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CHAPTER 1
INTRODUCTION

There are many computationally difficult problems in the study of p-adic fields,
among them the classification of field extensions and the decomposition of global
ideals. The main goal of this work is to present efficient algorithms, leveraging the
Newton polygons and residual polynomials, to solve many of these problems faster and
more efficiently than present methods. Considering additional invariants, we extend
Krasner’s mass formula [Kra66|, dramatically improve general extension enumeration
[PRO1] using the reduced Eisenstein polynomials of Monge [Monl4|, and provide a
detailed account of algorithms that compute Okutsu invariants [Oku82|, which have
many uses, through the lens of partitioning zeros.

In the following we give an account of the history of p-adic fields followed by an
overview over this thesis.

1.1 Early History of the p-Adics

The p-adic numbers were created by an analogy. As a student of Kronecker, Kurt
Hensel was working on extending Kronecker’s work on the factoring of prime ideals
in number fields when he made a keen observation. He observed that the prime
ideals of C[z], namely the functions (z — a), have an role analogous to the role of
the prime ideals of Q, namely the prime numbers. Hensel concluded that methods
from complex analysis where one can consider the global properties of a function by
expanding functions locally, should be translatable to number theory. Analogously
to the Laurent series expansion of a complex function f € C(z) about a point a € C

f@) =3 ae—ay

he considered the Laurent series expansion of a rational number r € Q in terms of
powers of a prime number p,

00

%

r = E P .
=N

Hensel called this series the p-adic expansion of r. With respect to a prime number
p € Z, any rational number can be expressed p-adically in this way. These p-adic



expansions yield local information about r near p, analogous to how the Laurent series
expansion yield local information about f(z) near a.

Hensel showed that the set of all such series for a given prime p form a field,
the field of p-adic numbers, which he denoted by K(p), but in modern notation is
written Q,. Though a field by modern standards, Q, failed to meet the requirement
of Dedekind’s definition of field that it be a subfield of the complex numbers, which
motivated Steinitz’s work on abstract field theory [Stel0]. The introduction of p-adic
fields led to the definition of what we now call local fields. Hensel introduced the
p-adic numbers in a short paper [Hen97] and expounded on the subject in further
papers and books. In particular, he found that one could factor the ideal generated
by p in a number field if you can factor the generating polynomial of that number
field over Q.

In his development of the p-adics, Hensel introduced a topological viewpoint by
defining the p-adic absolute value of r € Q

Iy : Q= R, o e, =7,

a . .. . .
where r = p*(") = with a,b, and p pairwise coprime and by convention v,(0) = 00, 50

that ||0||, = 0. Inspired by Hensel, specifically his book on algebraic numbers [Hen08],
Josef Kiirschak set out to provide a solid foundation of the p-adic numbers, in a man-
ner similar to that of Cantor for the real and complex numbers. His result, announced
at the Cambridge International Congress of Mathematicians in 1912 [Kiir12|, stated
the first abstract structure theorems on valued fields. Kiirschak’s paper on the subject
[Kiir13| provided a general theory of valuations (of which Hensel’s v, are examples)
and laid the groundwork for valuation theory as a separate, axomitized field of study.
This presentation and paper was, however, his only contribution to the subject.

After Kiirschdk began the study of valuations, Alexander Ostrowski provided
much of its early development. Ostrowski left Kiev in 1911 to study with Hensel
in Marburg. In his first paper there [Ost13], he answered a standing question of
Kiirschak by showing that a separable algebraic extension of a complete valued field
is again complete if and only if it is a finite extension of that field. When revisiting
and reproving the results from that paper in [Ost17|, he proved that the extension
of a valuation to its algebraic closure is unique. Finally, Ostrowski determined all
possible valuations on on Q:

Theorem 1.1 (Ostrowski [Ost18]). An absolute value on Q either coincides with
(IIllp)" for some prime p and some r € [0,1], or with (||-||)" for some r € R where
||l 2 the traditional absolute value.



In 1921, the connection between the rational numbers and p-adic numbers was so-
lidified by a student of Hensel’s, Helmut Hasse. For his thesis, he classified quadratic
forms with rational coefficients in terms of the simpler classification of quadratic forms
over real and p-adic numbers. This result was the first of many to be referred to as
a Local-Global Principle. In the years to follow, Hasse published several other im-
portant papers in quick succession, elaborating upon this and further demonstrating
how number theoretic problems could be solved by local methods. His development
of Local-Global Principles required working with norm symbols which would lead to
his foundational work on local class field theory in 1930 [Has30]. Local class field
theory describes the Galois group of the maximal abelian extension of a local field
and through a reciprocity map, the means to study finite abelian extensions of local
fields. With the aim of defining this without the use of its global equivalent, Hasse,
in 1931, determines the structure of the Brauer group, which could be translated
to provide local class field theory. An explicit construction can be seen in papers
of Hasse [Has33| and Chevalley [Che33a,Che33b]. The global theory then follows
through the use of Local-Global Principles, as proved jointly by Brauer, Hasse and
Noether [BHN32|. Thus, the p-adic numbers, and in general, local fields, developed
into a crucial part of algebraic number theory.

1.2 Classification of Extensions

For a finite extension K of the field of p-adic numbers Q,, the description of all
extensions of K in a fixed algebraic closure is an important problem. Restricted to
abelian extensions, local class field theory gives a one-to-one correspondence between
the abelian extensions of K and the open subgroups of the unit group K* of K.
An algorithm that constructs the wildly ramified part of the class field as towers of
extensions of degree p was given in [Pau06|. Recently Monge [Mon14| has published
an algorithm that, given a subgroup of K™ of finite index, directly constructs the
generating polynomial of the corresponding totally ramified extension. In the non-
abelian case, such a complete description is not yet known. However, a description of
all tamely ramified extensions is well known and all extensions of degree p have been
described completely by Amano [AmaT7l].

Krasner worked on building a non-abelian local class field theory. In |Kra66|, he
gave a formula for the number of totally ramified extensions, using his famous lemma
as a main tool.

Theorem 1.2 (Krasner’s Lemma). Let K be a local field complete with respect to
non-archimedian absolute value ||-|| and let K be a separable closure of K. Let o € K
with conjugates o = oM, o .. o™ If B € K is such that

lo =8| < [la— || for2 <i <n,



then K(a) C K(p).

It follows from Krasner’s Lemma that a local field has only finitely many extensions
of a given degree and discriminant. Following his approach, Pauli and Roblot [PRO1]
presented the first general algorithm that returned a set of generating polynomials
for all extensions of a given degree and discriminant. They used the root-finding
algorithm described by Panayi [Pan95] to obtain one generating polynomial for each
extension. This algorithm of Pauli and Roblot has been used extensively by Jones
and Roberts [JR06, JRO7, JRO8| and Awtrey [AS13, AS15| for computing tables of
extensions of p-adic fields and their invariants.

A new approach for determining whether two polynomials generate the same ex-
tension was recently presented by Monge [Mon14|. He introduces reduced polynomials
that yield a canonical set of generating polynomials for each totally ramified extension
of a local field K. Monge’s methods also considerably reduce the number of gener-
ating polynomials that need to be considered when computing a set of polynomials
defining all totally ramified extensions of K.

1.3 Decomposition of Ideals

Ideal decomposition is the foundational problem of the p-adic numbers, and deeply
related to the computation of polynomial factorizations and integral bases. To factor
prime ideals in algebraic extensions of the rational numbers, Hensel would factor
polynomials over p-adic fields. For unramified primes, those that do not divide the
discriminant of the extension, this method suffices.

In 1907, Bauer adapted the techniques of Newton polygons, which had tradition-
ally been used to study singularities of plane curves, to study arithmetical questions
[Bau07|. By drawing the lower convex hull of the points (i,v,(a;)) where a; are the
coefficients of the generating polynomial of a number field, one can detect a factoriza-
tion if there is more than one segment. In the 1920s, Ore greatly expanded on Bauer’s
methods by introducing a more general concept of the polygon and attaching to each
segment a residual polynomial over a finite field [Ore24, Ore28|. Newton polygons
and residual polynomials are at the center of many algorithms for computations in
local fields, including those presented in this work.

Ore’s methods worked defining polynomials satisfying a condition of p-regularity,
but he wondered if, by constructing further generalizations of Newton polygons and
residual polynomials, a method for the general case existed. Saunders MacLane
answered this question in 1936 |[ML36a, ML36b| with more general results. For any
discrete valuation v on a field K, MacLane classified all extensions of v to K|[z].
These valuations are described by a sequence of augmented valuations, where a specific
polynomial of a certain type is assigned a valuation. These augmentations provide
the needed generalization of Ore’s methods to factor ideals in general.



The task of factoring ideals in number fields is closely related to the computation
of integral bases of local and global fields. The Round Four algorithm of Zassenhaus
[F1.94,For87| was originally conceived as an algorithm for the computation of integral
bases of algebraic number fields, and since its introduction, has seen many improve-
ments [CG00, FPR02,PR01| and has implementations in Maple |[FL94|, Pari [PG14],
and Magma [BCP97|. These algorithms work to find successively better approxima-
tions to the input polynomial’s irreducible factors until gaining sufficient precision to
apply Hensel lifting. However, they suffer from precision loss in computing charac-
teristic polynomials and in approximating greatest common divisors, both of which
are used in the core part of the algorithm as well as in the lifting of the factorization.

