
RUDZINSKI, SANDI, M.A. Symbolic Computation of Resolvents. (2017)
Directed by Dr. Sebastian Pauli. 46 pp.

Resolvent polynomials are used in the determination of Galois groups of polynomi-

als. The computation of the resolvent usually relies on root approximations requiring

a high degree of precision. Leonard Soicher developed a method to compute absolute

linear resolvents symbolically without the need for root approximations. This thesis

details that method and expands it to compute relative linear resolvents symbolically

with respect to the wreath product of Sn and a transitive permutation group G.

SYMBOLIC COMPUTATION OF RESOLVENTS

by

Sandi Rudzinski

A Thesis Submitted to
the Faculty of The Graduate School at

The University of North Carolina at Greensboro
in Partial Ful�llment

of the Requirements for the Degree
Master of Arts

Greensboro
2017

Approved by

Committee Chair

APPROVAL PAGE

This thesis written by Sandi Rudzinski has been approved by the following com-

mittee of the Faculty of The Graduate School at The University of North Carolina

at Greensboro.

Committee Chair
Sebastian Pauli

Committee Members
Chad Awtrey

Brett Tangedal

Dan Yasaki

Date of Acceptance by Committee

Date of Final Oral Examination

ii

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Pauli, for his support, patience and kindness,

and for understanding my questions. Dr. Pauli has been consistently supportive and

helpful, and I am extremely grateful for his commitment and guidance. I would like

to thank my committee, Dr. Yasaki, Dr. Awtrey, and Dr. Tangedal, for their time

and assistance. Dr. Yasaki has been especially helpful and willing to provide advice

and suggestions as I was writing. I would also like to thank Jonathan Milstead for

providing some of the proofs for Chapter V and some of the code used in generating

examples.

These acknowledgments are insu�cient to express my gratitude. My experience at

UNCG has been exceptional. The faculty have encouraged me at every step. Thank

you.

iii

TABLE OF CONTENTS

Page

LIST OF ALGORITHMS . v

CHAPTER

I. INTRODUCTION . 1

II. FOUNDATIONS . 2

2.1. Permutation Groups . 2
2.2. Galois Groups . 5

III. ALGORITHMS FOR THE SYMBOLIC COMPUTATION
OF ABSOLUTE LINEAR RESOLVENTS 7

3.1. Resolvents and Resultants . 7
3.2. Auxiliary Functions . 10
3.3. Multiset Operations . 13
3.4. LinResolv Algorithm . 14
3.5. Example using Algorithm 4 (LinResolv) 15
3.6. Implementation Extensions and Computational

Example . 20

IV. ALGORITHM FOR THE SYMBOLIC COMPUTATION
OF RELATIVE LINEAR RESOLVENTS . 22

4.1. Wreath Products . 22
4.2. Computation of StabG(F) . 24
4.3. RLRSetup and RelLinResolv Algorithms 25
4.4. Proof of Algorithm 7 (RelLinResolv) 26
4.5. Implementation and Extensions . 29

V. USING RESOLVENTS TO COMPUTE GALOIS GROUPS 34

5.1. Theorems . 34
5.2. Examples . 43

REFERENCES . 46

iv

LIST OF ALGORITHMS

Page

Algorithm 1. (MultiplyZeros). Returns a polynomial whose roots
are the roots of the input polynomial scaled by the
second input. 11

Algorithm 2. (SumZeros). Returns the polynomial whose roots are
the sums of the roots of the input polynomials. 11

Algorithm 3. (PolyRoot). Returns the polynomial f such that u =
fk given a polynomial u and k ∈ N. 12

Algorithm 4. (LinResolv). Returns the absolute linear resolvent
R(G,H, F, f) where G = Sn and H = StabSn(F). 16

Algorithm 5. (SumZerosExt). Successively calls Algorithm 2 (SumZeros)
on a sequence of polynomials. 21

Algorithm 6. (RLRSetup). Sets up the input for Algorithm 7 (RelLinResolv)
and returns a multisetM to be sent to Algorithm 7
(RelLinResolv). 32

Algorithm 7. (RelLinResolv). Returns the relative linear resolvent
R(G,H, F, f) where G = Sm o Sl and H = StabG(F). 33

v

CHAPTER I

INTRODUCTION

Resolvent polynomials are used in the determination of Galois groups of polynomi-

als. The computation of the resolvent usually relies on root approximations requiring

a high degree of precision. Leonard Soicher developed a method to compute absolute

linear resolvents symbolically without the need for root approximations. This thesis

details that method and expands it to compute relative linear resolvents symbolically

with respect to the wreath product of Sn and a transitive permutation group G.

In Chapter II, we cover the basic de�nitions from algebra and set up some of the

notation. Chapter III explains the symbolic computation of absolute linear resolvent

polynomials as developed by Leonard Soicher. In Chapter IV, a new algorithm for

computing relative linear resolvents with respect to SmoSl is given. Chapter V outlines

the theorems for the use of the relative resolvent polynomial in determining Galois

groups and gives some examples of the algorithm.

All algorithms presented in this thesis have been adapted for e�ciency and im-

plemented in the Magma computer algebra system. The implementations were used

in the construction of the examples in Chapter V.

1

CHAPTER II

FOUNDATIONS

This chapter contains the necessary background and de�nitions. These de�nitions

are compiled primarily from [DF04] and [Gei97].

2.1 Permutation Groups

A permutation of a set is a rearrangement of the set, a bijection from the set

to itself. Galois groups are often thought of as permutation groups of the roots of

a polynomial; so, we begin by de�ning the group of all permutations of a set, the

symmetric group.

De�nition 2.1 (Symmetric Group, Sn). Let Ω be any nonempty set, and let SΩ be

the set of all bijections from Ω to itself (i.e., the set of all permutations of Ω). The

set SΩ is a group under function composition: ◦. This group is called the symmetric

group on the set Ω.

In the special case when Ω = {1, 2, 3, . . . , n}, the symmetric group on Ω is denoted

Sn, the symmetric group of degree n.

Often, we are interested not in the entire symmetric group, but a subgroup of it.

De�nition 2.2 (Permutation Group). Let Ω be any nonempty set and SΩ the sym-

metric group on the set Ω. If G is any subgroup of SΩ, then G is called a permutation

group on Ω, and we denote this group by (G,Ω).

2

De�nition 2.3 (Group Action). A (right) group action of a group G on a set A is

a map from A × G to A (written as a · g for all g ∈ G and a ∈ A) satisfying the

following properties:

(1) (a · g1) · g2 = a · (g1g2), for all g1, g2 ∈ G, a ∈ A, and

(2) a · 1 = a for all a ∈ A, where 1 is the identity element of G.

All actions in this thesis are right group actions unless otherwise stated.

De�nition 2.4 (Permutation Representation). Let G be a group acting on a set A.

De�ne φ : G → SA by g 7→ σg where σg(a) = a · g for any a ∈ A. Then φ is a

homomorphism called the permutation representation of G with respect to the action

on A.

De�nition 2.5 (Invariant). Let G be a permutation group acting on a set A, an

element a ∈ A is said to be invariant under G if a · g = a for all g ∈ G.

De�nition 2.6 (Stabilizer). Let G be a permutation group acting on a set A. Let

B ⊆ A. The stabilizer of B in G is StabG(B) = {σ ∈ G | σ(b) ∈ B for all b ∈ B}.

StabG(B) ≤ G for all B ⊆ A.

De�nition 2.7 (Orbit, Transitive). Let G be a group acting on a nonempty set A.

The equivalence class {a · g | g ∈ G} is called the orbit of G containing a. The action

of G on A is called transitive if there is only one orbit, i.e., given any two elements

a, b ∈ A, there is some g ∈ G such that a = b · g.

De�nition 2.8 (Block and Block System). Let G be a transitive permutation group

acting on a set X.

3

(1) A subset B of X is called a block of G if for all g ∈ G, we have:

B · g = B or B · g ∩B = ∅.

The number of elements in a block is called the length of the block.

(2) If B1, . . . , Bm are blocks of G, we call B = {B1, . . . , Bm} a block system of G if

(a)
⋃

1≤i≤mBi = X.

(b) Bi ∩Bj = ∅ for i 6= j.

(c) All blocks have the same length.

B = {X} and B = {{x} | x ∈ X} are block systems for any transitive group (G,X).

These are the trivial block systems.

De�nition 2.9 (Primitive / Imprimitive). The action of the transitive group G is

called primitive if there is no nontrivial block system. Otherwise, the action of G is

called imprimitive.

De�nition 2.10 (Cosets). Let G be a group. For any N ≤ G and any g ∈ G let

gN = {gn | n ∈ N} Ng = {ng | n ∈ N}

called respectively a left coset and a right coset of N in G. Any element of a coset is

called a representative for the coset.

De�nition 2.11 (Transversal). Let H be a subgroup of a group G. Then a subset

S of G is termed a right (left) transversal of H in G if S intersects every right (left)

coset of H at exactly one element.

S is also termed a system of right coset representatives of H. We denote a right

transversal of H in G as G//H.

4

2.2 Galois Groups

De�nition 2.12 (Automorphism Group). Let G be a group. An isomorphism σ of

G with itself is called an automorphism of G. The collection of automorphisms of G

is a group denoted Aut(G).

