, s) = (−s− n)S(n, 0, s), S(n+ 1, n+ 1, s) = S(n, n, s) (IV.3)

S(n+ 1, i, s) = (−s− n)S(n, i, s) + S(n, i− 1, s) for 1 ≤ i ≤ n.

The following is a generalization of results found in [11] and [17].

Lemma 13. Let α ∈ R, s ∈ C, and gα(x) = logα(x)
xs

. For any n ∈ N0

g(n)
α (x) =

n∑
i=0

S(n, i, s)(α)i
logα−i(x)

xs+n
.

Proof. We proceed by way of induction on n. When n = 0, the result is trivially true.

For n = 1 we have

g′α(x) = −s logα(x)

xs+1
+ α

logα−1(x)

xs+1
= S(1, 0, s)(α)0

logα(x)

xs+1
+ S(1, 1, s)(α)1

logα−1(x)

xs+1
.

Thus, the induction has been anchored. Now assume the result holds for some k ∈ N.
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Differentiating g(k)
α (x) we get

g(k+1)
α (x) =

k∑
i=0

(−s− k)S(k, i, s)(α)i
logα−i(x)

xs+k+1
+

k∑
i=0

S(k, i, s)(α)i(α− i)
logα−i−1(x)

xs+k+1

=
k∑
i=0

(−s− k)S(k, i, s)(α)i
logα−i(x)

xs+k+1
+

k∑
i=0

S(k, i, s)(α)i+1
logα−i−1(x)

xs+k+1
.

Making a change of variables in the second sum yields

g(k+1)
α (x) =

k∑
i=0

(−s− k)S(k, i, s)(α)i
logα−i(x)

xs+k+1
+

k+1∑
i=1

S(k, i− 1, s)(α)i
logα−i(x)

xs+k+1

= (−s− k)S(k, 0, s)(α)0
logα(x)

xs+k+1

+
k+1∑
i=1

((−s− k)S(k, i, s) + S(k, i− 1, s)) (α)i
logα−i(x)

xs+k+1

With the recurrence relation (IV.3) we obtain S(k + 1, 0, s) = (−s− k)S(k, 0, s) and

S(k + 1, i, s) = (−s− k)S(k, i, s) + S(k, i− 1, s). Hence, we have

g(k+1)
α (x) = S(k + 1, 0, s)(α)0

logα(x)

xs+k+1
+

k+1∑
i=1

S(k + 1, i, s)(α)i
logα−i(x)

xs+k+1

=
k+1∑
i=0

S(k + 1, i, s)(α)i
logα−i(x)

xs+k+1
.

Thus the relation holds for g(k+1)
α (x). Hence, by induction, the lemma is proven.

Recall that the (signed) Stirling numbers s(i, j) of the first kind are generated

by the recurrence:

s(0, 0) = 1, s(n, 0) = s(0, n) = 0 for n ∈ N (IV.4)

s(n+ 1, i) = −ns(n, i) + s(n, i− 1) for n ∈ N0 and i ∈ N0.
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Figure IV.2: The fractional Stieltjes Constants γα(1) plotted for 0 ≤ α ≤ 3 with
(integral) Stieltjes constants (•). This plot illustrates the discontinuity of γα(1) at
α = 0, compare (IV.2).

Proposition 14. Let α ≥ 0, 0 < a ≤ 1, and fα(x) = logα(x+a)
x+a

. Then for any n ∈ N0,

f (n)
α (x) =

n∑
i=0

s(n+ 1, i+ 1)(α)i
logα−i(x+ a)

(x+ a)n+1
. (IV.5)

Proof. In view of Lemma 13, the result is proven if we show that for all n ∈ N0 and

all integers 0 ≤ i ≤ n, we have S(n, i, 1) = s(n+ 1, i+ 1). We prove this equality by

induction on n.

For n = 0 we get from the recurrence relation (IV.3) that S(0, 0, 1) = 1. From

(IV.4) we get s(1, 1) = 1. Thus, the induction is anchored. Now let n ∈ N and assume

for all integers 0 ≤ r ≤ n, S(r, i, 1) = s(r + 1, i+ 1) for i = 0, 1, . . . , r.
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Next we show S(n + 1, i, 1) = s(n + 2, i + 1). With the recurrence relations

(IV.3) and (IV.4), and the induction hypothesis we obtain

S(n+ 1, 0, 1) = (−n− 1)S(n, 0, 1) = −(n+ 1)s(n+ 1, 1) = s(n+ 2, 1)

S(n+ 1, n+ 1, 1) = S(n, n, 1) = s(n+ 1, n+ 1).

For 1 ≤ i ≤ n we have

S(n+ 1, i, 1) = (−n− 1)S(n, i, 1) + S(n, i− 1, 1)

= −(n+ 1)s(n+ 1, i+ 1) + s(n+ 1, i) = s(n+ 2, i+ 1).

Thus, by induction the result has been proven.

IV.2. Evaluation Of γα(a)

To evaluate γα(a) we approximate Cα(a) and then use that γα(a) = Cα(a) +

logα(a)
a

. Let fα(x) = logα(x+a)
x+a

. By [12, Theorem 3.1] for α ∈ R with α > 0, 0 < a ≤ 1,

and m ∈ N we have

γα(a) =
m∑
r=0

logα(r + a)

r + a
− logα+1(m+ a)

α + 1
− logα(m+ a)

2(m+ a)
+

∞∫
m

P1(x)f ′α(x)dx, (IV.6)

where P1(x) = x− bxc − 1
2
. Thus,

Cα(a) =
m∑
r=1

logα(r + a)

r + a
− logα+1(m+ a)

α + 1
− logα(m+ a)

2(m+ a)
+

∞∫
m

P1(x)f ′α(x)dx.