As an alternative to Round Four, the Montes algorithm [GMN11, GMN12, Mon99,
MN92| avoids the computation of characteristic polynomials by exploiting Newton
polygons of higher order. Here the most expensive operations are division with
remainder and polynomial factorization over finite fields. The algorithm is based
on Ore’s suggestion of “higher-order” Newton Polygons [Ore26]. In 2006, Guardia,
Montes, and Nart [GMN12] revisited Montes’ work, and this has led to a wealth of
improvements and to a better understanding of the algorithm, including complexity
analyses [BNS13,FoVel0, Ver(09|.

Many of the intermediate values computed in the process of the Round Four and
Montes algorithms are Okutsu invariants. In a series of papers [Oku82|, Okutsu
defined sequences of invariants of a polynomial whose construction can build an in-
tegral basis. Algorithms that compute these, which we will call OM algorithms, are
the subject of Chapter VI.

1.4 Overview

In Chapter II, we present the necessary theory of local fields and their extensions
from a modern viewpoint. We begin with the basic definitions of the p-adic numbers,
their absolute value, and valuation, culminating in the general definition of a local
field. The terminology and basic facts regarding local field extensions follow, with
some discussion of Hensel lifting and Newton polygons. Ramification groups, their
filtration, and the Hasse-Herbrand function close the chapter.

In the third chapter, we consider three extension invariants: the discriminant, the
ramification polygon, and the class of residual polynomials of ramification polygon
segments. FEach of these is dependent on the prior, effectively partitioning extensions
into finer sets. The discussion of the discriminant recalls results of Ore and Krasner on
what discriminants are possible and how a choice of discriminant limits the possible
generating polynomials for an extension. We begin considering ramification polygons
from a lemma of Scherk [Sch03] and develop a necessary and sufficient set of conditions
for a convex polygon to be a ramification polygon. Given these, we can compute all
possible ramification polygons for extensions of a given degree and discriminant. Much



as in the case of the discriminant, we can use the choice of ramification polygon to give
conditions on generating polynomials. Our final invariant, based upon the residual
polynomials of the segments of a ramification polygon, is new. Such polynomials were
used by Greve and Pauli in [GP12| to determine the subfields of splitting fields of
Eisenstein polynomials and the splitting field itself in the case when the ramification
polygon consists of one segment. As with the ramification polygon, we find conditions
suitable for enumerating all possibilities, and the effects of a choice of invariant on
the generators of extensions.

In the fourth chapter, a set of mass formulas are developed, one for each invari-
ant, generalizing the work of Krasner [Kra66|. These results also appear in [Sinl5].
The principal argument is developed by generalizing Krasner’s original method. We
present his metric on Eisenstein polynomials, whose relation to the metric on the field
is essential. Next we construct a finite set of Eisenstein polynomials generating all ex-
tensions with given invariants, based upon discs in this polynomial metric. Through
the relation of the two metrics, we can relate the number of these polynomials to the
number of extensions.

Equipped with detailed descriptions of these invariants and their effects on gener-
ating polynomials, the fifth chapter presents an algorithm to enumerate all extensions
of a p-adic field given these invariants. This algorithm, and the results leading to it,
first appear in [PS14]|. The premise of this algorithm is similar to that of Pauli and
Roblot [PRO1], who used Krasner’s constructive description of a finite set of Eisenstein
polynomials capable of generating all extensions of given degree and discriminant. In
addition to a finer classification of extensions, the algorithm is far faster than current
methods, due to results of Monge [Mon14|, who used residual polynomials of com-
ponents to obtain his reduced set of Eisenstein polynomials. By constructing only
reduced polynomials, we greatly reduce and frequently eliminate the need to check
our set of generating polynomials for isomorphisms.

In the sixth chapter, a general description of OM algorithms is given in the context
of partitioning the the set of zeros of a polynomial. This approach is similar to the
one used in [MPS15], which describes an OM algorithm for computing splitting fields.
OM Algorithms are a versatile family of algorithms with numerous applications in
algebraic number theory. Data computed by OM algorithms can be used to compute
integral bases (both local and global), to factor polynomials over local fields, to deter-
mine valuations in extensions, and to solve the defining problem of p-adic numbers,
the decomposition of ideals in global fields.

1.5 Implementations

All algorithms presented in this work have been implemented in computer algebra
systems. We have implemented the new algorithms for enumerating invariants (Al-
gorithms 3.17 and 3.31), counting extensions (Mass formulas from Chapter IV), and



enumerating extensions (Algorithms 5.8, 5.11, and 5.13) described in this thesis in
Magma [BCP97]. Additionally implemented is an aggregation of extension counting
which produces a number of extensions for over all possibilities for invariants, see
Table 2 and http://www.uncg.edu/mat/numbertheory/tables/local/counting/.
There are several existing implementations of OM Algorithms. In Pari [PG14], they
are used for polynomial factorization over Z, and the computation of maximal orders
of number fields. In Magma [BCP97]|, the power computing maximal orders, general
local field polynomial factorization [Paul0|, and an entire package for working with
ideals [GMN10a]. We have added OM functionality to SAGE [S*14], allowing poly-
nomial factorization over Z, and the construction of polynomials with given Okutsu
invariants.

1.6 Future Work

While the algorithms for enumerating extensions in this work greatly improve
upon current methods, there is more that can be done. The polynomials returned
by Algorithm 5.8 do not necessarily generate distinct extensions, and the cost of
filtering that list is more expensive than finding it. Using Monge’s reduction methods
[Mon14] instead of Panayi’s root finding [Pan95]| is helpful, but ideally, neither would
be needed. In certain cases, we know our polynomials generate distinct extensions
(see Theorem 5.10). As we see in Example 5.9, generalization of residual polynomials
of segments could provide additional cases where we can avoid filtering or possibly a
method to avoid it in all cases.

The formulas and algorithms of this paper are all developed over p-adic fields,
not local fields in general. To work in local fields, they would need to be formulated
for characteristic p local fields. As many of the results required here, in particular
the work of Krasner, have seen generalization to characteristic p local fields, the
generalization of this work should be possible as well.


http://www.uncg.edu/mat/numbertheory/tables/local/counting/

CHAPTER II
LOCAL FIELDS AND THEIR EXTENSIONS

In this chapter, we provide an introduction to fundamental concepts in the theory
of local fields. The material here is ordered in the manner of a modern instructional
treatment as opposed to its historical development. For a more detailed introduction
to the theory see [Ser79| or [FeVo02].

2.1 Local Fields

Definition 2.1. A map ||-|| from a field K to the non-negative real numbers is said
to be an ultrametric or non-archimedian absolute value on K if the following hold:

||| > 0 if = # 0, with [|0]] = 0,

eyl = [l - 1yl
[+ yl| < max{|[z]], [[y|l}

The third property (the ultrametric inequality) distinguishes this class from gen-
eral absolute values that are only bound by the weaker triangle inequality: ||z + y|| <
|lz|| + ||ly||. Absolute values satisfying the triangle inequality, but not the ultrametric
inequality are called archimedian absolute values.

Remark. Notice that if ||z]] < ||y||, then

[+ yll < max{{lz, [[yll} = llyll = llz +y — f] < max{[lz +yll, =[]} = [l +yll,
which shows that [lz + y|| = [ly[|. Thus, if [[z]| # [y, then ||z + y[| = max{[[z[], [[y]|}-
Definition 2.2. An (ezponential) valuation on the field K is amap v : K — QU{oc}
such that for a,b € K,

via) =00 <= a=0

(ab) = v(a) + v(b)
a—+

v( b) > min{v(a),v(b)}

A valuation is discrete if v(K*) is isomorphic to Z.



Remark. Similar to the previous remark, notice that if v(a) > v(b), then
v(a+b) > min{v(a),v(b)} = v(b) = v(a+b—a) > min{v(a+b),v(a)} = v(a+1D).

Thus, v(a + b) = v(b). In general, if v(a) # v(b), then v(a + b) = min{v(a), v(b)}.

Example 2.3. Let p be a prime number and r be a rational number. There is a
unique expression of r by 7 = p*(a/b) where (a,b) = 1 and p divides neither a or b.
We can define the following:

e The map ||r||, = p~" is a non-archimedian absolute value on Q called the p-adic
absolute value.

e The map v,(r) = k is a discrete valuation on Q called the p-adic valuation.

Example 2.4. The absolute value ||-||, defined by

lall = a ifa>0
oo =Y _g ifa <0

is an archimedian absolute value on Q.

Theorem 2.5 (Ostrowski [Ostl18]). An absolute value on Q either coincides with
()™ for some r € R, or with (||-||,)" for some prime p and some r € [0,1].

Example 2.6. Let ¢ be a power of a prime number p. Consider the field of formal
Laurent series F,(t) over the finite field F,. Let o € F,(¢) with a = >_° a;t* where

i=m

ap, is a non-zero coefficient. The map v(a) = m is a discrete valuation on F(t).

Definition 2.7. A local field is a field complete with respect to a discrete non-
archimedian absolute value.
Let K be a local field, complete with respect to [|-||. The valuation ring of K is
O ={ae K : | <1}

Ok is a local ring with principal, maximal ideal

p={aeK:|a| <1}



A generator of p is called a prime element or uniformizer of K and denoted 7g. The
corresponding valuation, normalized so that the valuation of 7 is 1, is denoted by v,
or Vg.

The residue class field of K is

K:OK/p>

and for a € Ok, we write o to denote the class a + p in K. We will also represent
by Ry a fixed set of representatives of i in Ok, and by Ry the set Rx without the
representative for 0 € K. B

We may write any element of o € K as a mx-adic expansion

oo
o= 5 a;7y where a; € K.

i=vg ()

Most of the time we are mainly interested in the first nonzero term in the m-adic
expansion of an element.