De�nition 2.13 (Field Extension). If L is a �eld containing the sub�eld K, then L

is said to be an extension �eld (or simply extension) of K, denoted L/K. The �eld

K is sometimes called the base �eld of the extension.

De�nition 2.14 (Degree of an Extension). The degree of a �eld extension L/K,

denoted [L : K], is the dimension of L as a vector space over K. The extension is

said to be �nite if [L : K] is �nite and is said to be in�nite otherwise.

De�nition 2.15 (Splitting Field). The extension �eld L of K is called a splitting

�eld for the polynomial f(x) ∈ K[x] if f(x) factors completely into linear factors (or

splits completely) in L[x] and f(x) does not factor completely into linear factors over

any proper sub�eld of L containing K.

De�nition 2.16 (Algebraic Extension). A �eld extension L/K is called algebraic if

every element of L is a root of some non-zero polynomial with coe�cients in K.

De�nition 2.17 (Algebraic Closure). The �eld K is called an algebraic closure of K

if K is algebraic over K and if every polynomial ∈ K[x] splits completely over K (so

that K can be said to contain all the elements algebraic over K).

De�nition 2.18 (Normal Extension). An algebraic �eld extension L/K is normal

if every irreducible polynomial with coe�cients in K that has at least one root in L

factors completely into linear factors in L[x].

5

De�nition 2.19 (Normal Closure). If K is a �eld and L is an algebraic extension of

K, then there is some algebraic extension M of L such that M is a normal extension

of K. A minimal sub�eld (by inclusion) of M which contains L and is a normal

extension of K is called a normal closure of the extension L over K.

De�nition 2.20 (Separable). A polynomial over a �eld K is called separable if it has

no multiple roots (i.e., all its roots are distinct). A polynomial which is not separable

is called inseparable.

A �eld L is said to separable over K if every element of L is a root of a separable

polynomial over K. A �eld which is not separable is inseparable.

De�nition 2.21 (Automorphism Group of a Field Extension). Let K be a �eld, and

let L/K be an extension of �elds.

(1) An automorphism σ ∈ Aut(K) is said to �x an element α ∈ K if σ(α) = α. If

F is a subset of K, then an automorphism is said to �x F if it �xes all of the

elements of F .

(2) Aut(L/K) is the collection of automorphisms of L which �x K. Aut(L/K) ≤

Aut(K).

De�nition 2.22 (Galois Group). Let L/K be a �nite extension. Then L is said to

be Galois over K and L/K is a Galois extension if |Aut(L/K)| = [L : K]. If L/K

is Galois, the group of automorphisms Aut(L/K) is called the Galois group of L/K,

denoted Gal(L/K).

De�nition 2.23 (Galois Group of a Polynomial). If f(x) is a separable polynomial

over K, then the Galois group of f(x) over K denoted Gal(f) is the Galois group of

the splitting �eld of f(x) over K.

6

CHAPTER III

ALGORITHMS FOR THE SYMBOLIC COMPUTATION OF ABSOLUTE

LINEAR RESOLVENTS

In this chapter we explore the work done by Leonard Soicher in his 1981 thesis

[Soi81], which has been extended by this thesis. Soicher developed a method to com-

pute linear resolvents without root approximations by using resultants. Throughout

the remainder of this thesis K will be a �eld unless otherwise stated. In our pre-

sentation, we often give polynomials in terms of their roots in an algebraic closure

K of K (that is, in factored form) (see De�nition 2.17). At no point do any of the

algorithms given require knowledge of these roots. We only present the polynomials

in this form to facilitate understanding. In order to discuss the main algorithm, we

need to de�ne three auxiliary functions, MultiplyZeros, SumZeros, and PolyRoot.

We denote the output of Algorithm 1 (MultiplyZeros) given the input f and k by

MultiplyZeros(f, k) and use analogous notation for all other algorithms. We begin

by de�ning the resolvent polynomial and then discuss some preliminaries involving

multisets and each of the auxiliary functions before discussing the main algorithm,

Algorithm 4 (LinResolv).

3.1 Resolvents and Resultants

The resolvent is a polynomial whose computation relies on two other polynomials.

Informally, the roots of a resolvent polynomial are the result of evaluating variations

of a multivariate polynomial at the roots of a second polynomial. The variations of

7

the multivariate polynomial are determined by the action of a group G as de�ned

below.

De�nition 3.1. LetG ≤ Sn be a permutation group. Let F (x1, . . . , xn) ∈ K[x1, . . . , xn]

be a multivariate polynomial and let σ ∈ G. There is a right action of G on

K[x1, . . . , xn] de�ned by

F · σ = F σ(x1, x2, . . . , xn) = F (xσ(1), xσ(2), . . . , xσ(n)).

De�nition 3.2 (G-relative H-invariant Polynomial). Let F ∈ K[x1, . . . , xn] be a

multivariate polynomial and let H < G ≤ Sn be permutation groups such that

StabG(F) = H. (See De�nition 3.1 and De�nition 2.6). The polynomial F is called

a G-relative, H-invariant polynomial.

De�nition 3.3 (Resolvent Polynomial). Let H < G ≤ Sn, and F ∈ K[x1, . . . , xn],

a G-relative, H-invariant polynomial. Let f ∈ K[x] of degree n such that the roots

of f in an algebraic closure of K are α1, . . . , αn. Then, the resolvent polynomial

R(G,H, F, f) is

R(G,H, F, f) =
∏

σ∈G//H

(
x− F

(
ασ(1), . . . , ασ(n)

))
• If G = Sn, then R(G,H, F, f) is called an absolute resolvent, if G is a proper

subgroup of Sn, then R(G,H, F, f) is called a relative resolvent.

• The resolvent polynomialR(G,H, F, f) is called a linear resolvent if F (x1, . . . , xn) =

a1x1 + · · ·+ anxn for some a1, . . . , an ∈ K.

In order to compute the resolvent without the need for root approximations,

Soicher uses resultants. We now discuss the resultant and its computation.

8

De�nition 3.4 (Resultant). Let K be an algebraic closure of K. Let f, g ∈ K[x]

with g 6= f and

f(x) =
m∑
i=0

fix
i = fm

m∏
i=1

(x− αi)

for αi ∈ K, 1 ≤ i ≤ m. Then the resultant of f and g with respect to x is

Resx(f, g) =

fdeg g
m

m∏
i=1

g(αi) if m ≥ 1

fdeg g
0 if m = 0

The x in Resx is necessary because we also consider the resultant with respect to

multivariate polynomials, in which case the output is a polynomial instead of a value

in K.

Example 3.5. Let f, g ∈ K[x] be monic polynomials with f(x) =
m∏
i=1

(x − αi) and

g(x) =
n∏
i=1

(x− βi) as in De�nition 3.4 and consider

Resy(f(y), g(x− y)) =
m∏
i=1

g(x− αi) =
n∏
j=1

m∏
i=1

(x− (αi + βj))

So that Resy(f(y), g(x − y)) is a polynomial in x of degree mn. This example is

important for the auxiliary functions that we discuss in the next section.

In order to compute the resultant without the use of root approximations, we refer

to the following proposition. A proof can be found in [Coh93].

9

Proposition 3.6. Let f, g ∈ K[x] with f(x) =
m∑
i=0

fix
i and g(x) =

n∑
i=0

gix
i then

Resx(f, g) = det(Syl(f, g)). Syl(f, g) is the Sylvester matrix of f and g given by

fm fm−1 fm−2 . . . f1 f0 0 0 . . . 0

0 fm fm−1 fm−2 . . . f1 f0 0 . . . 0

0 0 fm fm−1 fm−2 . . . f1 f0 . . . 0

...
...

. .
...

0 0 . . . 0 fm fm−1 fm−2 . . . f1 f0

gn gn−1 . . . g2 g1 g0 0 0 . . . 0

0 gn gn−1 . . . g2 g1 g0 0 . . . 0

0 0 gn gn−1 . . . g2 g1 g0 . . . 0

...
...

. .
...

0 0 . . . 0 gn gn−1 . . . g2 g1 g0

where the coe�cients of f are repeated on n = deg(g) rows and the coe�cients of g

are repeated on m = deg(f) rows.

This shows that we do not need root approximations to compute the resultant and

this allows the computation of the absolute resolvent without root approximations as

well.

3.2 Auxiliary Functions

Three auxiliary functions are used in the computation of the absolute resolvent.

Algorithm 1 (MultiplyZeros) and Algorithm 2 (SumZeros) create new polynomials

from input polynomials. Algorithm 1 (MultiplyZeros) takes as input a polynomial

and a scalar in the base �eld and returns the polynomial whose roots are the roots

of the input polynomial multiplied by the scalar. Algorithm 2 (SumZeros) takes two

10

Algorithm 1. (MultiplyZeros). Returns a polynomial whose roots are the roots of

the input polynomial scaled by the second input.

Input: f(x) = a
n∏
i=1

(x− αi) ∈ K[x], r ∈ K.

Output: g(x) = a
n∏
i=1

(x− rαi) ∈ K[x].

(1) return rnf
(
x
r

)
.

Algorithm 2. (SumZeros). Returns the polynomial whose roots are the sums of the

roots of the input polynomials.

Input: f(x) = a
n∏
i=1

(x− αi) ∈ K[x], g(x) = b
m∏
i=1

(x− βi) ∈ K[x].