(IV.7)

Integrating by parts v ∈ N times yields

∫ ∞
m

P1(x)f ′α(x)dx =
v∑
j=1

[
Pj(x)f (j−1)

α (x)
]∞
x=m

+ (−1)v−1

∞∫
m

Pv(x)f (v)
α (x)dx (IV.8)
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where Pk(x) = Bk(x−bxc)
k!

is the kth periodic Bernoulli polynomial and Bj is the jth

Bernoulli number. For computational purposes, it is useful to recall that Bj = 0 for

j odd.

As we will soon see, letting m > 0 forces the integral on the right hand side

of (IV.8) to converge for any v ∈ N. With Proposition 14, we see that as x → ∞,

f
(n)
α (x)→ 0 for any n ∈ N. Thus, we can write (IV.8) as

∫ ∞
m

P1(x)f ′α(x)dx = −
v∑
j=1

Pj(m)f (j−1)
α (m) + (−1)v−1

∞∫
m

Pv(x)f (v)
α (x)dx. (IV.9)

For any j ∈ N and m ∈ N we have Pj(m) =
Bj
j!
. We now approximate Cα(a) by

Cα(a) ≈
m∑
r=1

logα(r + a)

r + a
− logα+1(m+ a)

α + 1
− logα(m+ a)

2(m+ a)
−

v∑
j=1

Bj

j!
f (j−1)
α (m).

(IV.10)

The error in approximating Cα(a) by (IV.10) is given byRv = (−1)v−1
∞∫
m

Pv(x)f
(v)
α (x)dx.

We now show that we can choose m and v so that the error is arbitrarily small. We

choose v > 1. As |Pn(x)| ≤ 3+(−1)n

(2π)n
for any n > 1 (see [39], [5], or [30]) we have

|Rv| =

∣∣∣∣∣∣(−1)v−1

∞∫
m

Pv(x)f (v)
α (x)

∣∣∣∣∣∣ ≤ 3 + (−1)n

(2π)n

∞∫
m

∣∣f (v)
α (x)

∣∣ dx. (IV.11)

With Corollary 14 and the triangle inequality in (IV.11) we get

|Rv| ≤
3 + (−1)v

(2π)v

v∑
i=0

|s(v + 1, i+ 1)| Γ(α + 1)

|Γ(α− i+ 1)|

∞∫
m

logα−i(x+ a)

(x+ a)v+1
dx. (IV.12)

We now write the integral in terms of the Upper Incomplete Gamma function (see
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[15, p. 346] and [2, 6.5.3])

∞∫
m

logα−i(x+ a)

(x+ a)v+1
dx =

Γ(α− i+ 1, v log(m+ a))

vα−i+1
. (IV.13)

Applying (IV.13) in (IV.12) we find an upper bound for the error:

|Rv| ≤
(3 + (−1)v)Γ(α + 1)

(2π)vvα+1

v∑
i=0

|s(v + 1, i+ 1)|Γ(α− i+ 1, v log(m+ a))vi

|Γ(α− i+ 1)|
.

(IV.14)

The error term, R2v, in (IV.12) converges for all v. To find suitable parameters

v and m so that R2v we follow a similar method to that used to evaluate ζ(k) discussed

in [11]. We first let v be large and then iteratively increase the value of m until the

error is small as desired. To illustrate the method, letting v = 101 (this value was

also used in [11]), we evaluate the bound (IV.12) for N = 200, 300, . . . until the

error is as small as desired. For example, if α = 100, v = 101, and N = 200, then

|R2v| < 1.769892 · 10−100. If N = 1500 then |R2v| < 1.245704 · 10−253.

We have shown:

Theorem 15. Let α ∈ R with α > 0, 0 < a ≤ 1, m ∈ N, and v > 1. Let

C ′α(a) :=
m∑
r=1

logα(r + a)

r + a
− logα+1(m+ a)

α + 1
− logα(m+ a)

2(m+ a)
−

v∑
j=1

Bj

j!
f (j−1)
α (m).

Then

|C ′α(a)− Cα(a)| ≤ (3 + (−1)v)Γ(α + 1)

(2π)vvα+1

v∑
i=0

|s(v+1, i+1)|Γ(α− i+ 1, v log(m+ a))vi

|Γ(α− i+ 1)|
.

The method described was implemented in the C library, Arb. At a later date,

this method will be included in the Arb library. The values for γα(a) in Figures IV.1

and IV.2 were computed using the method described.
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IV.3. An Upper Bound For Cα(a)

Using m = 1 in (IV.6), we have after making some minor simplifications

γα(a) =
logα(a)

a
+

logα(1 + a)

2(1 + a)
− logα+1(1 + a)

α + 1
+

∞∫
1

P1(x)f ′α(x)dx. (IV.15)

Since 0 < a ≤ 1 and P1(x) = x− 1
2
on (0, 1), integration by parts yields

1∫
1−a

P1(x)f ′α(x)dx =

1∫
1−a

(
x− 1

2

)
f ′α(x)dx =

logα(1 + a)

2(1 + a)
− logα+1(1 + a)

α + 1

Using this in (IV.15), allows us to see that

γα(a) =
logα(a)

a
+

∞∫
1−a

P1(x)f ′α(x)dx =
logα(a)

a
+ Cα(a).