Example 2.8. Let p be a prime number. The completion of Q with respect to ||-||,
is a local field denoted QQ,. An element o € Q, can be written uniquely as the sum
oo a;p', where a; € F, and a,, is non-zero (m € Z need not be positive). We have
the non-archimedian absolute value |||, = p~™ and the valuation v,(«) = m. The
valuation ring of Q,, is the ring of p-adic integers, denoted by Z,, consisting of those
elements of Q, for which m > 0. The principal, maximal ideal of Z, is (p) and so p
is a uniformizer of Q,. The residue class field of Q, is Z,/(p) = F,.

Example 2.9. Let ¢ be a power of a prime number p. The field of formal Laurent
series F,(t) over the finite field [F, is a local field. The valuation ring of IF,(¢) is the
ring of formal power series F,[t] over F, with principal, maximal ideal (f), generated
by any irreducible polynomial f. The residue class field of F,(¢) is F,[t]/(t) = F,.

2.2 Extensions of Valuations and Local Fields

Let K be a local field and let ¢ € KJz]| be a separable, monic, and irreducible
polynomial with deg ¢ = n. By adjoining a root « of ¢ to K, we construct an algebraic
extension L of K. So we have that L = K(«) and L is isomorphic to K[z]/(y). The
degree of the extension L/K is [L: K| = degp = n.

Definition 2.10. Let K be an algebraic closure of K. Denote the roots of ¢ in K
by oM, a® .. a™ where oY) = . We say that o is the i-th conjugate of a.

10



The extension L is a vector space over K of dimension n with basis {1, a,...,a" '},
For an element v € L, there is a unique representation with respect to the basis:

7= gia' with gi € K for 0<i <n— 1.
1=0

The conjugates of v are y(¥) = Z?:_Ol Ji (a(i))i and we define the norm of v to be
Nrx(7) = [Ty 7' and the trace of v to be try k() = iy v\Y.

Theorem 2.11. Let K be a local field with valuation vk and L/K a finite algebraic
extension of degree n. Then there exists a unique extension of the valuation vi to a
valuation vy : L — QU {oo} with the restriction of vy, to K coinciding with vi. The
local field L is complete with respect to vy, which is defined by vi,(y) = v (Nr/k (7)) /n
for v e L.

Given the uniqueness of this extension, we will commonly denote both the val-
uation of a local field K and its extension to an algebraic closure K of K (or to
any intermediate field) by v when its meaning is clear. We introduce an equivalence
relation on the elements of K which reflects this.

Definition 2.12. For y € K and § € K we write v ~ 4 if

v(y —d) > v(v)

and make the supplementary assumption 0 ~ 0. For ¢(z) = S cat and d(x) =
Sor o bt in Kx] we write ¢ ~ 4 if

minogign U(Ci — ei) > minogign U(C,L').

It follows immediately that the relation ~ is symmetric, transitive, and reflexive.
Let L be a finite extension of K with uniformizing element 7. Two elements v =
Yo" € L and 6 = dom* € L with v(7y9) = v(dy) = 0 are equivalent with respect to
~ if and only if u = w and vy = &y mod (7z).

Definition 2.13. A local field that is a finite extension of Q,, is called a p-adic field.

Definition 2.14. Let L/K be an algebraic extension. Let Aut(L/K) be the group of
automorphisms of L that fix K point-wise. If #Aut(L/K) = [L : K] then we say that

11



the extension L/K is Galois and that Gal(L/K) = Aut(L/K) is the Galois group of
L/K. If L is the splitting field of a non-constant polynomial ¢ € K|z], then we call
Gal(p) = Gal(L/K) the Galois group of .

Definition 2.15. If L/K is an algebraic extension of degree n, then Oy is a free

Ox-module of degree n, and we say that a basis for O over Ok is an integral basis
of L/K.

Definition 2.16. Let ¢ € K|z| be a monic polynomial of degree n with such that
o(z) =L, (x — a¥) in K. We definite the discriminant of ¢ to be

disc (¢) = H (a(i) _ a(j))2 _ H(_l)(n2,n)/2 (a(i) _ a(j))

i<j i#]

If ¢ is an irreducible polynomial and a a root of ¢, then disc (p) = N, (¢'(a)).

Definition 2.17. Let L/K be an algebraic extension of degree n with integral basis
N2
(01,...,0,). Then we define the discriminant of L/ K to be disc (L/K) = (det(éj(-z))) .

Definition 2.18. Let L be an algebraic extension of K. If [L : K] = [L : K], then
L/K is unramified. If [L : K] =1, then L/K is totally ramified.

There exists a unique unramified extension for any positive integer degree. In fact,
given any irreducible polynomial ¢,, € K[z] of degree m, any monic lift of ¢,, to K|[z]
defines the unramified extension of K of degree m. If L/K is an unramified extension
of degree m defined by ¢,,, then the uniformizer of L is the same as that of K (that
is, 1, = mg), Gal(L/K) = Gal(L/K), and vk (disc (o)) = vi(disc (L/K)) = 0.

Given an extension L/K, we can construct the unique intermediate extension
L"", which is unramified and of degree [L : K]. This provides a decomposition of the
extension L into the tower L/L"" /K where L/L"" is totally ramified and L*"/K is
unramified.

Definition 2.19. Let L be a finite algebraic extension of K. We say that the inertia
degree of L/K is fr/x = [L : K] and that the ramification index of L/K is ep/x =
[L : L""]. The degree of the extension L/K is n = er k- f1/k-

2.3 Totally Ramified Extensions and Eisenstein Polynomials

Definition 2.20. We call a monic polynomial ¢ € Oklx] with ¢(z) = > ¢;z' an
Fisenstein polynomial if vk (po) =1 and vg(p;) > 1for 1 <i<n—1.

12



Eisenstein polynomials are irreducible and define totally ramified extensions. The
valuation of the discriminant of an extension defined by an Eisenstein polynomial
is precisely the valuation of the discriminant of the polynomial itself. Furthermore,
any prime element of a totally ramified extension of finite degree is the root of an
Eisenstein polynomial and is a generating element for the extension.

Let the residue class field K have characteristic p. We say that an extension
L/K is tamely ramified if p { e x and wildly ramified otherwise. Given a totally
ramified extension L/K, we can construct an intermediate extension L'™¢ so that
our extension splits into the tower L/L"™¢ /K where L/L"™¢ is wildly ramified and
L'me /K is tamely ramified.

Theorem 2.21 (|GP12, Proposition 2.1|). Let n = eqp™ with p{ eq and let

n—1

p(z) =2"+ Y @i’ + o € Okla]

i=1

be a polynomial whose Newton polygon is a line of slope —h/n, where ged(h,n) = 1.
Let a be a root of ¢. The mazimum tamely ramified subextension L' of L = K(«)
of degree e can be generated by the Fisenstein polynomial x€ + im0 with 1y = @y
mod (7"*!) and where a and b are integers such that aeg + bh = 1.

In examples we will frequently use a table to represent sets of polynomials. For a
polynomial ¢ € Og/[z] of degree n, we denote its coefficients by ¢; (0 <i < n) such
that o(z) = @ua"+@, 12" 1+ - 4o and write p; = >0 ik Where g ; € Ry, If
¢ is Eisenstein, then ¢, = 1, o1 # 0and ;o > 0for 1 <17 < n. In our table, each cell
contains a set from which the corresponding coefficient ; ; of the 7x-adic expansion of
the coefficient ¢; = Z;O:O @i ;% of the polynomial ¢(z) = p,x" + @, 12"+ + g
can be chosen.

Example 2.22. The Eisenstein polynomials of degree n over Ok are represented by
the template:

n n—1 n—2 4 3 2 1 0

;T R (:)} RZK RZK R:K R:K R:K R:K R:K
mx | {0} Rk Rk -+ Rx Rx Rk Rx Ry
e | {1} {0}y {0} --- {0} {o} {o} {o} {0}

13



2.4 Hensel Lifting and Newton Polygons

Hensel lifting yields a factorization of polynomials over local fields in certain cases
and Newton polygons give useful information about the roots of polynomials. We
show how these two tools can be used to obtain proper factorizations in more general
cases.

Theorem 2.23 (Hensel’s Lemma). Let ® € Oklx]| be monic. If & = ¢ mod ()
where @1 and py are coprime modulo 7, then there is a factorization ® = ®1Dy with
®, =y mod () and Py = o mod (7).

For an example of an efficient Hensel lifting algorithm that lifts a factorization
modulo (7) to a factorization modulo (7)* for any given s, see [Zas69]. We can also
obtain an approximation to a factorization of ® if Hensel lifting can be applied to the
characteristic polynomial of an element ¢ + (®) in Ok|x]/(P).

Definition 2.24. Let ®(z) = [[),(z — 0,) € Oklz]. For ¢ € K|[z] we define

Jj=1

Xe) = [[(v = #(6:) = res,((x),y — ¢(x)) € Lly].

i=1

Proposition 2.25. Let v € K[z| with x, € Okly|. If X, has at least two distinct
irreducible factors then ® is reducible in Og|x].