Output: s(x) = ambn
n∏
i=1

m∏
j=1

(x− (αi + βj)) ∈ K[x].

(1) return Resy(f(y), g(x− y)).

polynomials as input and returns the polynomial whose roots are the sums of the

roots of the input polynomials by using resultants (see De�nition 3.4 and Example

3.5). Algorithm 3 (PolyRoot) is used to decrease the multiplicity of the roots of a

polynomial so that the resolvent has the correct degree. In particular, Algorithm 3

(PolyRoot) is used when the same coe�cient in theG-relativeH-invariant polynomial,

F , is repeated for multiple variables, which causes Algorithm 4 (LinResolv) to include

multiple copies of roots in the computation of the resolvent that need to be removed.

11

Algorithm 3. (PolyRoot). Returns the polynomial f such that u = fk given a

polynomial u and k ∈ N.

Input: u(x) ∈ K[x] and k ∈ N, such that u(x) = f(x)k for some f(x) ∈ K[x].

Output: f(x) ∈ K[x].

(1) if k = 1 then return u(x).

(2) t(x)← u(x)/ gcd(u, u′)
(Note: u′(x) is the formal derivative of u(x) and the zeros of t(x) are precisely
the distinct zeros of u(x).)

(3) r(x)← t(x)
s(x)← u(x)

(4) while deg(r) < (deg(u))/k

(a) s(x)← s(x)/t(x)k

(b) t(x)← gcd(s, t)

(c) r(x)← t(x)r(x)

(5) return r(x)

Algorithm 3 (PolyRoot) computes a polynomial f given a polynomial u and a

k ∈ N such that u = fk . First, the algorithm constructs the polynomial which

contains each root of f exactly once by dividing u = fk by the greatest common

divisor of u and its derivative. Then the algorithm builds up the polynomial until it

reaches the required degree.

Example 3.7. We compute PolyRoot((x− 1)4(x− 2)2, 2).

Note that u(x) = (x − 1)4(x − 2)2 is given here in factored form for demonstration

only. The algorithm never requires the input in factored form.

12

Input: u(x) = (x− 1)4(x− 2)2, k = 2

(1) k = 2 so proceed.

(2) t(x)← u(x)/ gcd(u, u′) = (x− 1)(x− 2)

(3) r(x)← t(x) = (x− 1)(x− 2)

s(x)← u(x) = (x− 1)4(x− 2)2

(4) deg(r) = 2 < 3 = (deg(u))/k so enter the loop.

(a) s(x)← s(x)/t(x)k = ((x− 1)4(x− 2)2)/((x− 1)(x− 2))2 = (x− 1)2

(b) t(x)← gcd(s, t) = (x− 1)

(c) r(x)← t(x)r(x) = (x− 1)((x− 1)(x− 2)) = (x− 1)2(x− 2)

(4) deg(r) = 3 6< 3 = (deg(u))/k so do not enter the loop.

(5) return r(x) = (x− 1)2(x− 2)

3.3 Multiset Operations

We describe the coe�cients of the multivariate polynomial used for the resolvent

as a multiset. Informally, a multiset is a generalization of a set where the elements of

the set may be repeated. The number of occurrences of an element in a multiset is

called the multiplicity of the element.

De�nition 3.8 (Multiset). A multiset is a pair (A,m) consisting of a set A and a

function m : A → N≥1 = {1, 2, 3, . . . }. For an element x 6∈ A, we set m(x) = 0.

The set A is called the underlying set of elements. For each ai in A the multiplicity

of ai is the number m(ai) = mi. We denote (A,m) by {a×m1
1 , . . . , a×mn

n } where

A = {a1, . . . , an}.

13

De�nition 3.9. Given a multiset L = (A,m) and a ∈ A, de�ne mult(a,L) = m(a).

So that mult(a,L) is the multiplicity of a in the multiset (A,m) = L. If a 6∈ A, then

mult(a,L) = 0.

We de�ne the operations + and − on multisets as follows.

De�nition 3.10 (Multiset Sum). For multisets (A,m) and (B, n) de�ne (A,m) +

(B, n) as follows. Let A ∪B = C = {c1, . . . , ck}. Then

(A,m) + (B, n) = {c×(m(c1)+n(c1))
1 , . . . , c

×(m(ck)+n(ck))
k }.

De�nition 3.11 (Multiset Di�erence). For multisets (A,m) and (B, n) de�ne (A,m)−

(B, n) as follows. Let A = {a1, . . . , ak}.

(A,m)− (B, n) = {a×max(m(a1)−n(a1),0)
1 , . . . , a

×max(m(ak)−n(ak),0)
k }

If max(m(ai)− n(ai), 0) = 0 then ai is not an element of (A,m)− (B, n).

De�nition 3.12 (Size of a Multiset). Let (A,m) = {a×m1
1 , . . . , a×mk

k } be a multiset

and de�ne #(A,m) =
k∑
i=1

mi to be the size of (A,m).

3.4 LinResolv Algorithm

Algorithm 4 (LinResolv) computes the absolute linear resolvent, R(G,H, F, f) as

in De�nition 3.3, where G = Sn and H = StabG(F). We �rst describe how StabSn(F)

can be determined by the coe�cients of F for any F of the form F (x1, . . . , xn) =

c1x1 + . . .+ cnxn.

Proposition 3.13. Let F be a multivariate polynomial such that F (x1, . . . , xn) =

c1x1 + . . .+ cnxn with coe�cients ci ∈ K for 1 ≤ i ≤ n. Let {a1, . . . , ak} ⊂ K be the

14

set of distinct coe�cients of F and let {a×m1
1 , . . . , a×mk

k } be the multiset representation

of the coe�cients of F . Then StabSn(F) ∼= Sm1 × · · · × Smk
.

Proof. This follows directly from the de�nition of the action of Sn on K[x1, . . . , xn]

described in De�nition 3.1.

Algorithm 4 (LinResolv) computes the resolvent polynomial recursively on the

number of coe�cients in the invariant multivariate polynomial. The algorithm com-

putes the resolvent by using resultants to create polynomials and dividing out extra

factors by computing other resolvents. For a proof of the algorithm see [Soi81].

3.5 Example using Algorithm 4 (LinResolv)

Although the algorithm does not use root approximations for the computations,

showing what is happening in terms of the roots is instructive. Let f ∈ K[x] such

that f(x) =
n∏
i=1

(x − αi) and F ∈ K[x1, . . . , xn] such that F (x1, . . . , xn) = x1 + x2 +

2x3 + 0x4 + · · · + 0xn. Then M = {1×2, 2×1} is the multiset representing F . In

Example 3.14 we compute R(Sn, S2×S1×Sn−3, F, f) by computing LinResolv(M, f)

using Algorithm 4 (LinResolv).

Example 3.14. We computeR(Sn, S2×S1×Sn−3, F, f) using Algorithm 4(LinResolv).

The numbered steps indicate the level of the recursion and match the numbers in Al-

gorithm 4.

Input: M = {1×2, 2×1}, f(x) =
n∏
i=1

(x− αi)

(1) #M = 3 so proceed.

(2) M← {1×2}

15

Algorithm 4. (LinResolv). Returns the absolute linear resolvent R(G,H, F, f)

where G = Sn and H = StabSn(F).

Input: A polynomial f ∈ K[x] of degree n, and a multiset M = (A,m) =
{a×m1

1 , . . . , a×mk
k }, which is the multiset representation of the se-

quence [c1, . . . , cr] whose entries are the nonzero coe�cients of F ,
a multivariate polynomial of the form

F (x1, . . . , xn) = c1x1 + . . .+ crxr + 0xr+1 + . . .+ 0xn

with r ≤ n and ci ∈ K and ci 6= 0 for 1 ≤ i ≤ r.

Output: The resolvent R(Sn, StabSn(F), F, f) with F as de�ned in the input.

(1) If #M = 1, then return MultiplyZeros(a1, f).
(Stop condition for the recursion: there is only one nonzero coe�cient in F .)

(2) M←M− {a×1
k } = (B, h) = {b×h11 , . . . , b

×hj
j }

(Remove the last coe�cient from F .)

(3) u(x)← LinResolv(M, f)
(Recursively call this algorithm with F having one fewer coe�cient.)

(4) s(x)←
j∏
i=1

LinResolv(Mi, f)mult(bi+ak,Mi),

whereMi = (M−{b×1
i }) + {(bi + ak)

×1}.
See De�nition 3.10 and De�nition 3.11.
(Compute the extra factors that occur from the use of the resultant.)

(5) d← mult(ak,M)
(Compute the number of extra factors resulting from the multiplicity of the last
coe�cient of F .)

(6) g(x)← MultiplyZeros(ak, f)
(Compute the new polynomial to be included using the last coe�cient of F .)

(7) t(x)← SumZeros(u(x), g(x))/s(x)
(Compute the new polynomial by �summing� the roots of the new factor with
the recursive result and dividing out the extra factors.)

(8) return PolyRoot(t(x), d)
(Remove the extra multiplicities of roots.)

16

(3) u(x)← LinResolv({1×2}, f)

Computation of LinResolv({1×2}, f):

(3.1) #M = 2 so proceed.