Using corollary 14 we have for any positive integer n,

f (n)
α (x) =

n∑
i=0

s(n+ 1, i+ 1)(α)i
logα−i(x+ a)

(x+ a)n+1
. (IV.16)

Assume α > 1, let n be any arbitrary integer satisfying 1 ≤ n < α, and let k be any

positive integer so that 1 ≤ k ≤ n. From these assumptions, we see that f (k)
α (x− a)

is a combination of positive powers of log(x) and hence, f (k)
α (1 − a) = 0. Also,

f
(k)
α (x−a)→ 0 as x→∞. These observations and integrating by parts n times yield

Cα(a) = P2(x)f ′α(x)|∞x=1−a − P3(x)f ′′α(x)|∞x=1−a + . . .+ (−1)n+1Pn+1(x)f (n)
α (x)|∞x=1−a

+(−1)n
∞∫

1−a

Pn+1(x)f (n+1)
α (x)dx

= (−1)n
∞∫

1−a

Pn+1(x)f (n+1)
α (x)dx.
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Making a change of variable we get

Cα(a) = (−1)n
∞∫

1

Pn+1(x− a)f (n+1)
α (x− a)dx.

Knopp showed in [20] that |Pn(x)| ≤ 4
(2π)n

for all integers n > 1. Ostrowski observed

in [30] that for odd n > 1, |Pn(x)| < 2
(2π)n

. Thus we can write |Pn(x)| ≤ 3+(−1)n

(2π)n
for

all n > 1. Making use of this inequality, we now derive an upper bound for Cα(a).

We have

|Cα(a)| =

∣∣∣∣∣∣(−1)n
∞∫

1

Pn+1(x− a)f (n+1)
α (x− a)dx

∣∣∣∣∣∣
≤ 3 + (−1)n+1

(2π)n+1

∞∫
1

∣∣f (n+1)
α (x− a)

∣∣ dx
≤ 3 + (−1)n+1

(2π)n+1

n+1∑
i=0

|s(n+ 2, i+ 1)|(α)i

∞∫
1

logα−i(x)

xn+2
dx. (IV.17)

We now evaluate the integral in (IV.17). After a change of variables we have

∞∫
1

logα−i(x)

xn+2
dx =

1

(n+ 1)α−i+1

∞∫
0

xα−ie−xdx =
Γ(α− i+ 1)

(n+ 1)α−i+1
, (IV.18)

since α− i ≥ α− n > 0, and the integral converges for all 0 ≤ i ≤ n+ 1. Using this

in (IV.17),

|Cα(a)| ≤ 3 + (−1)n+1

(2π)n+1

n+1∑
i=0

|s(n+ 2, i+ 1)|(α)i
Γ(α− i+ 1)

(n+ 1)α−i+1
. (IV.19)
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Since 1 ≤ n < α, we can write (α)i = Γ(α+1)
Γ(α−i+1)

for each 0 ≤ i ≤ n + 1. From (IV.19)

we get

|Cα(a)| ≤ 3 + (−1)n+1

(2π)n+1

n+1∑
i=0

|s(n+ 2, i+ 1)| Γ(α + 1)

(n+ 1)α−i+1

=
(3 + (−1)n+1)Γ(α + 1)

(2π)n+1(n+ 1)α+1

n+1∑
i=0

|s(n+ 2, i+ 1)|(n+ 1)i

=
(3 + (−1)n+1)Γ(α + 1)

(2π)n+1(n+ 1)α+2

n+2∑
j=1

|s(n+ 2, j)|(n+ 1)j.

By [39, 6.14] we have
n+2∑
i=1

|s(n+ 2, j)|(n+ 1)j = (2n+2)!
n!

. Using this identity, we arrive

at

|Cα(a)| ≤ (3 + (−1)n+1)Γ(α + 1)

(2π)n+1(n+ 1)α+2

(2n+ 2)!

n!
=

(3 + (−1)n+1)Γ(α + 1)

(2π)n+1(n+ 1)α+1

(2(n+ 1))!

(n+ 1)!
.

We have proven:

Theorem 16. Let 0 < a ≤ 1, α > 1, and Cα(a) = γα(a)− logα(a)
a

. Then,

|Cα(a)| ≤ (3 + (−1)n+1)Γ(α + 1)

(2π)n+1(n+ 1)α+1

(2(n+ 1))!

(n+ 1)!
(IV.20)

where n is any positive integer satisfying 1 ≤ n < α.

We now improve Theorem V.7. The first step is to notice that the inequality

holds for any positive integer n with 1 ≤ n < α. It is natural to wonder what value of

n minimizes the upper bound. The Lambert-W function – the complex values W (z)

for which W (z)eW (z) = z – will help us establish this, together with the following

bound: For all n ≥ 1,

(2n)!

n!
≤
√

2

(
4n

e

)n
e

1
24n
− 1

12n+1 <
√

2

(
4n

e

)n
, (IV.21)
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Figure IV.3: The absolute value of the fractional Stieltjes constants (-) γα(a) for
20 ≤ α ≤ 60; with integral Stieltjes constants (•); the bound (-) for the fractional
Stieltjes constants from Theorem 17; the bound (×) by Berndt [5]; the bound (•) by
William and Zhang [39]; the bound (�) by Matsuoka [28].

which follows directly from the following sharp version of Stirling’s formula:

(n
e

)n√
2πne

1
12n+1 ≤ n! ≤

(n
e

)n√
2πne

1
12n .

In particular, we get:

Theorem 17. Let 0 < a ≤ 1 and α > 0. Let n be chosen in the following manner:

if π
2
eW (

2(α+1)
π

) < α, then let n be the nearest integer to π
2
eW (

2(α+1)
π

). Otherwise, let n

be the greatest integer not exceeding α. Choosing n in this way makes the right hand

side of the inequality in theorem V.7 smallest of all the possible choices.
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Proof. We apply (IV.21) to the right hand side of the inequality in theorem V.7, and

take g(x) = 4
√

2Γ(α+1)
xα+1

(
2n
eπ

)x. It is our goal to find x on the closed interval [1, α] that

minimizes g(x). Once x is found, we let n be the nearest integer to x so that g(n) is

smallest. Let C̃α = 4
√

2Γ(α + 1). Since we are working on a closed interval and g is

continuous on [1, α], g must attain a minimum on [1, α]. We first find the derivative

of g(x) by observing

g(x) =
C̃α
xα+1

[
2x

πe

]x
= C̃α exp

[
−(α + 1) log(x) + x log

(
2x

πe

)]
.