Proof. Suppose X, has at least two irreducible factors. Then, Hensel’s lemma gives

relatively prime monic polynomials x; € Ok[y] and x2 € Ok[y] with x1x2 = Xx5-
Reordering the roots 61, ...,0x of ® if necessary, we may write

x1(y) = (y —7(61)) -+ (y —v(0:)) and x2(y) = (y — Y(Or11)) - - (y — v(On)),

where 1 < r < N. It follows that

O = ged(P, x1(7)) - ged(P, x2(7))

is a proper factorization of ®. O

Definition 2.26 (Newton Polygon). Let ®(x) = Zi\io c;z'. The lower convex hull of
{(i,v(c;)) | 0 < i < N} is the Newton polygon of ®.
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The negatives of the slopes of the segments of the Newton polygon of & are the
valuations of the roots of ®. The length of the segment (in z-direction) is the number
of roots with this valuation. The negatives of the slopes of the Newton polygon of
the characteristic polynomial x, of ¢ + () are the valuations v(y(#)) for the roots
0 of ®. Proposition 2.25 yields a constructive method for finding a factorization of ®
if x,, has more than one segment:

Corollary 2.27. Let p € K[z] with x, € Okly|. If there are roots 0 and §' of ® such
that v((0)) # v(p(0")) then we can find two proper factors of ® over Og|z].

Proof. Let © be the set of roots of ® and let h/e = min{v(p(#)) | 0 € O}. Setting
v = ¢/ we get

max{v(y(0)) | 0 € © and v(#) = 0} > min{v(y(#)) | 0 € © and ~v(0) =0} = 0.

Thus Proposition 2.25 yields a factorization of ®. m

Remark. Repeated application of Corollary 2.27 yields one factor of ¢ for each seg-
ment of the Newton polygon of x..

2.5 Ramification Groups

The ramification groups define a sequence of decreasing normal subgroups which
are eventually trivial and which give structural information about the Galois group
of a p-adic field. Throughout this section, let L/K be a Galois extension with Galois
group G. We first define a function on the Galois group of L/ K, ir/x : G — QN {oo}
by ir/k(0) = infyeo, vi(o(x) — x). Notice that if « is such that O = Ok[a], then
ir/k(0) = vp(o(a) — ). For any real number x, we define the following subsets of
the Galois group

Gy, ={0€G:igk(o)>x+1}.
For non-integers z, we have that G, = G|,|. If we restrict our consideration to
integers, we define the ramification groups of G.
Definition 2.28. For an integer ¢ > —1, we define the i-th ramification group of G
to be

Gi:{O'GGI?:L/K<O') Z’L—f—l}
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The group Gy is called the inertia group, the group G, is called the ramification
group, and the groups G;, ¢ > 1, are called the higher ramification groups of L over
K. Each G, is a normal subgroup of GG, and G; is trivial for large enough 1.

Proposition 2.29. Let L/K be a Galois extension with Galois group G.
(a) G_1 =G,
(b) Gy is trivial if and only if L/ K is unramified.
(¢) Gy is trivial if and only if L/ K is tamely ramified.

Now let us consider the ramification filtration of a subextension fixed by a sub-
group of G, and see how this allows us to restrict the study the higher ramification
groups to the case of totally ramified extensions. Let H be a subgroup of &G, and K’
be the subextension of L fixed by H.

Proposition 2.30. Gal(L/K') = H, H; = G; N H, and for every o € G, iy k(o) =
iL/K<0'>

Corollary 2.31. Let L' be the maximum unramified subextension of L/K. Then
L/L" has the same ramification groups of index > 0 as L/ K.

Suppose additionally that the subgroup H is normal. Then we can consider the
extension K’/K and its ramification groups.

Proposition 2.32. Gal(K'/K) = G/H, and for every o € G/H,

iK//K(U) = 1 ZiL/K(S)

CL/K 5o

Corollary 2.33. If H = G, for some integer j > 0, then (G/H); = G;/H fori <j
and (G/H); = {1} fori > j.
In addition to the sequence of decreasing groups, we can consider the particular

indices at which the sets become strictly smaller and how they are related to one
another.

Definition 2.34. Integers i such that G; # G, are called the (lower) ramification
breaks of L/ K.

Proposition 2.35. If G is abelian, then every ramification break must be divisible by
the order of Go/G.

Proposition 2.36. Let p be the characteristic of L and v and j be any two ramification
breaks of L/K. Then i=j mod p.
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2.6 The Hasse-Herbrand Function

Let L/K be a Galois extension with Galois group G. We define the Hasse-
Herbrand function on L/K by

v dt

We can make the definition of ¢ more explicit by observing that our ramification
breaks occur at integers, that is, G; = G|;). Let m € 7% and v € R with m < u <
m + 1. Then

1

— ren (#G1 + ... #Gp + (u—m)#Gpi1)

br/x(u)

and in particular for integers,

1 m
¢ryr(m) +1= #G;
sk (m) e ;
Proposition 2.37. The function ¢ i has the following properties.
(a) The function ¢k is continuous, piecewise linear, increasing, and concave.
(b) ¢L/K(O) = 0.

(c) Let Oydr/x and O_¢p k denote the right and left derivatives of ¢r i, then
O_¢r/k(u) = [Go: G,)7! and

8.y 1 (1) = 0-¢r/x(u) = [Go: Gu]™" if w is not an integer
+PL/RA\Y) = [Go: Gupa] if u is an integer '

Let 11 k be the inverse of ¢.
Proposition 2.38. The function 11,k has the following properties.

(a) The function 1k is continuous, piecewise linear, increasing, and convez.

17



(b) ¢L/K(O> =0.

(¢) Ifv = ¢r/x(u), then O_¢r/k(v) = (a—¢L/K(u))71 and Dy (v) = (04¢L/k (u))

In particular, O_r/x and 0.1 Kk are integers.

-1

(d) If v is an integer, then so is u = Yk (v).

These functions allow us to define the upper numbering of ramification groups.
While the lower numbering is well suited for the consideration of subgroups, the
upper number is adapted to quotients.

Definition 2.39. The upper number of ramification groups is
G" = GwL/K(v) or, equivalently, GorxW = @G .

Any number v such that G¥ # G"*¢ is an upper ramification break of L/K.

Proposition 2.40. If H is a normal subgroup of G, then (G/H)" = G'H/H.

Theorem 2.41 (Herbrand). If v = ¢/ (u), then G,H/H = (G/H), for all v.
The upper numbering is particularly interesting in the abelian case.

Theorem 2.42 (Hasse-Arf). If G is an abelian group and if v is an upper ramification
break, then v is an integer.
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CHAPTER III
INVARIANTS OF LOCAL FIELD EXTENSIONS

In this chapter, we develop the properties of three invariants of local fields, the
discriminant, the ramification polygon, and residual polynomials of segments. For
each, we will develop conditions for the invariant to take a certain value, conditions
on generating polynomials, and describe and enumerate the permissible values.

3.1 Discriminant

We recall some of the results Krasner used to obtain his formula for the number
of extensions of a p-adic field [Kra66|. These can also be found in [PRO1].
The possible discriminants of finite extensions are given by Ore’s conditions [Ore26]:

Proposition 3.1 (Ore’s conditions). Let K be a finite extension of Q,, Ok its valua-
tion ring with mazimal ideal (7). Given Jy € Z let ag, by € Z be such that Jy = agn+bg
and 0 < by < n. Then there exist totally ramified extensions L/K of degree n and
discriminant ()"~ 4f and only if

min{v,(bo)n, vy (n)n} < Jy < v(n)n.

The proof of Ore’s conditions yields a certain form for the generating polynomials
of extensions with given discriminant.

Lemma 3.2. An Fisenstein polynomial p € Ox|z] with discriminant (7)"t°~1 where
Jo = agn + by with 0 < by < n fulfills Ore’s conditions if and only if

vr(ips) > max{2 + ag — vx(3), 1} for 0 < i < by,
Ur(ny) = max{l +ao —vr(bo), 1},
U (i) > max{1l + ag — v(i), 1} for by <i < n.

Krasner’s Lemma yields a bound over which the coefficients of the 7w-adic expan-
sion of the coefficients of a generating polynomial can be chosen to be 0 [Kra66].

Lemma 3.3. Each totally ramified extension of degree n with discriminant (m)"+/0~1
where Jy = agn + by with 0 < by < n can be generated by an Eisenstein polynomial
¢ € Oklz] with ¢; ; =0 for 0 <i<n and j > 1—1—2@0—1—%,
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With Lemma 3.2 and Lemma 3.3 we obtain a finite set of polynomials that generate
all extensions of a given degree and discriminant. In [PRO1] this set in conjunction
with Krasner’s mass formula [Kra66] and Panayi’s root finding algorithm is used to
obtain a generating polynomial for each extension of a given degree and discriminant.

Example 3.4. We want to find generating polynomials for all totally ramified ex-
tensions L of Q3 of degree 9 with vz(disc (L)) = 18. Denote by ¢ = S pzt an
Eisenstein polynomial generating such a field L. By Lemma 3.2 with Jy = 10, ag = 1,
and by = 1 we get v,(p;) = 2 and for . Furthermore by
Lemma 3.3 ¢; ; = 0 for 0 <7 <9 and j > 3. Thus the template for the polynomials
@ is:

z° z® x7 8 x5 x? x> z? x! z0

st{o} {0} {oy {oy {o} {o} {o} {0} {0} {0}
331{0} {0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2}
321{0} {0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2} {1,2} {0,1,2}
3t{o0} {0,1,2} {0,1,2} {o}  {1,2}
91y {0} {0}  {o} {op {0y {0} {0} {0} {0}

3.2 Ramification Polygons

To distinguish totally ramified extensions further we use an additional invariant,
namely the ramification polygon.