(3.2) M← {1×1}

(3.3) u(x)← LinResolv(M = {1×1}, f)

Computation of LinResolv({1×1}, f):

(3.3.1) #M = 1 so return MultiplyZeros(1, f) =
n∏
i=1

(x− αi)

(3.3) Now we have u(x) =
n∏
i=1

(x− αi)

(3.4) s(x)← (LinResolv(M1 = {(1 + 1)×1}, f))1

Computation of LinResolv({2×1}, f):

(3.4.1) #M = 1 so return MultiplyZeros(2, f) =
n∏
i=1

(x− 2αi)

(3.4) Now we have s(x) =
n∏
i=1

(x− 2αi)

(3.5) d← mult(1,M = {1×2}) = 2

(3.6) g(x)← MultiplyZeros(1, f) =
n∏
i=1

(x− αi)

17

(3.7) Computation of t(x):

t(x)← SumZeros(u(x), g(x))/s(x)

= Resy(u(y), g(x− y))/s(x)

=

(
n∏
i=1

g(x− αi)

)/(
n∏
i=1

(x− 2αi)

)

=

 ∏
1≤i≤n
1≤j≤n

(x− (αi + αj))

/(
n∏
i=1

(x− 2αi)

)

=
∏

1≤i,j≤n
i 6=j

(x− (αi + αj))

(3.8) return PolyRoot(t(x), d)

= PolyRoot

 ∏
1≤i,j≤n
i 6=j

(x− (αi + αj)), 2

=
√ ∏

1≤i,j≤n
i 6=j

(x− (αi + αj))

=
∏

1≤i<j≤n
(x− (αi + αj))

(3) Now we have u(x) =
∏

1≤i<j≤n
(x− (αi + αj))

(4) s(x)← (LinResolv({1×1, (1 + 2)×1}, f))1

Computation of LinResolv(({1×1, 3×1}, f):

(4.1) #M = 2 so proceed

(4.2) M← {1×1}

(4.3) u(x)← LinResolv({1×1}, f) =
n∏
i=1

(x− αi)

(4.4) s(x)← (LinResolv({(1 + 3)×1}, f)1 =
n∏
i=1

(x− 4αi)

18

(4.5) d← mult(3, {1×1, 3×1}) = 1

(4.6) g(x)← MultiplyZeros(3, f) =
n∏
i=1

(x− 3αi)

(4.7) Computation of t(x):

t(x)← SumZeros(u(x), g(x))/s(x)

= Resy(u(y), g(x− y))/s(x)

=

(
n∏
i=1

g(x− αi)

)/(
n∏
i=1

(x− 4αi)

)

=

 ∏
1≤i≤n
1≤j≤n

(x− (αi + 3αj))

/(
n∏
i=1

(x− 4αi)

)

=
∏

1≤i,j≤n
i 6=j

(x− (αi + 3αj))

(4.8) return PolyRoot(t(x), 1) =
∏

1≤i,j≤n
i 6=j

(x− (αi + 3αj))

(4) Now we have s(x) =
∏

1≤i,j≤n
i 6=j

(x− (αi + 3αj))

(5) d← mult(2, {1×2, 2×1}) = 1

(6) g(x)← MultiplyZeros(2, f) =
n∏
i=1

(x− 2αi)

19

(7) Computation of t(x):

t(x)← SumZeros(u(x), g(x))/s(x)

= Resy(u(y), g(x− y))/s(x)

=

(∏
1≤i<j≤n

g(x− (αi + αj))

)/ ∏
1≤i,j≤n
i 6=j

(x− (αi + 3αj))

=

 ∏
1≤i<j≤n
1≤k≤n

(x− (2αk + αi + αj))

/
 ∏

1≤i,j≤n
i 6=j

(x− (αi + 3αj))

=

∏
1≤i<j≤n
1≤k≤n
k 6=i,j

(x− (2αk + αi + αj))

(8) return PolyRoot(t(x), 1) =
∏

1≤i<j≤n
1≤k≤n
k 6=i,j

(x− (2αk + αi + αj))

3.6 Implementation Extensions and Computational Example

We extend Algorithm 2 (SumZeros) in a natural way to successively compute the

desired resultant for a sequence of inputs in Algorithm 5 (SumZerosExt).

Using this extended algorithm, we can change the recursion to alter the or-

der and number of operations. Considering steps (3), (4), (6) and (7) of Algo-

rithm 4 (LinResolv), we can compute the entire numerator and denominator of step

(7) before the division instead of computing the division at each recursive step. This

approach has not been implemented at this time, since it is unclear if it would be

a computational improvement as the degrees of the polynomials being divided could

become extremely large.

20

Algorithm 5. (SumZerosExt). Successively calls Algorithm 2 (SumZeros) on a

sequence of polynomials.

Input: A sequence [f1, . . . , fn] of polynomials fi ∈ K[x]

Output: A polynomial g ∈ K[x] such that the roots of g are the sums of the
roots of the polynomials in the sequence

(1) g ← f1

(2) for i = 2 to n do

(a) g ← SumZeros(g, fi)

(3) return g

Example 3.15. LetM = {1×3, 2} be the multiset representation of the multivariate

invariant polynomial, and let f = x7 + 3x3 + 4x2 + 7x+ 11. Then LinResolv(M, f) =

x35 − 1608x31 − 3720x30 − 11480x29 − 124542x28 + 1190934x27+

4788600x26 + 23730880x25 + 387395658x24 + 1281458350x23+

9929194794x22 + 46950037084x21 − 521628779362x20−

3983735495983x19 − 33159243626780x18 − 223227162404084x17−

389788917736212x16 + 329004097616786x15 + 23958439357968128x14+

320609240851560516x13 + 1808067075090694802x12 + 12514704387593949725x11+

71368259108581999048x10 + 149168426005968199140x9 − 579412026047441768534x8−

18723790465531546141093x7 − 198446779285201114652096x6−

1206615884365471337508848x5 − 6287804695563776500883816x4−

17366032191353538639518784x3 + 79217323577733757125489632x2+

1297206441956887894428248192x+ 12641787913442748669272064384
21

CHAPTER IV

ALGORITHM FOR THE SYMBOLIC COMPUTATION OF RELATIVE LINEAR

RESOLVENTS

In this chapter we explain an algorithm to compute relative linear resolvents,

R(G,H, F, f), where G = Sm o Sl, the wreath product of Sm and Sl, and H =

StabG(F). We �rst de�ne and discuss wreath products of groups, a type of semidirect

product. We continue to use right group actions in this chapter.

4.1 Wreath Products

De�nition 4.1 (Semidirect Product). Let G and H be groups and let ϕ be a ho-

momorphism from H into Aut(G). Then the semidirect product of G and H denoted

Goϕ H is a group with respect to the following operation

(g1, h1)(g2, h2) = (g1(ϕ(h1)(g2)), h1h2)

on ordered pairs of elements of G and H.

A wreath product G oH of two permutation groups (G,X) and (H,Y) is itself a

permutation group on the set X × Y . The action of the wreath product on X × Y

can best be described if we consider X × Y as
⋃
y∈Y X × {y}. So that, loosely, an

element of the wreath product can be thought of as �rst permuting the element of

Y as the group H does and then permuting the copy of X in X × {y} in the way

that the group G does. In fact, {X × {y} | y ∈ Y } is a block system for G oH (see

De�nition 2.8).

22

In order to properly de�ne a wreath product as a semidirect product, some con-

cepts are needed in advance of the wreath product de�nition. We are only de�ning

wreath products for permutation groups on �nite sets. For a more thorough discus-

sion, see [Mel95].

Let (G,X) and (H,Y) be permutation groups on �nite sets X and Y , and let GY

be the set of all maps from Y to G. Then GY is a group with respect to the following

operation. Let f, g ∈ GY , fg ∈ GY is de�ned by (fg)(y) = f(y)g(y). We de�ne an

action of H on GY as follows. Let f ∈ GY and note that f(y) ∈ G for all y ∈ Y .

Then h ∈ H acts on GY by

(f · h)(y) = fh(y) = f(yh−1)

Since h ∈ H, yh−1 ∈ Y . For each h ∈ H, we de�ne ψh ∈ Aut(GY) by f 7→ fh.

De�nition 4.2 (Wreath Product). Let (G,X) and (H,Y) be permutation groups

with X and Y �nite sets. Let ϕ : H → Aut(GY) be de�ned by ϕ(h) = ψh as de�ned

above. Then the (permutational) wreath product of G and H denoted by G oH is the

semidirect product, GY oϕ H.

De�nition 4.3 (Imprimitive Action of G oH). Let (G,X) and (H,Y) be permutation

groups with X and Y �nite sets. G oH acts imprimitively on X × Y as follows

(x, y) · (f, h) = (xfh(y), yh) = (xf(yh−1), yh) for f ∈ GY , h ∈ H.

{X × {y} | y ∈ Y } is a block system of the permutation group (G oH,X × Y).

23

4.2 Computation of StabG(F)

Just as with the computation of absolute linear resolvents, the subgroup H =

StabG(F) can be completely determined just by examining F for the computation of

relative linear resolvents. We are only computing relative resolvents with respect to

wreath products; however, the computation of the stabilizer discussed in this section

is relevant for computing relative resolvents with respect to any group G. First, note

the following remark.

Remark. Let G ≤ Sn. Then StabG(F) ∼= G ∩ StabSn(F).