Differentiating, we find

g′(x) = C̃α

[
−(α + 1)

x
+ 1 + log

(
2x

πe

)]
exp

[
−(α + 1) log(x) + x log

(
2x

πe

)]
.

Setting g′(x) = 0 dividing both sides by the constant term and the exponential term,

we get

−(α + 1)

x
+ 1 + log

(
2x

πe

)
=
−(α + 1)

x
+ log

(
2x

π

)
= 0.

This implies that 2x
π

log
(

2x
π

)
= 2(α+1)

π
, and if we let y = log

(
2x
π

)
, then the previous

equation becomes yey = 2(α+1)
π

. Applying the Lambert-W function, we see that

we must have y = eW( 2(α+1)
π ). Solving for x, using this relation we then have x =

π
2
eW( 2(α+1)

π ). If x ≤ α, then naturally we should pick n to be the greatest integer not

exceeding α. This is because this would imply that g(x) is monotonically decreasing

on the interval [1, α]. If x falls within the closed interval [1, α], then we pick the

closest integer to x. This proves the result.

The upper bound for the fractional Stietltjes constants yields a bound for

the integral Stieltjes constants. In Figures IV.3 and IV.4 we compare our bound to

previously known bounds for integral Stieltjes Constants.

47



Figure IV.4: The absolute value of the fractional Stieltjes constants (-) γα(a) for
60 ≤ α ≤ 140; with integral Stieltjes constants (•); the bound (-) for the fractional
Stieltjes constants from Theorem 17; the bound (�) by Matsuoka [28].

Namely, the bound by Berndt [5]

γm = γm(1) ≤ (3 + (−1)m)(m− 1)!

πm

and the bound by Williams and Zhang [39]

γm = γm(1) ≤ (3 + (−1)m)(2m)!

mm+1(2π)m

and the bound by Matsuoka [28]

γm = γm(1) < 10−4(logm)m for m > 1.
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Remark 18. Theorem V.7 with n + 1 = m and α = n yields the bound by William

and Zhang.
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CHAPTER V

A ZERO FREE REGION FOR THE FRACTIONAL DERIVATIVES OF THE

RIEMANN ZETA FUNCTION

The Riemann zeta function ζ(s) and its derivatives ζ(k)(s) are

ζ(s) =
∞∑
n=1

1

ns
and ζ(k)(s) = (−1)k

∞∑
n=2

(log n)k

ns
,

for all k ∈ N, everywhere in the complex half-plane where <(s) > 1.

In [6], the authors have investigated the zero-free regions of higher derivatives

ζ(k)(s), and have discovered not only that, for all k ∈ N, all of these derivatives have

identical counts of zeros in <(s) > 1/2, but that there exists a dynamics that, with

discretely increasing k, moves the non-trivial zeros of ζ(k)(s), in a one-to-one fashion,

to the right, in a virtually periodic manner. Due to increasing density of the zeros in

vertical direction, this simple bijective idea is difficult to state quantitatively; how-

ever, the observed “flow” suggests that fractional derivatives (the Grünwald-Letnikov

derivatives Dα
s [ζ(s)], in particular) could provide the missing link needed to estab-

lish this property. Despite the incredible amount of research concerning ζ(s) and its

derivatives, the fractional derivatives have been largely neglected.

We will not try to prove the audacious one-to-one conjecture in this paper, but

we will establish a zero-free region for fractional derivatives of ζ(s), which – although

modest and far from optimal – is proved in an elementary way, and seems to be the

first of its kind.

We start by recalling some basics. First, note that ζ(s) can be extended to a

meromorphic function with a simple pole at s = 1, with residue 1, and has a Laurent
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series expansion:

ζ(s) =
1

s− 1
+
∞∑
n=0

(−1)nγn
n!

(s− 1)n, (V.1)

where γn are the Stieltjes constants [37]. Bounds for fractional Stieltjes constants will

be needed in the proof of our zero-free region. Before we define them, let us note

that for any α ∈ C, the so-called “reverse αth Grünwald-Letnikov derivative” of f(z)

is (see [16]):

Dα
z [f(z)] = lim

h→0+

∆α
hf(z)

hα
= lim

h→0+

(−1)α
∞∑
k=0

(−1)k
(
α
k

)
f(z + kh)

hα
,

whenever the limit exists. Thus defined, Dα
z [f(z)] coincides with the standard deriva-

tives for all α ∈ N. Also, they satisfy: D0
z [f(z)] = f(z) and Dα

z

[
Dβ
z [f(z)]

]
=

Dα+β
z [f(z)]. And if f(z) is analytic, then Dα

z [f(z)] is an analytic function of both α

and z. (Note: although the Grünwald-Letnikov derivative is defined for all α ∈ C, in

this paper we only consider α ∈ R with α ≥ 0, since these cases are most useful in

the theory of the Riemann zeta function.)