Definition 3.5. Assume that the Eisenstein polynomial ¢ defines L/K. The ram-
ification polygon R, of ¢ is the Newton polygon N of the ramification polynomial
p(x) = plar + a)/(a™) € K(a)[z] of ¢, where « is a root of .

The ramification polygon R, of ¢ is an invariant of L/K (see [GP12, Proposition
4.4] for example) called the ramification polygon of L /K denoted by Ry k. Ramifi-
cation polygons have been used to study ramification groups and reciprocity [Sch03],
compute splitting fields and Galois groups [GP12|, describe maximal abelian exten-
sions [Lub81], and answer questions of commutativity in p-adic dynamical systems
[Li97].

Let p(z) = Y1 i’ € K[z] be an Eisenstein polynomial, denote by « a root of
¢, and set L = K(a). Let p(xz) =Y ", p;a’ € L[z] be the ramification polynomial of
. Then the coefficients of p are
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As v,(a) =1 and v,(g;) € nZ we obtain

=i () ) - o () ) )

(3.1)

Lemma 3.6 ([Sch03, Lemma 1]). Let ¢(x) = > ,pix* € K[z] be an Eisenstein
polynomial and n = egp™ with p 1 eg. Denote by o a root of ¢ and set L = K(«).
Then the following hold for the coefficients of the ramification polynomial p(x) =
Yoo pirt = glar + a)/a™ € Oplz] of ¢:

(a) valpi) = 0 for all i;
(b) va(ﬂpm) = Ua(pn) = 07'
(€) va(pi) = va(pps) for p* <i < p**t and s < m.

This gives the typical shape of the ramification polygon (see Figure 1).

Va(pi)

wu, 0) (n,0)

T T T T * d " 1

pss psu—1 psu — pyp(n) n

Figure 1. Ramification polygon of an Eisenstein polynomial ¢ of degree n and dis-
criminant (7)"*~! with /41 segments and v — 1 points on the polygon with ordinate
above 0.
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Remark. Throughout this paper we describe ramification polygons by the set of points

P - {(17 J0)7 <p517 Jl)? ] (pSlhla Ju—l)? (psu’ 0)7 T (n7 O>}

where not all points in P have to be vertices of the polygon R. We write R = P.
This gives a finer distinction between fields by their ramification polygons and also
allows for an easier description of the invariant based on the residual polynomials of
the segments of the ramification polygon, see Section 3.4.

We now investigate the points on a ramification polygon further.

Lemma 3.7. Let p = > | piz’ be the ramification polynomial of an Eisenstein
polynomial o(x) = Y1, pix" € Ok[z]. Denote by

{<17 JO)? (p817 ‘]1)7 ) (p&hl? Ju—l)v (p8u70>7 R (n70)} - {(iava(pi)) 1< < n}

the points on the ramification polygon of ¢ and write J; = a;n + b; with 0 < b; < n.
(a) For p™ < i < n we have va(p;)) = 0 and p; = (7) mod (a) if and only if
n(2) =0

(b) For 0 <i < wu we have

It follows from (a) that, modulo («), the coefficients of the ramification polynomial
that correspond to the horizontal segment of its Newton polygon only depend on the
degree of .

Lemma 3.8. If the ramification polygon of an Eisenstein polynomial ¢ € O[] has
the points {(1, Jo), (p°*, J1), ..., (p** ", Ju—1), (p**,0),...,(n,0)} where J; = a;n +b;
with 0 < b; <n —1. Then for 0 <t < wu, we have

2+a; — vﬂ(pit) for p <1 < b

UW(QDi) Z i .
1+at—v,r(pst) forb, <i<n-—1
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and vy (pp,) = a; +1 — vﬁ(bt) if by # 0.

pot

Proof. By Equation (3.1), for all k£ with s, < k <mn,

Jt:atn+bt§n{vﬂ<(k) gpk)—l} + k,
Pt

which solved for v, (px) gives

1+at—vﬂ<k)—l—bt_kgvﬂ(gok)forstgkrgn.

St n

As vy () is an integer, we may take the ceiling of the fraction. As 0 < b, <n—1
and p* < k <mn, if k < b;, then (%W =1, and if & > b;, then (%w = 0. Therefore,

2+ a; — vw(pit) for p*t <1 < by

UW(‘PZ') Z i ) .
1+at—v,,(pst) forb, <i<n-—1

Now if we consider a point (p®,a;n + b;) with b; # 0, then by Equation (3.1) we

have
. k
an + b, = min {n [v,r(( )gpk)—l]—i—k},
pot<k<n po

and as 0 < b; < n, the minimum is attained at k = b;. Hence a; = [vﬁ ((;’1) gpbt> — 1]
and vﬂ(gpbt):at—i—l—vﬂ(bt). O

pst

From this, we can generalize Ore’s conditions (Proposition 3.1) from a statement
about the exponent of the discriminant, which is related to the ordinate of the point
above 1, to the ordinates of all points.
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Lemma 3.9. Let R, be the ramification polygon of ¢ as in Lemma 3.8. Then for
each point (p%, J;) where J; = a;n + b; with 0 < b; <n — 1,

min {UW( _)n,vﬂ( )n} < J; < vﬁ( )n
p* p* p*

Proof. The k = n term of Equation (3.1) is

Ji <n [UW <(p2‘i)<pn) — 1} +n= vﬂ(p’li)n.

If b; # 0, then by Lemma 3.8, v (¢p,) = a; + 1 — Uw(;ii)- So nug(pp,) + b =
na; +n — nvﬂ(;?i) + b; and nv,(pp,) + b — n + nvﬁ(;ji) =na; +b; = J;. As ¢ is
Eisenstein we have v, (p;,) > 1, hence nv,(¢p,) —n > 0. This combined with b; > 0
gives us that

Ji = nvr(@y,) + bi — n + nox ( bi_) > b; + nvn(@) > nvn(bi_).
psl psz psl

If b; = 0, then the minimum term of Equation (3.1) defining J; must be such that
k|n, which only occurs in the £k = n term, so J; = v,r(prs‘i)n, which is less than

vﬂ(pgi)n: 0. Il

Lemma 3.10. Let R, be the ramification polygon of an Fisenstein polynomial ¢ €
Ok lz] with points

RSO = {(17 JO)? (p817 J1)7 tt (psu_la Jufl)v (psuv())? R (nv 0)}7

but no point with abscissa p', where s, < i < s;41 for some 1 <t < u. Then for k
such that p* < k < n,

1| Jig1 —

| k
i S D | AL T i s J —k 1— - .
vnlin) > o ) }+ v <pl>
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Proof. 1f there is no point on R, with abscissa p’, then the point (p’, va(pyi)) must be

above the segment from (p*, .J;) to (p****, J;41). Thus, p;]fﬁ:;_it (p'—p* )+ T < valpyi),

and so by Equation (3.1), for k in p' < k <mn,

Jp1r — S, k
%(pl—pst)"i_(]t<n Uﬂ_<( z) @k)_l] + k.
pott — pt p
Solving for v, () provides the result of the lemma. O

We collect the results of Lemmas 3.8 and 3.10 to define functions Iz (i, s) for
1 <s<s, and p® <i <n that give the minimum valuation of ¢; due to a point (or
lack thereof) above p® on the ramification polygon R, of . By taking the maximum
of these over all s, we define Lz (i) so that v.(¢;) > Lg, (i) for 1 <i<n—1.

Definition 3.11. Let R, be the ramification polygon of ¢ with points
ch = {(17 JU)7 (p817 Jl)v SR (p5u717 u—1)7 (pSu’ O)? I (n7 0)}7
and where J; = a;n + b; with 0 < b; <n —1. For 0 <t < u, let

max{2 + a; — vﬂ(pit), 1} ifp*t <i <y,

ZR¢(i78t) = .
max{1l + a; — vﬁ(pﬁt), 1} ifi > b

If there is no point above p* with s; < w < $;41, then for p* <i <n —1, let

1 - k
i = {[2 2222 ] w1 (5] 1)
n pst+1_pst pw

Finally, set

1 ifi=0
Ly, (i) = § max{lg,(i,t):p' <i} if1<i<n-—1
0 iti=n
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Lemma 3.12. Let R, be the ramification polygon of ¢ with points

Ry ={(1,Jo), (P, 1), -, (0%, Jua), (97, 0), - (0, 0))

where J; = a;n + b; with 0 < b; <n —1. Then p* | J; for 0 <i < u.

Su

Proof. As Jy is an integer, p° = 1 divides Jy, and as J, = 0, clearly p*:|.J,,.

Suppose that for some 1 < i < u we have v,(J;) =t < s;. If R is the ramification
polygon of ¢ with ramification polynomial p and contains (p*,J;), then ¢ < s; must
imply that J; < v,(p,t), which is bounded above by the k = b; term of Equation
(3.1). By Lemma 3.8, we have that v,(¢p,) = a; + 1 — vy (;’) If we substitute this
value of v (py,) into Equation (3.1), then

b, b "
Ua(ppt) <n |:U7r (pt) + U7T<Sobi) - ]':| + bz - |:U7r (pt) T <psz):| i bZ

As p'||b;, the p'-term of the base p expansion of b; is non-zero, so vp(;i) = 0 and
consequently v, (Zi) = 0. Thus, v,(pyt) < n [ai — Uy (Z)} +b; < an+b; = J;. This
implies that R cannot have the point (p®,.J;), and by contradiction, our claim is
shown. u

So far we have described many necessary conditions for ramification polygons.
We now propose a necessary and sufficient description of a ramification polygon of
an extension.