In the computation of the absolute linear resolvent, the ordering of the coe�cients

does not a�ect the stabilizer of F . However, when computing the relative resolvent,

the ordering of the coe�cients does a�ect the computation of the resolvent and the

subgroup H. In order to correctly compute StabG(F), the direct product in Propo-

sition 3.13 must be correctly embedded in Sn, where n is the degree of f . Of course

the ordering of the coe�cients of the G-relative H-invariant polynomial F and the

ordering of the roots of the polynomial f should be considered in tandem. So any

embedding of the stabilizer used for the computation of a relative resolvent should

take into account the ordering of the roots of the polynomial f as well.

Let StabG(F) ∼= Sk1 × · · · × Skm =: H. In order to correctly compute this em-

bedding, we must construct a homomorphism φ : H → Sn by mapping the standard

generators of the direct product to permutations determined by the indices of the

variables associated with the respective coe�cients.

Example 4.4. We construct the stabilizer StabS16(F) of

F (x1, . . . , x16) = x1 + x5 + 2x6 + 2x7 + x8 + x10 + 2x11 + 3x14 + 3x16

By Proposition 3.13, StabS16(F) ∼= S4 × S3 × S2 × S7 =: H.

24

De�ne φ : H → S16 by

S4 (1 2) 7→ (1 5) (1 2 3 4) 7→ (1 5 8 10)

S3 (5 6) 7→ (6 7) (5 6 7) 7→ (6 7 11)

S2 (8 9) 7→ (14 16)

S7 (10 11) 7→ (2 3) (10 11 12 13 14 15 16) 7→ (2 3 4 9 12 13 15)

The correct embedding of StabS16(F) is φ(H).

For the purpose of quickly and easily computing this embedding, a function was

written to determine this group directly from the sequence of coe�cients of F . The

constructed group could then be intersected with the desired group G.

4.3 RLRSetup and RelLinResolv Algorithms

Algorithm 7 (RelLinResolv) computes the relative linear resolvent for a separable,

irreducible polynomial f ∈ K[x] by using a factorization of f in a normal extension

T of K. We assume that f factors into l distinct factors each of degree m in T

(Proposition 5.1 in Chapter V shows that this indeed is the case). Given these

conditions, Algorithm 7 (RelLinResolv) computes the relative resolvent with respect

to G = Sm o Sl. The algorithm computes the absolute resolvents of each factor of

f using Algorithm 4 (LinResolv) and produces the polynomial whose roots are the

sums of the roots of these resolvents using Algorithm 2 (SumZeros). Unlike the

computation of the absolute resolvent, no extra factors are produced from the use of

the resultant in this step because the factors of f do not share any roots.

Algorithm 7 (RelLinResolv) requires some setup to modify the sequence of coe�-

cients of the multivariate polynomial F ; so, we �rst describe Algorithm 6 (RLRSetup),

which prepares the multiset required as the input for Algorithm 7 (RelLinResolv).

25

Algorithm 6 (RLRSetup) partitions the sequence of coe�cients by the degree of the

factors of f in T and then removes any zeros which served as place holders in the

invariant F . Lastly, Algorithm 6 (RLRSetup) returns the multiset representation of

this partition which can be sent to Algorithm 7 (RelLinResolv).

4.4 Proof of Algorithm 7 (RelLinResolv)

Theorem 4.5. Let K ⊂ L be a tower of �eld extensions and let L ∼= K[x]/(f) for

an irreducible, separable polynomial f ∈ K[x]. Let T be a normal extension of K

such that f factors as
l∏

i=1

fi over T [x], with deg(fi) = m for 1 ≤ i ≤ l, and denote

by α
(1)
i , . . . , α

(m)
i the roots of fi in an algebraic closure K of K. Let Φ = [f1, . . . , fl],

and let F (x1, . . . , xn) = c1x1 + c2x2 + · · ·+ csxs + 0xs+1 + · · ·+ 0xn be a multivariate

polynomial and C the sequence of coe�cients, [c1, . . . , cs]. Let M be the multiset

constructed by RLRSetup(C,m). Let G = Sm o Sl and H = StabG(F). Let the roots

of the factors of f be ordered such that {{α(1)
i , . . . , α

(m)
i } | 1 ≤ i ≤ l} forms a block

system for G under the action of G on the indices analogous to De�nition 3.1. Then

RelLinResolv(M,Φ) computed by Algorithm 7 (RelLinResolv) constructs the relative

linear resolvent R(G,H, F, f).

Proof. Let α1, . . . , αn denote the roots of f in K. We reindex the set {α1, . . . , αn} as

{α(1,1), . . . , α(m,l)} where α(i,j) = α
(i)
j is a root of fj. Note that since we are computing

an absolute resolvent for each fj, the root ordering in each polynomial fj does not

a�ect the computation; however, we can take i =
⌈
n
m

⌉
. For clarity, we denote α(i,j) as

α
(i)
j where appropriate so that the action of the group is always on the lower index,

as de�ned in De�nition 3.1.

We proceed by induction on the size ofM.

26

Base case: #M = 1.

If #M = 1, then RelLinResolv(M,Φ) returns
l∏

i=1

LinResolv(M1, fi). We want to

show that this is R(G,H, F, f). LetM1 = {a×m1
1 , . . . , a×mk

k }. Since #M = 1, without

loss of generality, we assume that the coe�cients of xm+1 through xn in F are all zero.

Since ci is the coe�cient of xi in F , let

F1(x1, . . . , xm) =
m∑
i=1

cixi

In other words, F1(x1, . . . , xm) ≡ F (x1, . . . , xn) under equivalence of functions.

Recalling that G = Sm o Sl has block system {{1, . . . ,m} × {i} | i ∈ {1, . . . , l}}

(see De�nition 4.3), we have

RelLinResolv(Φ,M) =
l∏

i=1

LinResolv(M1, fi)

=
l∏

i=1

∏
τ∈Sm//H∩Sm

(x− F τ
1 (α

(i)
1 , . . . , α

(i)
m))

=
l∏

i=1

∏
σ∈SmoSL//H
σ∈StabG(i)

(x− F σ(α(1,i), . . . , α(m,i), 0, . . . , 0))

=
∏

σ∈SmoSL//H

(x− F σ(α(1,1), . . . , α(m,l)))

= R(G,H, F, f)

This proves the base case.

Inductive step: Assume that RelLinResolv(M,Φ) = R(G,H, F, f) when #M = t.

We need to show that RelLinResolv(M,Φ) = R(G,H, F, f) when #M = t+ 1.

27

LetM = {M×m1
1 , . . . ,M×mk

k }. Note that the polynomial F determinesM in Al-

gorithm 6 (RLRSetup) and we can assume that the coe�cients of xn−tm+1, . . . , xn−tm+m

in F correspond to the multiset Mk inM.

De�ne F = F (x1, . . . , xn−tm, 0, . . . , 0) and Ft+1 = F (0, . . . , 0, xn−tm+1, . . . , xn−tm+m, 0 . . . , 0).

As before, since #M = t+ 1, we know that

F (x1, . . . , xn) = F (x1, . . . , xn−tm+m, 0, . . . , 0)

= F (x1, . . . , xn−tm, 0, . . . , 0) + F (0, . . . , 0, xn−tm+1, . . . , xn−tm+m, 0, . . . , 0)

= F + Ft+1

We also know that R(G,H, Ft+1, f) =
l∏

i=1

LinResolv(Mk, fi) by our de�nition of f

and Ft+1. By our inductive assumption, we have that RelLinResolv(M,Φi) com-

putes the desired resolvent for 1 ≤ i ≤ l, where Φi = [f1, . . . , fi−1, fi+1, . . . , fl] as in

28

Algorithm 7 (RelLinResolv). Then we have the following.

RelLinResolv(Φ,M)

=
l∏

i=1

SumZeros(RelLinResolv(Φi,M),LinResolv(Mk, fi))

=
l∏

i=1

SumZeros

(∏
σ∈SmoSL//H
σ∈StabG(i)

(x− F σ
(α(1,1), . . . , α(m,i−1), 0, . . . , 0, α(1,i+1), . . . , α(m,l))),

∏
σ∈SmoSL//H
σ∈StabG(i)

(x− F σ
t+1(0, . . . , 0, α(i,1), . . . , α(i,m), 0, . . . , 0)

)

=
l∏

i=1

(∏
σ∈SmoSL//H
σ∈StabG(i)

(x− (F
σ
(α(1,1), . . . , α(m,i−1), 0, . . . , 0, α(1,i+1), . . . , α(m,l))+

F σ
t+1(0, . . . , 0, α(i,1), . . . , α(i,m), 0, . . . , 0))

)
=

l∏
i=1

(∏
σ∈SmoSL//H
σ∈StabG(i)

(x− F σ(α(1,1), . . . , α(m,l))

)

=
∏

σ∈SmoSL//H

(x− F σ(α(1,1), . . . , α(m,l)))

=R(G,H, F, f)c = R

where c = mult(Mk,M). So that PolyRoot(R, c) yields R(G,H, F, f) as desired and

Algorithm 7 (RelLinResolv) returns R(G,H, F, f).