Finally, let us note that, in [29] it was shown that for z ∈ C we haveDα
z [e−az] =

(−1)αaαe−az, which for ζ(s) implies the following: For all s ∈ C with <(s) > 1, we

have

Dα
s [ζ(s)] = (−1)α

∞∑
n=1

logα(n+ 1)

(n+ 1)s
. (V.2)

V.1. Fractional Stieltjes Constants

The fractional Stieltjes constants γα where α ∈ R>0 were introduced by

Kreminski [21] and can be defined as the coefficients of the Laurent expansion of

the α-th Grünwald-Letnikov fractional derivative of ζ(s) for s 6= 1 III:

Dα
s [ζ(s)] = (−1)−α

Γ(α + 1)

(s− 1)α+1
+
∞∑
n=0

(−1)nγα+n

n!
(s− 1)n. (V.3)
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In view of this, it becomes clear that in order to establish regions of non-

vanishing of these derivatives (which is the main objective of this paper), one needs

to investigate behavior of the fractional Stieltjes constants in more detail. In III

(in the process of proving a conjecture of Kerminski concerning the special values

of the derivatives of Hurwitz zeta functions), we have proved the following useful

generalization of a result of Williams & Zhang [39]:

For α > 0 and m ∈ N,

γα =
m∑
r=1

logα(r)

r
− logα+1m

α + 1
− logα(m)

2m
+

∞∫
m

P1(x)f ′α(x)dx, (V.4)

where P1(x) = x − bxc − 1
2
and fα(x) =

logα x+ 1

x+ 1
. Integrating (V.4) by parts m

times yields

∫ ∞
m

P1(x)f ′α(x)dx =
v∑
j=1

[
Pj(x)f (j−1)

α (x)
]∞
x=m

+ (−1)v−1

∞∫
m

Pv(x)f (v)
α (x)dx

= −
v∑
j=1

Pj(m)f (j−1)
α (m) + (−1)v−1

∞∫
m

Pv(x)f (v)
α (x)dx (V.5)

where for k ∈ N, Pk(x) = Bk(x−bxc)
k!

is the kth periodic Bernoulli polynomial and Bk is

the kth Bernoulli number. Furthermore, the derivatives of fα can be written in terms

of the (signed) Stirling numbers (see Proposition 14 ) as follows:

f (n)
α (x) =

n∑
i=0

s(n+ 1, i+ 1)(α)i
logα−i(x+ 1)

(x+ 1)n+1
, (V.6)

where (α)i = Γ(α+1)
Γ(α−i+1)

is the falling factorial. This particular result was applied (see

Theorem V.7) in the proof of an upper bound of the fractional Stieltjes constants:

|γα| ≤
(3 + (−1)n+1)Γ(α + 1)

(2π)n+1(n+ 1)α+1

(2(n+ 1))!

(n+ 1)!
, (V.7)
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where n ∈ N, such that 1 ≤ n < α. These estimates present a natural generalization

of the bounds for the so-called generalized Stieltjes constants, see [39, Theorem 3].

V.2. Three Lemmas

We begin the construction of our proof with the following three lemmas.

Lemma 19. Let 0 < α ≤ 1 and fα(x) = logα(x+1)
x+1

. Then
∣∣∣∣∞∫

1

P3(x)f ′′′α (x)dx

∣∣∣∣ < 0.013.

Note: Ostrowski observed, in [30], that for odd n > 1 one has: |Pn(x)| < 2
(2π)n

.

Proof. Let us consider the expression (V.6). With the help of the triangle inequality,

and the change of variables for the integral, we are able to write:∣∣∣∣∣∣
∞∫

1

P3(x)f ′′′α (x)dx

∣∣∣∣∣∣ < 2

(2π)3

3∑
i=0

|s(4, i+ 1)(α)i|
∞∫

1

logα−i(x+ 1)

(x+ 1)4
dx (V.8)

<
2

(2π)3

3∑
i=0

|s(4, i+ 1)(α)i|
3α−i+1

∞∫
3 log(2)

xα−ie−xdx.

We will estimate each of the four summands on the right side of the inequality sepa-

rately.

We start with i = 0. Since xα ≤ x in the interval [3 log(2),∞), we can write

|s(4, 1)(α)0|
3α+1

∞∫
3 log(2)

xαe−xdx ≤ 6

3α+1

∞∫
3 log(2)

xe−xdx =
1

4

3 log(2) + 1

3α
. (V.9)

For i = 1, in the interval [3 log(2),∞) we have xα−1 ≤ 3α−1 logα−1(2), for all

α ≤ 1; thus

|s(4, 2)(α)1|
3α

∞∫
3 log(2)

xα−1e−xdx ≤ 11α

3α
3α−1 logα−1(2)

∞∫
3 log(2)

e−xdx ≤ 11 logα−1(2)

24
.

(V.10)
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Now, for the summand corresponding to i = 2 we have

|s(4, 3)(α)2|
3α−1

∞∫
3 log(2)

xα−2e−xdx =
6|α(α− 1)|

3α−1

∞∫
3 log(2)

xα−2e−xdx (V.11)

≤ 3

2

1

3α−1
3α−2 logα−2(2)

∞∫
3 log(2)

e−xdx =
logα−2(2)

16
,

since for 0 < α ≤ 1 we have |α(α − 1)| ≤ 1
4
and for x ∈ [3 log(2),∞): xα−2 ≤

3α−2 logα−2(2).

Finally, for i = 3 we can write

|s(4, 4)(α)3|
3α−2

∞∫
3 log(2)

xα−3e−xdx =
|α(α− 1)(α− 2)|

3α−2

∞∫
3 log(2)

xα−3e−xdx (V.12)

≤ 2
√

3

9

3α−3 logα−3(2)

3α−2

∞∫
3 log(2)

e−xdx =

√
3 logα−3(2)

108
,

since |α(α − 1)(α − 2)| ≤ 2
9

√
3 for α ∈ (0, 1] and xα−3 ≤ 3α−3 logα−3(2) for x ∈

[3 log(2),∞).

Combining these four bounds, we conclude:∣∣∣∣∞∫
1

P3(x)f ′′′α (x)

∣∣∣∣ < 2
(2π)3

[
1
4

3 log(2)+1
3α

+ 11 logα−1(2)
24

+ logα−2(2)
16

+
√

3 logα−3(2)
108

]
< 0.013,

(V.13)

as desired.

Lemma 20. If 0 < α < 1, then |γα| < 0.436.