Proposition 3.13. Let

P = {(17 J0>7 (p517 J1)7 AR (p&kl? ufl)v (p3u7 0)7 SRR (n7 0)}7
be a convex polygon with points where J; = a;n + b; with 0 < b; < n — 1. There is an
extension L/ K with ramification polygon P, if and only if
(a) For each J;, min {UW (zi?i)71,7j7T (pfi)n} < J; <, (p’;‘i)n.

(b) If b; = b, then a; = ap — vy (pfk) + Uy (pb) where b; = by,.
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(c) For each point (p*,a;n + b;), we have that

Ltap—ve () + () ifp™ <bi<b
a; >
ay — Uw(bi,) + (pﬁi) if by > by

for all other points (p*, J;) with J, = a;n + by # 0.

(d) If there is no point of P above p', with s; < i < si41, then for each point
(p*F, agn + by) of P with by > p',

U o —J, b b
ap > — M(pl—pst)_f‘Jt_bk} _Uﬂ'(p]:‘)—'—UTr( k>

n [ps — po P

(e) The points with abscissa greater than p* are (i,0) where v (") = 0.

Proof. Suppose P is the ramification polygon for L/K with generating Eisenstein
polynomial ¢. Assumption (a) follows from Corollary 3.9. If b; = by, then by Lemma
3.8

Unlpn) = @+ 1= 0r () = ar + 1 —or ()

Thus a; = a;, — v, (pbk) + vy (;:'i), giving us assumption (b). Let (p*,a;n + b;) be a
point of P, then by Lemma 3.8, we have that for all other points (p*, .J;),

bi) 2+at—v7r(;;t) for p*t < b; < by

onlon) = s+ 1 — (

pS' 1 + a; — Uw(pb;t) for b, Z bt

from which we see assumption (c). If there no point of P above p', with s; < i < s;41,
then by Lemma 3.10, for each point (p%,a;n + b;) of P with b; > p,

b; 1 Jooy — Jp b;
v (pp,) :ai—i-l—vw( ) > {M(p’—pst)—l—(]t—bz} +1—v7r( .),
psZ n pst+1 _pst pz
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from which we have assumption (d). Assumption (e) is given by Lemma 3.7. Thus, if
P is a ramification polygon of an extension L/K, then these properties are necessary.

Next we will show sufficiency by constructing a polynomial ¥ (z) = > ¢z’ €
Ok|z] such that Ry, = P. First, we let ¢, = 1 and vy be an element of valuation 1 in
Of. For each point (p*, a;n+b;) in P, with b; # 0, let 1, be an element of Ok with
valuation 1 + a; — v, (;sl) By assumption (b), 1, is well defined even if it is given
by multiple points as those definitions coincide, and by assumption (a) we have that
Ux(tp,) > 1. If 4P, in 0 < j < n is not assigned by some b;, we set 1»; = 0. We now
have an Eisenstein polynomial 1), and we proceed by computing R.

Let R, be the ramification polygon of 1, the Newton polygon N of the ramifi-
cation polynomial p(z) = Y(az + a)/(a™) € K(a)[x], where « is a root of 1. Let
p(x) = > p;xt. Let B be the set of nonzero b; in the points of P. For all 0 <i < n
with i ¢ B, v:(1);) = 00, so we can simplify Equation (3.1) by only needing to consider
terms k € BU{n} to

= o () )]} ()}

Substitution of our values for v, (1y,) gives

o B {7 o () e (5) oo (1)}
Va(p;) = min min nlay — v, + ol . + b o, nug| . )
{(p%% T )Pt >} ok i i

Consider (p*,a;n + b;) € P, and let us find v, (ppsi ).

) =min i A o= () o ()| oo ()
Va(ppsi) = min min n|ay — vx Uy , NV )
Pr {(P°k ,Jy)EP:br >p%i } g Pk p * p*

(3.2)
If b; # 0, then the by = b; term in the minimum is a;n + b;. For (p*, ayn + by) € P
with p% < by < b;, by assumption (c), we have ar > 1+ a; — vy (;’k) + (pbkk) Thus,
for all of the terms of (3.2) with p% < b, < b;,

n {ak—vﬂ<bkk) —|—v7r(bk_>] + b >n(l+ a;] +bp > an + b
ps. psl
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For points (p%,agn + bx) on P with b, > b;, by assumption (c), we have a; >
a; — vﬂ(b;“.) + (;,Z) Thus, for all of the terms of Equation (3.2) with b, > b;,

pl
by, by,
nlax — v, + Uy + by > an+ by > an+b;
p

Si

Thus v,(ppsi) = min {am + b;, nu, (pﬁli)}, which is a;n + b; by assumption (a). On
the other hand, if b; = 0, then a; = v, (p’;‘i), and for all of the terms of the inside

minimum of Equation (3.2), as a > a; — v, (;”2) + (pbfk), we have

b b
n {ak—vﬂ( k) —|—U7r< k)} + b, > an+ by > am:m}ﬂ(n)
Pk ¥ p*

S0, Ua(ppsi) = a;n, and all of the points of P are points of R.
Suppose there is no point on P with abscissa p® for some i with s, < i < s,,1. We
take our assumption

1| Jyr — b b
ap > — {M(If—pst)%}t—bk} _U7r<p]Z)+U7r( k)

n pst+1 _pst psk

and substitute it into Equation (3.2). After simplifying we get

. . Jt+1 - Jt i n
(0 > TEL T i sy £ T, S, .
v (pp ) min {{(psk,JkI)réglzkapsi} {pst+1 _ pSt (p p ) + t nv pSi

As the v, (p,i) must be greater than the ordinate above p* on the line segment between
(p*t, J;) and (p*+', Ji11), there is no point on R, with abscissa p’. Finally, by Lemma
3.7, Ry has points satisfying Assumption (e). Thus R, = P. ]

Proposition 3.14. An Fisenstein polynomial ¢ has ramification polygon R with
points

R =AL Do), (0™ 1), (P77, Juma), (p7,0), -, (0, 0)
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where J; = a;n + b; with 0 < b; < n — 1, if and only if
(a) va(pi) = L (i)
(b) For 0 <t <wu, ve(pp,) = Lr(by) if by # 0.

where Ly 1s as defined in Definition 3.11.

Proof. If ¢ has ramification polygon R, then this is the result of Lemmas 3.8 and
3.10.

Suppose ¢ satisfies these assumptions and p is the ramification polynomial of (.
If (p*, J; = ayn + b;) is a point of R, then substitution of Ix(k,s;) for v, (py) into
Equation (3.1) gives us

Vo (ppse ) = min { min {na; +n + k}, brilég {na; + k},nv, (pzbf) }
S n

Pt <k<by

If b, = 0, then this reduces to

. n n
Ua(lopsi) = mnin {nat +n + p*, nu, (psi) } = nu, (p8t> = J;.

as na; +n+pt > J;, = nu, (pfft), by Proposition 3.13 (a). If b; # 0, then this reduces
to

Uoz(ppst) = min {nat + bt7 nvﬂ( nt) } = na; + bt = Jt
s

as J; < nvﬂ( ”t), by Proposition 3.13 (a). So R, contains the points of R.

o .
If there is no point on R with abscissa p*, with s; < ¢ < s441, then for k in

Pl <k<n,

L Joyr—

A k
- 2 lr(k,i) > — |~ (" = pY) + e — k| 1| ).
U(SOk:)_ R( Z)>n p5t+l—pst(p p )+t :|‘|’ % (pz)
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Some algebraic manipulation of this inequality gives us

() )

which shows that v, (ppi) = ming <<, {n [vw ((;) gpk> — 1] + k:} is greater than the

value above p’ on the segment from (p*, J;) to (p*+', Ji,1). So there is no point on
R, above p’, and thus R, = R. O

Jiy1 — Jp

7 S
E:jﬁw—mq+ﬂ<n

Definition 3.15. We call a polygon R with points

R =AL Do), (0™ 1), (P77, Juma), (p7,0), -, (0, 0)

that fulfills the conditions of Proposition 3.13 a ramification polygon. We call the
function ¢g : R — R*%, X = ming<;<,{= (J; + Ap*)} the Hasse-Herbrand function
of R.

Remark. The function ¢ in Definition 3.15 agrees with the connections between
the ramification polygon and the Hasse-Herbrand transition function as observed in
[Lub81,Li97]. Note that these works define the ramification polygon as the Newton
polygon of ¢(x 4+ «). For normal extensions L/K, our function ¢ agrees with the
classical ¢,/ defined in [Ser79, FeVo02|. For non-Galois extensions, our function
agrees with the transition function for ramification sets defined by Helou in [Hel90).

Example 3.16 (Example 3.4 continued). There are three possible ramification poly-
gons for extensions L of Q3 of degree 9 with vs(disc (L)) = 18. These polygons are
R1 = {(1,10),(9,0)}, Ry = {(1,10),(3,3),(9,0)}, and R3 = {(1,10),(3,6),(9,0)}
and are illustrated in Figure 2.

Since by Lemma 3.8 we have v(¢3) = 1, the polynomials ¢ generating extensions
with ramification polygon R, are given by:

T x x T x5 (E4 1'3 $2 1’1 .’L'O

gt{oy {0} {0y  {op {op {0y {0} {0} {0} {0}
331{0} {0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2}
32/{0} {0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2} {1,2} {0,1,2}
sti{oy {oy {0} {o.r,2p {0}y  {oy {12} {o} {0} {12}
01y {o} {0} {0}  {oy {op {0} {0} {0y {0}

9 8 7 6
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Ve (pz) Vo (pz) Vo (pz)
(1,10)

Ri= {<1’ 10)7 (97 O)} Ry = {(17 10)7 (3’ 3)7 (97 0)} Rz = {(17 10)? (37 6)7 (97 0)}

Figure 2. Possible ramification polygons of extensions L of Q3 of degree 9 with
vg(disc (L)) = 18.