4.5 Implementation and Extensions

In order to construct the resolvent e�ciently, the multiset constructed in Algo-

rithm 6 (RLRSetup) should be sorted in order of decreasing multiplicities to ensure

that the degree is kept as small as possible for as long as possible in the resultants.

29

However, in practice, it is much more e�cient to compute all resultants before any

multiplication takes place instead of the recursive algorithm given here. It is also pos-

sible to remove the need for the PolyRoot algorithm in Algorithm 7 (RelLinResolv)

if the loop is constructed appropriately.

It should be noted that given a carefully constructed loop, we can actually compute

the resolvent with respect to Sm o G for any transitive group G. Using Algorithm 5

(SumZerosExt) we can easily write the loop that computes the relative resolvent

R(Sm oG,H, F, f) where H = StabSmoG(F).

Proposition 4.6. Let G ≤ Sl be a transitive permutation group. Let C be the se-

quence of coe�cients of a multivariate polynomial F , let Φ and f be as described

in Algorithm 7 (RelLinResolv) and let M = {M×1
1 , . . . ,M×1

k } be the multiset con-

structed in Algorithm 6 (RLRSetup). Let SumZerosExt as in Algorithm 5. Then the

relative linear resolvent with respect to Sm oG is

∏
σ∈G

SumZerosExt([LinResolv(M1, fσ(1)), . . . ,LinResolv(Mk, fσ(k))])

For multisets of arbitrary multiplicity, let M = {M×m1
1 , . . . ,M×mk

k }. Let the

sequence [N1, N2, . . . , Nj] be a sequence representation ofM with j = #M and N1 =

. . . = Nm1 = M1, Nm1+1 = . . . = Nm1+m2 = M2 and so on. For simplicity of

numbering, let Li be the index of the �rst N corresponding to Mi and let Ji = Li +

mi − 1, the index of the last N corresponding to Mi for 1 ≤ i ≤ k. Then the relative

linear resolvent with respect to Sm oG is

∏
σ∈G

k∏
i=1

PolyRoot(SumZerosExt([LinResolv(NLi
, fσ(Li)), . . . ,LinResolv(NJi , fσ(Ji))]),mi)

30

Proof. The proof of this is the same as the proof of Theorem 4.5. The use of Algo-

rithm 5 (SumZerosExt) changes the recursion to a loop and we may easily substitute

the action of G for the loop that goes through every permutation because the action

of Sm o G on each block of the block system {{1, . . . ,m} × {a} | a ∈ {1, . . . , l}} is

determined by the group G.

In a similar way, we can also compute the relative resolvent with respect to

Sm o H o J . If we let G in Proposition 4.6 be H o J , then reindexing the set

Φ as ordered pairs as determined by the block system of H o J yields the desired

result.

While the algorithm is relevant for any �eld, some loss of precision that occurs in

the computation of the resultants and the greatest common divisor occasionally causes

incorrect results in p-adic �elds. Ways to compensate for these issues are currently

being pursued, including the modi�ed computation discussed in Section 3.6.

31

Algorithm 6. (RLRSetup). Sets up the input for Algorithm 7 (RelLinResolv) and

returns a multisetM to be sent to Algorithm 7 (RelLinResolv).

Input: A sequence C = [c1, . . . , cs] whose entries are the coe�cients of F ,
a multivariate polynomial of the form F (x1, . . . , xn) = c1x1 + . . . +
csxs + 0xs+1 + · · · + 0xn with s ≤ n and ci ∈ K for 1 ≤ i ≤ s and
a positive integer m representing the size of the partitions of C that
will form the multisets.

Output: A multisetM whose elements are multisets each representing a par-
tition of C.

(1) P ← [c1, . . . , cm | cm+1, . . . , c2m | . . . | cqm+1, . . . cs] = [C1 | C2 | . . . | Cp]
where Ci is the ith part of the partition P .
(Partition C into q parts of size m and one part of size r where s = q ·m+ r.)

(2) K ← [M1,M2, . . . ,Mp]
where Mi is the multiset representation of Ci.
(Construct a sequence of multisets from P .)

(3) K ← [M1 − {0×mult(0,M1)}, . . . ,Mp − {0×mult(0,Mp)}]
(Remove the zeros from each Mi, 1 ≤ i ≤ p, any empty multisets are removed
from K in this step.)

(4) M← multiset representation of K.
(Construct the multiset representation ofK so thatM is a multiset of multisets.)

(5) returnM.

32

Algorithm 7. (RelLinResolv). Returns the relative linear resolvent R(G,H, F, f)

where G = Sm o Sl and H = StabG(F).

Input: A sequence of polynomials, Φ = [f1, . . . , fl] where deg(fi) = m for

1 ≤ i ≤ l, such that {α(j)
i | 1 ≤ j ≤ m} are the roots of fi in K and

{{α(1)
i , . . . , α

(m)
i } | 1 ≤ i ≤ l} is a block system of Sm o Sl and a multi-

setM = {M×m1
1 , . . . ,M×mk

k } of multisets representing the partitions
of the sequence [c1, . . . , cs] created by RLRSetup([c1, . . . , cs],m). The
entries of the sequence are the coe�cients of F , a multivariate poly-
nomial of the form

F (x1, . . . , xn) = c1x1 + . . .+ csxs + 0xs+1 + · · ·+ 0xn

with s ≤ n and ci ∈ K for 1 ≤ i ≤ s.

Output: The resolvent R(G,H, F, f) where G = Sm o Sl, H = StabG(F), F

is de�ned as in the input, and
l∏

i=1

fi = f ∈ K[x] of degree lm = n

(1) If #M = 1, then return
l∏

i=1

LinResolv(M1, fi)

(Stop condition for the recursion: there is only one partition of coe�cients of
F ; i.e., F has fewer than m coe�cients.)

(2) M =M−{M×1
k }

(Remove one partition of the coe�cients of F .)

(3) R←
l∏

i=1

SumZeros(RelLinResolv(M,Φi),LinResolv(Mk, fi))

where Φi = [f1, . . . , fi−1, fi+1, . . . , fl].
(Recursively call algorithm with one fewer partition of coe�cients and compute
the new polynomial by �summing� the roots of the new factor with the recursive
result.)

(4) c← mult(Mk,M) = mk

(Compute the number of extra factors resulting from the multiplicity of the last
partition of coe�cients of F .)

(5) return PolyRoot(R, c)
(Remove the extra multiplicities of roots and return the result.)

33

CHAPTER V

USING RESOLVENTS TO COMPUTE GALOIS GROUPS

In this chapter we will discuss the theorems outlining how the resolvent is used

in the computation of Galois groups and then show some examples with partial

results. In particular, we will show the creditability of the requirements of Algo-

rithm 7 (RelLinResolv) and the relevance of computing the relative resolvent with

respect to the wreath product of groups. We then detail the properties of the resolvent

that make it useful for di�erentiating candidate Galois groups of a polynomial.

5.1 Theorems

5.1.1 Requirements of Algorithm 7 (RelLinResolv)

The computation in Algorithm 7 (RelLinResolv) requires factors of the polynomial

f in a normal extension of K that meet the criteria in Theorem 4.5. Proposition

5.1 guarantees that the conditions required by Theorem 4.5 can be attained. This

proposition and proof appear in [Mil17].

Proposition 5.1. Let f ∈ K[x] be irreducible and separable of degree n. Let N denote

the splitting �eld of f . If T/K is a normal subextension of N/K, then f factors over

T as a product of distinct irreducible polynomials of the same degree.

Proof. Let α(1), . . . , α(n) denote the roots of f in N . As f is squarefree, all factors of

f are distinct. For each root α(i) of f we denote by fj(i) the irreducible factor of f ,

over T , for which α(i) is a root.

34

Let L = K[x]/(f), and let L1 = T ∩ L. For 1 ≤ i ≤ n, the conjugates of L are

L(i) = K(α(i)) = L1(α(i)). Similarly, the conjugates of L1 are L
(i)
1 = L(i) ∩ T . Since

K(α(i)) is always the same up to isomorphism, we have the following diagram for

1 ≤ i ≤ n:

N

|

L(i) ⊆ TL(i)

| |

L(i) ∩ T = L
(i)
1 ⊆ T

|

K

where both L(i)/L
(i)
1 and TL(i)/T have degree deg(fj(i)). Thus, each α

(i) is a root of

an irreducible factor of f over T of degree

[L(i) : K]

[L(i) ∩ T : K]
.

5.1.2 Embedding in the Wreath Product

In this section we will show that once we have the conditions necessary for Al-

gorithm 7 (RelLinResolv), that the Galois group embeds in the wreath product for

which the algorithm is computing the resolvent. First, we will show that the Galois

group has the necessary block system. This theorem appears in [GK00] with the proof

from [Mil17].

35

Theorem 5.2. Let E1 = K(β), E2 = K(α) be algebraic extensions of K with K ⊆

E1 ⊆ E2 and g, f ∈ K[x] be the minimal polynomials of β and α, respectively. Let h

∈ K[x] be the embedding polynomial with h(α) = β. Denote the conjugates of α and

β in some algebraic closure with α1, . . . , αn and β1, . . . , βm, respectively. De�ning

Bi = {αj | h(αj) = βi} it follows that B1, . . . , Bm form a block system of Gal(f).

Furthermore, n = |Bi|m.