Proof. Taking m = 2 in the representation (V.4), we get

γα =
logα(2)

4
− logα+1(2)

α + 1
+

∞∫
2

P1(x)f ′α(x)dx.
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But from (V.5) we know that

γα =
logα(2)

4
− logα+1(2)

α + 1
− P2(1)f ′α(1) + P3(1)f ′′α(1) +

∞∫
2

P3(x)f ′′′α (x)dx.

So, with P2(1) = B2

2!
= 1

12
and P3(1) = B3

3!
= 0 and f ′α(x) = α logα−1(2)

4
− logα(2)

4
we

obtain

γα =
logα(2)

4
− logα+1(2)

α + 1
− 1

12

[
α

logα−1(2)

4
− logα(2)

4

]
+

∞∫
1

P3(x)f ′′′α (x)dx

=
13 logα(2)

48
− logα+1(2)

α + 1
− α logα−1(2)

48
+

∞∫
1

P3(x)f ′′′α (x)dx.

Now, note that the maxima of the first three terms are attained when α = 0. Since

the bound obtained in Lemma 19 also holds for the absolute value of the integral
∞∫
2

P1(x)f ′α(x)dx, we immediately obtain the wanted bound: |γα| ≤ 0.436.

Lemma 21. For all α > 0, we have

(i)
|γα|

Γ(α + 1)
< 0.348 and (ii)

|γα+1|
Γ(α + 1)

≤ 0.323.

Proof. Combining the bound for |γα| proved in Lemma 20 and the fact that Γ(α+1) ≥

Γ(3/2) =
√

2π
2
, for 0 < α ≤ 1, we deduce that |γα|

Γ(α+1)
< 0.436√

2π
2

< 0.348 in the region

0 < α ≤ 1.

Now, in the complementary region α > 1, by (V.7), for all 1 ≤ n < α, we have

|γα|
Γ(α + 1)

≤ 4

(2π)n+1(n+ 1)α+1

(2(n+ 1))!

(n+ 1)!

≤ 4
√

2

(2π)n+1(n+ 1)α+1

(
4(n+ 1)

e

)n+1

=
4
√

2

(2π)n+1(n+ 1)α−n

(
4

e

)n+1

≤ 4
√

2

(
2

πe

)n+1

.
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Letting n = 1 we have

|γα|
Γ(α + 1)

≤ 4
√

2

(
2

πe

)2

≤ 0.311.

which is an even sharper bound. Together, these two bounds prove (i) for all α > 0.

Similarly, to justify (ii), note that since α + 1 > 1, the equation (V.7) with

n = 1 yields

|γα+1|
Γ(α + 1)

≤ 4Γ(α + 2)4!

(2π)22α+22!Γ(α + 1)
=

12(α + 1)

(2π)22α
. (V.14)

The maximum of g(α) = α+1
2α

is at α = 1
log(2)

− 1. This immediately yields the result

(ii).

V.3. A Zero Free Region

We need one more technical lemma before we can prove our main theorem.

Lemma 22. For all α > 0 and n ∈ N ∪ {0},

Γ(α + n+ 3)

Γ(α + 1)(n+ 2)!2n(n+ 3)α
<

(α1 + 2)(α1 + 1)

3α12
< 1.036,

where

α1 =

√
5 log2(3) + 4

2 log(3)
+

1

log(3)
− 3

2
.

Proof. We proceed by induction on n. For n = 0 we have

Γ(α + 3)

Γ(α + 1)2!3α
=
α2 + 3α + 2

3α2
.

The maximum of g(α) = α2+3α+2
3α2

= (α2+3α+2)e−α log(3)

2
is at α1 =

√
5 log2(3)+4

2 log(3)
+ 1

log(3)
− 3

2
,

with g(α1) = 1.0356. Now, let us assume that, for all integers j with 1 ≤ j ≤ n, we

have

Γ(α + j + 3)

Γ(α + 1)(j + 2)!2j(j + 3)α
≤ (α1 + 2)(α1 + 1)

3α12
.
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We will show the assertion is true for j = n + 1. Applying the induction hypothesis

gives

Γ(α + j + 3)

Γ(α + 1)(j + 2)!2j(j + 3)α
=

Γ(α + n+ 4)

Γ(α + 1)(n+ 3)!2n+1(n+ 4)α

=
1

2

(
n+ 3

n+ 4

)α
α + n+ 3

n+ 3

Γ(α + n+ 3)

Γ(α + 1)(n+ 2)!2n(n+ 3)α

(V.15)

≤ 1

2

(
n+ 3

n+ 4

)α
α + n+ 3

n+ 3

(α1 + 2)(α1 + 1)

3α12
.

Hence, all we need to show is that 1
2

(
n+3
n+4

)α α+n+3
n+3

≤ 1. However, notice that the

function g(α) = 1
2

(
n+3
n+4

)α α+n+3
n+3

is positive for all α > 0; and taking the logarithmic

derivative we get

g′(α)

g(α)
= log

(
n+ 3

n+ 4

)
+

1

α + n+ 3
≤ − 1

n+ 4
− 1

2

(
1

n+ 4

)2

+
1

α + n+ 3
,

since, from the Taylor’s Theorem, we know that log(1− x) ≤ −x− 1
2
x2, in the range

0 ≤ x < 1. Moreover, 1
α+n+3

≤ 1
n+4

, and since g(α) > 0, we can conclude that

g′(α) < 0. Therefore g(α) is decreasing in the interval [1,∞), with the maximum at

g(1) = 1
2
.

On the other hand, if 0 < α < 1, the maximum of
(
n+3
n+4

)α is attained at α = 0.

And since α+n+3
n+3

< n+4
n+3

= 1 + 1
n+3
≤ 4

3
, we have g(α) < 1

2
4
3

= 2
3
, for α ∈ (0, 1).