3.3 Enumerating Ramification Polygons

In order to use later counting and enumerating results, we need a method of com-
puting all of the possible ramification polygons for a given base field, degree, and
discriminant. A naive method exists: Ramification polygons only depend on the
valuations of the coefficients of an Eisenstein polynomial, and by Krasner’s bound
(Lemma 3.3), those are bounded above, so we can simply try all sequences of val-
uations. However, no matter how fast finding a ramification polygon by Equation
(3.1) may be, this still requires at least (¢ — 1)"~2 such computations. Proposition
3.13 provides a necessary and sufficient set of conditions for a set of points to be a
ramification polygon, which gives rise to a far more efficient enumeration method.

Given a degree n = egp” and discriminant valuation n— Jy+1, we know that (1, Jy)
must be on our polygon, and that we have a segment from (p”,0) to (n,0). This gives
us a partial ramification polygon P to start from, after which we can consider what
points may be above p"~! and then continue from right to left, considering each
abscissa. Our algorithm proceeds recursively, considering the next abscissa from a
partial polygon P.

Assume we have a partial polygon P and the minimum valuations of y; required
for the points of P and wish to find all points above p° that we can attach. Let
(p*, J;) be the next point in P to the right of p°. Geometrically, the ordinate above p*
must be between the continuation of the segment ending at p' and the segment from
(p, J;) and (1, Jy). This can be seen in Figure 3. Algebraically, using Lemma 3.8, we
can use our minimum values of ¢; and Equation (3.1) to find a minimum for v(ps)
and the valuations fixed by the points of the polygon to find a maximum. In this
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Figure 3. Possible points on a ramification polygon above p® based on existing points.

allowable range, we only have to consider multiples of p°, by Lemma 3.12. In order
to add a point, we simply have to verify that the valuation fixed by the new point
is not below our existing minimum valuations and that the change to our minimum
valuations from adding the point (Lemma 3.8) and any absence of points for all p*
with p* < p* < p' (Lemma 3.10) do not increase existing v(y;) fixed by the points P.

Algorithm 3.17 (Al11RamificationPolygons).

Input: A w-adic field K, partial ramification polygon P, exponent s of the abscissa
to consider, and V/(4), minimum valuations for ¢; based on P.

Output: All ramification polygons that may differ from P by points above p to p°.

(a) Let (p', J;) be the point of P with minimal ¢ given ¢t > s.
(b) If s =0, then

(i) Forke {t—1,t—2,...,1} do

o M, < v(p,r) assuming v(yp;) = V(i) for i € {y mod n|(z,y) € P}U{n}

Jo— Ji
1—pt

o V(i) + max{V(i),l(i,k)} with [ computed for no point above p*.
(ii) Return {P}.

(c) my < v(pyr) assuming v(p;) = V (i).

o If M, < ( ) (p* — 1) + Jo then return 0.
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(d) ms + max{p®, \(p* — p') + J;} where X is the slope of the segment with p’ as
left vertex.

(e) M, < v(py) assuming v(p;) = V(i) for i € {y mod n|(z,y) € P} U {n}.

0 e (P -

1—pt

(g) m < max{m,, ms} and M < min{M,, M;}.
(h) If m > M, then return Al11RamificationPolygons(K,P,s —1,V).
(i) R+ {P}.
(j) Forye{yeZ|m<y<Mandy mod p* =0} do
(i) b+ y mod n.

(ii) If b > 0 and V(s) > I(b, s) (using the point (p®,y)), then next y.

(iii) V(i) = max{V (i),l(i,s)} with (i, s) computed for point (p°,y).

(iv) Forke{t—1,t—2,...,s+1} do

o M, + v(pyr) assuming v(yp;) = V(i) for i € {y mod n|(x,y) € PU{n}.

It M, < (y_‘]t

t) (p* — p*) + y then next y.
p°—=Dp
Vi(i) < (i, k) computed for no point above p*.
If V(i) < Vi(i) for any i € {y mod n|(z,y) € P} U {b} then next y.
V(1) <= max{V, (i), Vi(i)}.
(v) If miny<;<,, {n [vﬂ (;S) + V(i) — 1} + @} # y then next y.
(vi) Append PU{(p®,y)} to R.
(k) Return (J,.pAl1RamificationPolygons(K,r,s — 1,V,).

The algorithm Al1RamificationPolygons (Algorithm 3.17) does what we have
described and can be used to find all ramification polygons for a given degree n = egp”
and discriminant valuation n + Jy — 1, by initializing P = {(1, Jy), (n,0), (p",0)} U
{(i,0) | p < i <nand v,(?) = 0} and V(i) = I(4,0) (Definition 3.11).

Example 3.18. In Table 1, we consider all ramification polygons for extensions of
Q3 with discriminants given by the following values of Jy: 1, 11, 33, and 81. For all
of these except 11, there is only one ramification polygon actually possible.

The table shows, from left to right, the recursions of the algorithm. We first
begin with our initial polygon P. There are three stages in this example, considering
possible points above 9 and 3, and then verifying our polygon if it has no point above
3 (and possibly 9 as well). It should be noted that the absence of a point is not
checked until another point is added, or we reach s = 0. For instance, we know that
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Table 1. Construction of all ramification polygons for degree 27 extensions over Q3
with discriminant (3)2""0~1 for J, € {1,11,33,81}.

‘Jo‘ Initial P ‘ Above 9 ‘ Above 3 ‘Notes ‘
‘ 1 ‘ {(1,1),(27,0)} ‘none (step h)‘none (step h)‘Only polygon for Jy =1 ‘
none Valid polygon

(3,3) Valid polygon

(3,6) Valid polygon

(3,9) Fails in step (j)(v)

none Fails in step (b)(i)(2) (k = 1)

11{{(1,11),(27,0)}|none (step h)

none (3.6) Only polygon for Jy = 33
33, 33), 27, 0} —775; none  |Fails in step (b)(i)(2) (k =1)
(9,18) ~ Fails in step (j)(v)
o none Fails in step (b)(i)(2) (k = 1)
(3,54) Fails in step (j)(iv)(2) (k = 2)
81{(1,81),(27,0)} 027) none  |Fails in step (b)(i)(2) (k = 1)

(3,54) Only polygon for Jy = 81

we cannot have the polygon {(1,81),(27,0)} because of the check performed at the
s = 0 stage, whereas we learn that we cannot have {(1,81), (3,54), (27,0)} when we
attempt to add (3,54). Except for waiting to check the validity of a missing point,
the algorithm discards a branch as soon as it is clear that no valid polygons will come
from it. This is what happens when we attempt to add (9, 18) to {(1,33), (27,0)}.

3.4 Residual Polynomials of Segments

Residual (or associated) polynomials were introduced by Ore [Ore28|. They yield
information about the unramified part of the extension generated by the factors of a
polynomial. This makes them a useful tool in the computation of ideal decomposi-
tions and integral bases [GMN13, Mon99, MN92| and the closely related problem of
polynomial factorization over local fields [GNP12, Paul0).

Definition 3.19 (Residual polynomial). Let L be a finite extension of K with uni-
formizer a. Let p(z) = >, pix* € Oplz]. Let S be a segment of the Newton
polygon of p of length | with endpoints (k,v.(px)) and (k + I, va(prsi)), and slope
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—hfe = (va(pres) — valpy)) /1 then

l/e

A :L‘) = Z pje—i—kajh_va(pk)xj c K[x}
j=0

is called the residual polynomial of S.

Remark. The ramification polygon of a polynomial ¢ and the residual polynomials
of its segments yield a subfield M of the splitting field N of ¢, such that N/M is a
p-extension [GP12, Theorem 9.1].

From the definition we obtain some of the properties of residual polynomials.
Lemma 3.20. Let L be a finite extension of K with uniformizer a.. Let p € Op[x].

Let N be the Newton polygon of p with segments Si,...,S; and let A,,..., A, be the
corresponding residual polynomaials.

(a) If S; has integral slope —h € Z with endpoints (k,va(pr)) and (k +1,va(pr+1))
then A;(x) = Zé‘:o pjrradh=valer) 23 = p(alz)ak—valer) pzn=l € K]

(b) If for 1 <i < {—1 the leading coefficient of A; is denoled by A; gog 4, and Ayy g
is the constant coefficient of A,y then A; g o = Ajy10-

(¢) If p is monic then A, is monic.
From now on we consider the residual polynomials of the segments of a ramification
polygon. From the definition of the residual polynomials and Lemma 3.7 we obtain:

Proposition 3.21. Let p € O[] be Eisenstein of degree n = p"eq with ged(p, ep) =
1, let a be a root of ¢, p the ramification polynomial, and R, the ramification polygon
of .

(a) If eg # 1 then R, has a horizontal segment of length p"(ep — 1) with residual
polynomial A = Z;:éﬂ Azt where A, = (’Z) # 0 if and only if v, (’Z) =0.

(b) If (p°*, Jk), ..., (p™, Ji) are the points on a segment S of R, of slope —%, then
the residual polynomial of S s

p’L
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We immediately get:
Corollary 3.22. Let ¢ € Oklz] be Eisenstein and R, its ramification polygon.
(a) The residual polynomial of the rightmost segment of R, is monic.