Proof. Let σ ∈ Gal(f), and let i satisfy 1 ≤ i ≤ m. Since β ∈ K(α) is algebraic over

K, σ(βi) is a conjugate of β. We claim that σ(βi) = βk if and only if σ(Bi) = Bk.

Suppose σ(βi) = βk and let δ ∈ Bi. Since σ is an automorphism and h is a

polynomial, we have that σ(h(a)) = h(σ(a)) for all a in the domain of h. This

directly leads to

h(σ(δ)) = σ(h(δ))

= σ(βi)

= βk

which implies that σ(δ) ∈ Bk. Because δ was selected arbitrarily, we conclude that

σ(Bi) ⊆ Bk. Furthermore, by a similar argument, βi = σ−1(βk) leads us to σ
−1(Bk) ⊆

Bi. This is equivalent to Bk ⊆ σ(Bi) since σ is bijective. Therefore, the forward

direction has been proven.

Conversely, suppose that σ(Bi) = Bk. Let τ ∈ σ(Bi). Then there exists δ ∈ Bi

such that τ = σ(δ). Furthermore, we have that δ = σ−1(τ) and h(δ) = βi. Putting

36

all of this together we can determine σ(βi):

σ(βi) = σ(h(δ))

= h(σ(δ))

= h(τ)

= βk.

Hence the assertion has been proven. This implies that σ(Bi) is either Bi or another

set Bj. Since the sets B1, . . . , Bm must be disjoint we have σ(Bi) ∩ Bi = {Bi, ∅} for

σ ∈ Gal(f). The cardinality condition on Bi follows from the fact that Gal(f) is

transitive.

The following theorem is a version of the Krasner-Kaloujnine Theorem and the

proof and the proof of the corollary are based on work in [Gei97] and in part on

[DS07].

Theorem 5.3. Let (G,Z) be a transitive, imprimitive permutation group with block

system B = {B1, . . . , Bm} where each block is size l. Let X and Y be �nite sets such

that |X| = l and |Y | = m. Then G acts transitively on Y and there is H ≤ G that

acts on X such that (G,Z) can be embedded in (H o (G, Y), X × Y).

Proof. Let Y = {y1, . . . , ym} and X = {x1, . . . , xl}. Let θ : Z → X×Y be a bijection

such that θ(z) = (xi, yj) =⇒ z ∈ Bj for all z ∈ Z.

Using θ, we view G as a transitive, imprimitive permutation group on X×Y with

blocks Bj = X × {yj} for 1 ≤ j ≤ m. We write (x, y)g instead of θ−1((x, y))g.

37

Let ψ : G→ Sm be the permutation representation of G with respect to the action

of G on B. Let g ∈ G with ψ(g) = σ ∈ Sm. Then G acts on Y by

(yi)g = (yi)ψ(g) = (yi)σ = yσ(i).

Since the action of G on Z is transitive, the action of G on Y is also transitive.

Fix y1 ∈ Y and let H = StabG(y1). Since B1 = X × {y1}. This implies that

H permutes the elements of X. Since |X| = l, we have that φ : H → Sl is the

permutation representation of H. Let h ∈ H with φ(h) = τ ∈ Sl. So again H acts

transitively on X by

xih = xiφ(h) = (xi)τ = xτ(i).

Fix (x1, y1) ∈ X × Y and let g ∈ G such that (x1, y1)g = (x2, y2) for some

(x2, y2) ∈ X × Y .

With respect to g as above, de�ne f ∈ HY and h ∈ (G, Y) by (y1)h = y2 and

(x1)fh(y1) = (x1)f(y1h
−1) = x2. Since G acts transitively on X × Y and H acts

transitively on X, it is clear that we can de�ne such a pair, (f, h) for each g ∈ G

given by the action of g on (x1, y1).

De�ne the map χ : G → H o (G, Y) by g 7→ (f, h) de�ned as above by the

action of g on the �xed point (x1, y1). Let g ∈ G with (x1, y1)g = (x2, y2) for some

38

(x2, y2) ∈ X × Y .

(x1, y1)χ(g) = (x1, y1)(f, h)

= (x1f
h(y1), (y1)h)

= (x2, y2)

= (x1, y1)g

This shows that χ(g) acts on X × Y as G does. We use this to show that χ is a

homomorphism. Let g1, g2 ∈ G be arbitrary.

(x, y)χ(g1g2) = (x, y)g1g2

= ((x, y)g1)χ(g2)

= ((x, y)χ(g1))(χ(g2)

= (x, y)(χ(g1)χ(g2))

To prove that χ is injective, we show ker(χ) is trivial. Let g ∈ G with g ∈ ker(χ).

Then we have that

(x, y) = (x, y)χ(g) = (x, y)g

for all (x, y) ∈ X × Y . So we must have that g = idG and the kernel is trivial as

desired.

Corollary 5.4. Let K ⊂ L ⊂M be �nite separable �eld extensions. Then the Galois

group Gal(M/K) of M over K can be embedded as a permutation group into the

wreath product Gal(M/L) oGal(L/K).

39

Proof. Let L = K(α) and M = L(β) with h(β) = α for h ∈ K[t]. Fix a normal

closure N of M over K that contains L. Let G = Gal(N/K). De�ne Z to be

the K-embeddings of M into N , Y to be the K-embeddings of L into N , and X

to be the L-embeddings of M into N . Then Gal(M/K) = (G,Z) is a transitive

imprimitive permutation group with block system B = {By | y ∈ Y } with each block

By = {z ∈ Z | h(z) = y} by Theorem 5.2. Fix y ∈ Y , and set H = StabG(y). The

statement follows since Gal(M/L) ∼= (H,X) and Gal(L/K) = (G, Y).

5.1.3 Properties of the Resolvent Polynomial

The following theorems and proofs, taken from [Gei03], demonstrate the properties

of the resolvent polynomial that are useful for determining Gal(f). In all cases, it

is the factorization of the resolvent polynomial (if it is squarefree) that provides the

required information.

Theorem 5.5. Let K be a �eld and K an algebraic closure of K. Let f(x) ∈ K[x] be

a monic, separable, irreducible polynomial of degree n and �x an ordering α1, . . . , αn ∈

K of the roots of f . Let G be a transitive, subgroup of Sn such that Gal(f) ≤ G. Let

H be a subgroup of G and F ∈ K[x1, . . . , xn] a G-relative H-invariant polynomial

with R(G,H, F, f) the corresponding resolvent polynomial. Then

(1) R(G,H, F, f) =
∏

σ∈G//H
(x− F σ(α1, . . . , αn)) ∈ K[x].

(2) Let Q(x) =
l∏

i=1

(x − F σi(α1, . . . , αn)) be a factor of R(G,H, F, f) such that Q

and R(G,H, F, f) are relatively prime. Let S = StabG({F σ1 , . . . , F σl}). Then

Gal(f) ≤ S if and only if Q(x) ∈ K[x]. Gal(f) ≤ S =⇒ Q ∈ K[x] without the

relatively prime condition.

40

(3) In particular, let F σ(α1, . . . , αn) be a simple root of R(G,H, F, f) then Gal(f) ≤

σHσ−1 if and only if F σ(α1, . . . , αn) ∈ K.

Proof. (1) The coe�cients of R(G,H, F, f) are �xed by G and therefore also by

Gal(f), so that R(G,H, F, f) ∈ K[x].

(2) First assume that Gal(f) ≤ S, then it follows that {F σi(α1, . . . , αn) | 1 ≤ i ≤ l}

is also �xed by Gal(f), so that Q ∈ K[x].

Now, let Q ∈ K[x] so that Q and R(G,H, F, f)/Q are relatively prime, and

let r = [G : H]. Select a set {σ1, . . . , σl} from a complete set of coset repre-

sentatives, {σ1, . . . , σr}. Let τ ∈ Gal(f), then for 1 ≤ i ≤ l, τ(F σi) = F σj

with j ∈ {1, . . . , r}. Because Q ∈ K[x], it follows that τ(F σi(α1, . . . , αn)) =

F σk(α1, . . . , αn) with k ∈ {1, . . . , l}. To see that F σk(α1, . . . , αn) = F σj(α1, . . . , αn),

recall that Q and R(G,H, F, f) are relatively prime, so j ∈ {1, . . . , l} as desired.

(3) Since StabG(F σ) = σHσ−1, the result follows from part (2) for l = 1.

Theorem 5.6. Given the conditions of Theorem 5.5, let r = [G : H] and τ :

Gal(f) → Sr the permutation representation of Gal(f) with respect to the action

of Gal(f) on the set of right coset representatives G//H. If R(G,H, F, f) is separa-

ble, then the Galois group of R(G,H, F, f), as a subgroup of Sr, is isomorphic to the

group τ(Gal(f)).

Proof. Let ∆ = {Hσ1, . . . , Hσr} be a set of right cosets of H in G with {σ1, . . . , σr} =

G//H and set Ω = {F σ1(α1, . . . , αn), . . . , F σr(α1, . . . , αn)}. De�ne ψ : ∆ → Ω by

Hσi 7→ F σi(α1, . . . , αn). We want to show that ψ is a bijection of sets. To see that ψ

41

is well-de�ned and injective, consider the following equivalences.