Combining these two results in (V.15), we deduce the bound for j = n + 1. This

completes the inductive proof.

Now we are ready to prove our main result.

Theorem 23. For all α ≥ 0, Dα
s [ζ(s)] 6= 0 in the region |s− 1| < 1.

Proof. For α = 0, the reader is referred to [5]. We prove that (s−1)α+1

Γ(α+1)
Dα
s [ζ(s)] 6= 0 in
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the region |s− 1| < 1. Starting with (V.3), we are able to write∣∣∣∣(s− 1)α+1

Γ(α + 1)
ζ(α)(s)

∣∣∣∣ =

∣∣∣∣∣1 +
∞∑
n=0

(−1)nγα+n(s− 1)α+n+1

Γ(α + 1)n!

∣∣∣∣∣
≥ 1− |γα|

Γ(α + 1)
− |γα+1|

Γ(α + 1)
−
∞∑
n=2

|γα+n|
Γ(α + 1)n!

.

Applying Lemma 21, we see that∣∣∣∣(s− 1)α+1

Γ(α + 1)
ζ(α)(s)

∣∣∣∣ > 1− 0.492− 0.323−
∞∑
n=2

|γα+n|
Γ(α + 1)n!

. (V.16)

We can focus now on finding an upper bound for
∞∑
n=2

|γα+n|
Γ(α+1)n!

. By (V.7) we have

|γα+n|
Γ(α + 1)n!

≤ 4Γ(α + n+ 1)(2(n+ 1))!

(2π)n+1(n+ 1)α+n+1(n+ 1)α+n+1(n+ 1)!n!Γ(α + 1)
.

It follows from Stirling’s formula that (2n)!
n!
≤
√

2
(

4n
e

)n for all integers n ≥ 1. There-

fore

∞∑
n=2

|γα+n|
Γ(α + 1)n!

≤
∞∑
n=2

4Γ(α + n+ 1)

(2π)n+1(n+ 1)α+n+1n!Γ(α + 1)

√
2

(
4(n+ 1)

e

)n+1

=
∞∑
n=2

4
√

2Γ(α + n+ 1)

(2π)n+1(n+ 1)αn!Γ(α + 1)

(
4

e

)n+1

= 4
√

2

(
2

πe

)3 ∞∑
n=0

Γ(α + n+ 3)

Γ(α + 1)(n+ 2)!2n(n+ 3)α

(
4

πe

)n
≤ 4
√

2

(
2

πe

)3 ∞∑
n=0

(α1 + 2)(α1 + 1)

3α12

(
4

πe

)n
< 0.142,

by Lemma 22 (and with the same notation). Using this bound in (V.16), we obtain∣∣∣∣(s− 1)α+1

Γ(α + 1)
ζ(α)(s)

∣∣∣∣ > 1− 0.492− 0.323− 0.142 > 0.

We conclude that Dα
s [ζ(s)] 6= 0, for all α > 0, in the region |s− 1| < 1.
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CHAPTER VI

CONCLUSION

In this work we covered four topics concerning the Riemann Zeta function or

one of it’s generalizations, namely the Hurwitz Zeta functions and the derivatives

or fractional derivatives of these functions. In Chapter II we presented zeros of the

derivatives, ζ(k)(σ+ it), of the Riemann Zeta function for k ≤ 28 within the complex

rectangular region defined by −10 < σ < 1
2
and −10 < t < 10. Our computations

show an interesting behavior of the zeros of ζ(k), in the sense that they seem to lie on

curves that extend certain chains of zeros of ζ(k) observed on the right half plane.

In Chapter III, we discussed the fractional (or non-integral generalized) Stielt-

jes constants, γα(a). We showed that these constants arose naturally from the Laurent

series expansions of the fractional derivatives of the Hurwitz Zeta functions, ζ(k)(s, a).

We showed that by using the Grünwald-Letnikov fractional derivative, one could prove

a conjecture put forth by Kreminski in [21].

We discussed methods of evaluating the fractional Stieltjes constants in chapter

IV. We also found a new upper bound for |γα(a)| that is sharper, for n > 100, than

the previously known bounds given by Berndt [5], Williams and Zhang [39], and

Matsuoka [28].

In Chapter V, we found a zero free region about 1 for all fractional derivatives

of the Riemann Zeta function. That is, we showed that for any α ∈ R, Dα
s [ζ(s)] 6= 0

inside the region |s− 1| < 1.

In summary, we have shown that fractional derivatives can be employed to

give insight into the behavior of the Riemann Zeta function and its derivatives. We

also have shown that using fractional differentiation, exciting results connected to the
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Riemann Zeta function can be proven. One direction of future work is to prove that

zeros of ζ(k) lie on curves which extend from chains of zeros of ζ(k) observed on the

right half plane. Using fractional differentiation may lead to further insights into this

observed pattern. This method may also be a direction that one could use to prove

any such insights.

60



BIBLIOGRAPHY

[1] Abel, N.H. – Solution de quelques problemesa lâĂŹaide dâĂŹintégrales définies,
Mag. Naturvidenskaberne, Vol. 2, 63–68, 1823

[2] Abramowitz, M. & Stegun, I. – Handbook of mathematical functions with formu-
las, graphs, and mathematical tables, Dover, New York, 1964.

[3] Apostol, T. M. – Introduction to analytic number theory, Chapter 12, Under-
graduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976.

[4] Apostol, T. M., – Formulas for higher derivatives of the Riemann zeta function,
Math. Comp. 44 (1985), no. 169, 223-232.

[5] Berndt, C. – On the Hurwitz zeta-function, Rocky Mountain J. Math., Vol. 2,
No. 1, 151–157, 1972.

[6] Binder, T., Pauli, S., and Saidak, F., – Zeros of high derivatives of the Riemann
zeta function, Rocky Mountain J. Math. Volume 45, Number 3, 2015.

[7] Cohen, H., Rodriguez Villegas, F., and Zagier, D., – Convergence acceleration of
alternating series, Experiment. Math. 9, 2000, 3–12

[8] Davenport, H. – Multiplicative number theory, Markham, Chicago, 1967.

[9] Diaz, J. B. & Osler, T. J. – Differences of fractional order, Math. Comp. 28
(1974), 185âĂŞ-202.

[10] Edwards, H. M. – Riemann’s zeta function, Pure and Applied Mathematics, Vol.
58. Academic Press, New York-London, 1974

[11] Farr, R.& Pauli, S. –More Zeros of the Derivatives of the Riemann Zeta Function
on the Left Half Plane in Rychtář, J., Gupta, S., Shivaji, S. & Chhetri, M. Topics
form the 8th Annual UNCG Regional Mathematics and Statistics Conference,
Springer 2014.

[12] Farr, R., Pauli, S. & Saidak, F. – On Fractional Stieltjes Constants, submitted,
2016.

[13] Farr, R., Pauli, S. & Saidak, F. – A Bound Fractional Stieltjes Constants,
preprint, 2017.

[14] Farr, R., Pauli, S. & Saidak, F. – A Zero Free Region for the Fractional Deriva-
tives of the Riemann zeta function, submitted, 2017.

61



[15] Gradshteyn, I. S. – Table of Integrals, Series, and Products, Academic Press,
2007.

[16] Grünwald, A. K. – Über begrenzte Derivation und deren Anwendung, Z. Angew.
Math. Phys., 12, 1867.

[17] Janjic, M. – On Non-central Stirling Numbers of the First Kind, 2009, http:
//adsabs.harvard.edu/abs/2009arXiv0901.2655J

[18] Johansson, F. et al – mpmath: a Python library for arbitrary-precision floating-
point arithmetic, 2010, http://code.google.com/p/mpmath/

[19] Jungman, G., Gough, B. et al, GSL - GNU Scientific Library http://www.gnu.
org/software/gsl/

[20] Knopp, M. – Modular integrals and their Mellin transforms in Analytic num-
ber theory (Allerton Park, IL, 1989), 327âĂŞ342, Progr. Math., 85, Birkhäuser
Boston, Boston, MA, 1990.

[21] Kreminski, R. – Newton-Cotes integration for approximating Stieltjes (general-
ized Euler) constants, Math. Comp., Vol. 72, 1379–1397. 2003.

[22] Leibniz, G.W. and Gerhardt, K.I, and Schmidt H.W. – Leibnizens mathematische
schriften, 1855.

[23] Letnikov, A.V. – On the Historical Development of Differentiation Theory with
an Arbitrary Index, Mat. Sb, Vol. 3, 85–112, 1868

[24] Levinson, N. and Montgomery, H. L. – Zeros of the derivatives of the Riemann
zeta function, Acta Math., 133, (1974), 49 – 65.

[25] Liouville, J. – Mémoire sur le changement de la variable indépendante, dans le
calcul des différentielles a indices quelconques. 1835.

[26] Liouville, J. – Mémoire sur quelques questions de géométrie et de mécanique,
et sur un nouveau genre de calcul pour résoudre ces questions, Journal l’Éc.
Polytech., 13, sect. 21, 1832, p. 1-69

[27] Lovoie, J., Osler, T., and Tremblay R. – Fractional derivatives and special func-
tions, SIAM Review 18 (1976), no. 2, 240–268.

[28] Matsuoka, Y. – Generalized Euler constants associated with the Riemann zeta
function, Number Theory and Combinatorics: Japan 1984, World Scientific, Sin-
gapore, pp. 279âĂŞ295, 1985.

[29] Ortigueira, M. D. – Fractional calculus for scientists and engineers. Lecture Notes
in Electrical Engineering, 84. Springer, Dordrecht, 2011.

62



[30] Ostrowski, A. – Note on Poisson’s treatment of the Euler-Maclaurin formula,
Comment. Math. Helv., 44, (1969), 202–206.

[31] Riemann, B. – Versuch einer allgemeinen Auffassung der Integration und Differ-
entiation, 14 Janvier 1847, Bernhard RiemannâĂŹs Gesammelte Mathematische
Werke, (1892), 353–362

[32] Skorokhodov, S. L. – Padé approximants and numerical analysis of the Riemann
zeta function, Zh. Vychisl. Mat. Mat. Fiz., 43, No. 9, 1330 – 1352, 2003

[33] Speiser, A – Geometrisches zur Riemannschen Zetafunktion, Math. Ann., 110,
514 – 521, 1934

[34] Spira, R. – Zero-free region for ζ(k)(s), J. London Math. Soc. 40, 677–682 1965

[35] Spira, R. – Another zero-free region for ζ(k)(s), Proceedings of the American
Mathematical Society, Vol. 26, No. 2. 1970

[36] Stein, W. et al. – Sage, open-source mathematics software, 2012.
http://www.sagemath.org

[37] Stieltjes, T. J. – Correspondance d’Hermite et de Stieltjes, Tomes I & II,
Gauthier-Villars, Paris, 1905.

[38] Verma, D. P. and Kaur, A. – Zero-free regions of derivatives of Riemann zeta
function, Proc. Indian Acad. Sci. Math. Sci., 91, No. 3, 217 – 221, 1982

[39] Williams, K. S. & Zhang, N. Y. – Some results on the generalized Stieltjes con-
stants. Analysis 14 (1994), no. 2–3, 147-âĂŞ162.

[40] Yıldırım, C. Y. – Zeros of ζ ′′(s) and ζ ′′′(s) in σ < 1/2, Turkish J. Math., 24, no.
1, 89–108, 2000

63