Hσi = Hσ̃i ⇐⇒ σiσ̃i
−1 ∈ H

⇐⇒ F σiσ̃i
−1

= F

⇐⇒ F σ(α1, . . . , αn) = F σ̃i
−1

(α1, . . . , αn)

The last line follows from R(G,H, F, f) being separable.

Since |∆| = |Ω|, we have that ψ is also surjective. Under this bijection, we

have an isomorphism of permutation groups S∆ and SΩ, ψ : S∆ → SΩ such that

ψ(ω)((F σi(α1, . . . , αn)) = ψ(ω(Hσi)). Let σ ∈ Gal(f). De�ne the permutation rep-

resentation τ ′ of Gal(f) to S∆ de�ned by τ ′(σ)(Hσi)) = Hσiσ and let the homomor-

phism ϕ be the restriction of σ to Gal(R(G,H, F, f)). We want to show that the

following diagram commutes:

Gal(f)

S∆ ≥ τ ′(Gal(f)) Gal(R(G,H, F, f)) ≤ SΩ

τ ′

ϕ

ψ

So

ϕ(σ)(F σi(α1, . . . , αn)) = F σiσ(α1, . . . , αn) for 1 ≤ i ≤ r

and we get

ϕ(σ)(F σi(α1, . . . , αn)) = F σiσ(α1, . . . , αn)

= ψ(Hσiσ) = ψ(τ ′(σ)(Hσi))

= ψ(τ ′(σ))(F σi(α1, . . . , αn)).

42

Since ϕ is surjective, it follows that Gal(R(G,H, F, f)) = ϕ(Gal(f)) = ψ(τ ′(Gal(f)).

Identifying ∆ and Ω with {1, . . . , r} proves the theorem.

Remark. It follows from Theorem 5.6 that the set of the degrees of the irreducible

factors of R(G,H, F, f) ∈ K[x] equals the set of orbit lengths induced by the action

of τ(Gal(f)) on the set {1, . . . , r}.

Theorem 5.6 gives us a method for using the factorization of the resolvent for

di�erentiating among possible Galois groups of f . By computing and factoring the

resolvent polynomial (over the base �eld) and comparing the degrees of the irreducible

factors to the orbit lengths generated by the possible Galois groups, we can rule out

the groups that generate orbit lengths that do not match the degrees of the factors

of the resolvent.

5.2 Examples

All examples were computed using the Magma computer algebra system.

Example 5.7. Let K = Q and f(x) = x16 − 2x15 + 3x14 + 8x13 + 15x12 − 31x11 +

92x10+166x9−6x8−83x7+921x6+1597x5+431x4−371x3+2303x2+4116x+2401. If

we factor f over the normal extension T = Q(ζ5), we obtain four degree-four factors

of f . Let F (x1, . . . , x16) = x1 + x2 + 2x5 + 2x6 + x9 + x10. The factorization of

R(S4 o S4, StabS4oS4(F), F, f) yields three factors each of degree 864. Examining the

orbit length partitions of the transitive subgroups of S4 o C4, yields 11 groups that

could be isomorphic to Gal(f).

Example 5.8. Let K = Q and f(x) = x30 − x28 − 3x27 + 49x26 + 5x25 − 32x24 −

127x23+972x22+134x21−340x20−2191x19+10335x18+1146x17−1364x16−18441x15+

62708x14 +2869x13−1777x12−72551x11 +205320x10−5465x9−6770x8−102531x7 +

43

288164x6− 36848x5 + 4833x4− 626x3 + 61x2− 8x+ 1. If we factor f over the normal

extension T = Q(ζ7), we obtain six degree-�ve factors of f . Let F (x1, . . . , X30) =

x1 + x2 + 2x3 + 2x4 + 2x6. The factorization of R(S5 o S6, StabS5oS6(F), f) yields �ve

factors each of degree 900. Examining the orbit length partitions of the transitive

subgroups of S5 o S6 yields 12 groups that could be isomorphic to Gal(f).

Example 5.9. Let Q3 be the �eld of 3-adic numbers. Let f(x) = x9 + 6x8 + 3x3 +

18x + 6 ∈ Q3[x]. Then τ(x) = x2 + 3072 generates the maximal tamely rami�ed

sub�eld T of the splitting �eld of f [GP12], and ψ(x) = x3 + 36x2 + 3x+ 21 generates

a sub�eld L1 of Q3[x]/(f) such that, by the earlier proposition, f splits into three

degree-3 polynomials over TL1. Let G = S3 oS3. There are 24 transitive subgroups of

G which could be isomorphic to Gal(f). We use a series of multivariate polynomials

to reduce the possibilities.

Let F (x1, . . . , x9) = x1 + x4 + x7. The sequence [1, 0, 0, 1, 0, 0, 1] represents F and

RLRSetup([1, 0, 0, 1, 0, 0, 1], 3) = {{1×1}×3}. If we factor the resolvent polynomial

produced over Q3 then we obtain one degree-27 factor. Examining the orbit length

partitions yields 12 possibilities for Gal(f),

{9T6, 9T10, 9T17, 9T20, 9T21, 9T22, 9T24, 9T25, 9T28, 9T29, 9T30}

Let F (x1, . . . , x9) = x1 + x4 + x5. The sequence [1, 0, 0, 1, 1] represents F and

RLRSetup([1, 0, 0, 1, 1], 3) = {{1×1}×1, {1×2}×1}. The factorization of the resolvent

yields one degree-54 factor, which has possible groups {9T10, 9T11, 9T12, 9T18,

9T20, 9T21, 9T24, 9T29, 9T30, 9T31}.

Intersecting this set with the previous possibilities reduces the possible groups to

{9T10, 9T20, 9T21, 9T24, 9T29, 9T30, 9T31}. Let F (x1, . . . , x9) = x1 + x4 + x5 +

x7. The sequence [1, 0, 0, 1, 1, 0, 1] represents F and RLRSetup([1, 0, 0, 1, 1, 0, 1], 3) =

44

{{1×1}×2, {1×2}×1}. Factoring the resolvent yields one factor of degree 54 and one

factor of degree 27.

The groups that have corresponding orbit lengths are {9T10, 9T11, 9T13, 9T18}.

The intersection with the previous possibilities yields one group, 9T10. So Gal(f) ∼=

9T10.

45

REFERENCES

[Coh93] Henri Cohen, A course in computational algebraic number theory, Springer-
Verlag New York, Inc., New York, NY, USA, 1993.

[DF04] David S. Dummit and Richard M. Foote, Abstract algebra, third edition ed.,
John Wiley and Sons, Inc., Hoboken, NJ, 2004.

[DS07] Bart De Smit, Galois groups and wreath products, http://www.math.

leidenuniv.nl/~desmit/notes/krans.pdf, October 2007.

[Gei97] Katharina Geiÿler, Zur Berechnung von Galoisgruppen, Master's thesis,
Technische Universität Berlin, Berlin, 1997.

[Gei03] , Berechnung von Galoisgruppen über Zahl- und Funktionenkörpern,
Ph.D. thesis, Technische Universität Berlin, Berlin, 2003.

[GK00] Katharina Geiÿler and Jürgen Klüners, Galois group computation for rational
polynomials, Journal of Symbolic Computation 30 (2000), no. 6, 653 � 674.

[GP12] Christian Greve and Sebastian Pauli, Rami�cation polygons, splitting �elds,
and Galois groups of Eisenstein polynomials, Int. J. Number Theory 8
(2012), no. 6, 1401�1424. MR 2965757

[Mel95] J.D.P. Meldrum, Wreath products of groups and semigroups, John Wiley and
Sons, Inc., New York, NY, 1995.

[Mil17] Jonathan Milstead, Computing Galois groups of Eisenstein polynomials over
p-adic �elds, Ph.D. thesis, University of North Carolina at Greensboro,
Greensboro, NC, 2017.

[Soi81] Leonard Soicher, The computation of Galois groups, Master's thesis, Con-
cordia University, Montreal, 1981.

46

http://www.math.leidenuniv.nl/~desmit/notes/krans.pdf
http://www.math.leidenuniv.nl/~desmit/notes/krans.pdf

	List of Algorithms
	I Introduction
	II Foundations
	2.1 Permutation Groups
	2.2 Galois Groups

	III Algorithms for the Symbolic Computation of Absolute Linear Resolvents
	3.1 Resolvents and Resultants
	3.2 Auxiliary Functions
	3.3 Multiset Operations
	3.4 LinResolv Algorithm
	3.5 Example using Algorithm 4 (`39`42`"613A``45`47`"603ALinResolv)
	3.6 Implementation Extensions and Computational Example

	IV Algorithm for the Symbolic Computation of Relative Linear Resolvents
	4.1 Wreath Products
	4.2 Computation of `39`42`"613A``45`47`"603AStabG(F)
	4.3 `39`42`"613A``45`47`"603ARLRSetup and `39`42`"613A``45`47`"603ARelLinResolv Algorithms
	4.4 Proof of Algorithm 7 (`39`42`"613A``45`47`"603ARelLinResolv)
	4.5 Implementation and Extensions

	V Using Resolvents to compute Galois Groups
	5.1 Theorems
	5.1.1 Requirements of Algorithm 7 (`39`42`"613A``45`47`"603ARelLinResolv)
	5.1.2 Embedding in the Wreath Product
	5.1.3 Properties of the Resolvent Polynomial

	5.2 Examples

	References