(b) Let (p*,Ji) be the right end point of the i-th segment of R, and A; = 37" A, ;
its residual polynomial and let (p°*,Jy) be the left end point of the (1 + 1)-st
segment of Ry, and A, = Zm:lgl A1 s residual polynomial. Then A, =

AH—LO

We now give criteria for the existence of polynomials with given ramification
polygon R and given residual polynomials.

Proposition 3.23. Let n = p"eq with ged(p,eq) = 1 and let R be a polygon with
points

R = {(17 JO)v (pSIa J1)> ey (pSka Jk)> R (prvo)a ] (pr€0>0)}

satisfying Proposition 3.13. Write J, = apn + by with 0 < b, < n. Let &1,...,5; be
the segments of R with endpoints (p*i, Ji..) and (p', J;,) and slopes —h;/e; (1 <i < ().
For1<i</{let Aj(x) = ng:)p /eZA e K.

There 1s an Fisenstein polynomial of degree p"eq with ramification polygon R and
segments Sy, ..., Sy with residual polynomials Ay, ..., A, € K[z| if and only if

(@) Ajgega, = Aiyro for 1 <i <,

(b) A,; # 0 if and only if j = (¢ — p™)/e; for some q € {p*,...,p"} with p* <
q <ph,

(c) if for some 1 < t,q < u we have by = by and s, < s, < 51, and sp; < 54 < 5y,
then

-1 ag—a
A'( st—p°hi)/e; — (b“tt)(pb“tq) <_900) ’ tAj,(psq—pskj)/ej'

Proof. Suppose that ¢ is an Eisenstein polynomial of degree p"ey with ramification
polygon R and segments Si,...,S; with residual polynomials A,,..., 4, € K[z].
Property (a) is given by Lemma 3.20 (b) and property (b) is given by Proposition
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3.21 (b). To establish property (c), suppose that for some 1 < ¢, ¢ < u we have b; = b,
and s, < sy < 55, and si; < s, < 55, From Proposition 3.21, we have that

Ai,(}’st—pski)/ei = Pb, (;stt) —an—n o4 A poa p ])/ — %qu( ) —agn—n_

As b; = by, we have that ¢, = ¢p,. Since

b\~ amdn _ _ ) by \ 1 agn+n
Ai,(pstfps’”)/m (psf) « = b = Poy = A%(psq—pskj)/% (psq) a

)

we have

-1 aqg—a
A rempttiyge, = (i) (a) (Z00) T A ey ot -

Conversely, suppose that R is a ramification polygon with segments Si,...,Sp
with residual polynomials A,,..., A, € K|[x] with properties (a), (b), and (c) of the
proposition. Let ¢ be a polynomial in Og|x] with ¢, = 1, v:(¢9) = 1 and

by

~1
(U e ok l;
ybt,l-‘rdt—’vﬂ( bstt> - Aiv(ﬁst —p°ki)/e; <p5t) (_¢071)at+1ﬂ-v (p t) for © with p < pSt <p
p

for each point (p*,a;n + b;) in R. For ¢ to be well defined, we must check that
the same coefficient is not assigned different values. Multiple assignments occur at
vertices (when one point contributes to two A;) and when multiple points have the
same b;. If (p*, a;n + by) is a vertex of R, then we have

b\ N
%bt71+at7vﬂ(pbstt) - A( t— p )/61 (pst) (_1/}0,1) K (p t)

b\ 1_von(
- Ai+17(pst*1’5ki+1)/ei+1 (p8t> (_wo:l)aﬁ- T (p t)-

1 1 S = S St 1
Cancellation gives us Ai,(pstfp ki) fes Ai+1,(psf—p Kbt fes iy As a vertex, p* is the

abscissa of both the right endpoint of S; (p* = p®) and the left endpoint of S;;4

38



(p™i+r =p*). Thus (p* —p*™)/e; = deg A; and (p* —p™+1) /e = 0. S0, A gega, =
A; 1, which is property (a). On the other hand, if for some 1 < ¢,q < u, we have
by = by, with s, < s, < 5, and s, < s, < s;,, then let b = b; = b, and we have

b - a ve( 8
%b’1+at_v"(bgt) - A'( st—p°ki)/e; (pst) (_@0071) H—lﬂ' "<P‘t>
p

b\ b
a oy ()
%b,l‘f’aq*vﬂ (p-l;q) Aj?(psq -p kg )/6]' (pSQ) ( wOJ) ’ T v

As R is a ramification polygon, by Proposition 3.13 (b), b, = b, implies that a; =
g —vﬂ( ) +v7r( b ), so we have that 1 + a; — UW( ) 1+a,— ﬂ( ) These two
assignments of coefficients of 1, set the same coefficient, and by property (c), they
have the same value. Thus, v is well-defined, and we have set at most one m-adic
coefficient for each polynomial coefficient.

By property (b), none of the assigned coefficients are zero and no others are non-
zero. Thus, v, (¢y,) = 1+ a; — vﬂ(bét) and as per the construction in the proof of
Proposition 3.13, v is an Elsensteln polynomial with ramification polygon R.

Next we consider the residual polynomials of the segments of R as given by 1. Let
S; be a segment of R containing points (p®, Jy), ..., (p%, J;) of slope —h;/e;. Let A;
be the residual polynomial of S;. From Proposition 3.21, for each point (p®, a;n + b;)

with s, < s < 5, we get
A*(pst - wbt( st) o unn

We need the right side to reduce to our intended value. By our assignment,

by - a or (%) 14as—va( 22
Ve, :Ai,(pst—pski)/ez- <p5t) (—bo,1) i (s t)ﬂ' B (s t)-

With o™ ~ —=Ng(a)/k () = =g ~ —th1m we get

b b
wbt (;Stt)a—am—n _ A (0% —p™1) e ( ) ( wo )at+17rvﬂ(pstt)7T1+ai—”7r(pstt) (If;t)(_¢0,lﬂ)_at_l
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from which cancellation gives us our desired result A7 i _pon)e = Ai poe—poryjer O
3.4.1  The invariant A of L/K

We introduce an invariant of L /K, that is compiled from the residual polynomials
of the segments of the ramification polygon of . From the proof of [GP12, Proposition
4.4] we obtain:

Lemma 3.24. Let ¢ € Oklx] be Eisenstein and « a root of ¢ and L = K(«).
Let S be a segment of the ramification polygon of ¢ of slope —h/e and let A be its
residual polynomial. Let f = da with v,(0) = 0 be another uniformizer of L and
¥ its minimal polynomial. If Vyppoooad,, are the (not necessarily distinct) zeros of A

then ll/éh7 e ,f_ym/éh are the zeros of the residual polynomial of the segment of slope
—h/e of the ramafication polygon of ).

Thus the zeros of the residual polynomials of all segments of the ramification
polygon change by powers of the same element § when transitioning from a uniformizer
a to a uniformizer da. With Proposition 3.23 we obtain:

Theorem 3.25. Let Sy,..., S, be the segments of the ramification polygon R of an
Fisenstein polynomial ¢ € Olx]. For 1 < i < ( let —h;/e; be the slope of S; and

A;(z) = D770, its residual polynomial. Then

A= { (161418 @), .., 750A,(0"x)) : 6 € KX} (3.3)

where V50 = ghedegsdr gnd Vs, = 7571-“5’}” degd; for 1 < i</l —1 is an invariant of
the extension K[x]/(p).

Example 3.26. Let p(x) = 2° + 62° + 92 + 3. The ramification polygon of ¢
consists of the two segments with end points (1, 10), (3, 3) and (3, 3), (9, 0) and residual
polynomials 1 + 2z and 2 + 2%, We get A = {(1+ 22,2+ 2%), (1 + =, 1+ 2%)}.

3.4.2  Generating Polynomials

We show how the choice of a representative of the invariant A determines some
of the coefficients of the generating polynomials with this invariant.

Lemma 3.27. Let ¢ € Oklz| be Fisenstein of degree n. Let S be a segment of
ramification polygon of ¢ with endpoints (p*, axn+by) and (p*, an+1b;) and residual
polynomial A(x) = Z?le_p YAl € Klz]. If (p, am+1b;) is a point on S with b; # 0
then

— b; -1 a;+1,__Vr bsii
Spb _A(psi—psk:)/e(psi) <_()OO,1) T (p )

—bi,jJ
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wherej:ai—i—l—vw(b").

psi

Proof. By Lemma 3.8, v,(¢p,) = j and by Proposition 3.21

Thus A(psifpsk)/e = SObZ (pb;l)olialnin Wlth a ~ —NK(Q)/K(O{) = —po ~ —800’171' we
get

A(psi —p°k) /e — ©b; (;szl) (_900)—@;—1'

As by Lemma 3.7 v, (p,) = va(ppsi) — va(b.) —b;+n=an+b — va(b;'.

7
pSi pSi

)—bi+n:

by
n(a; +1) — v, (pbl) we have ¢, ~ gpbhﬂraiﬂ_v"(ﬁi). Therefore

. —a;— a;+1—vr bgl —a;— i —Ur bel
Apri—poyse = Poig (I)b;z) (—poam) @ r™™ (4) £b¢,j(_£0,l) 1(pbsi)7r G,
O

A change of the uniformizer o of L = K () to da with v(J) = 0 that determines the

representative (A;,...,4,) € A also effects the constant coefficient of the generating
polynomial. Namely if the Eisenstein polynomial ¢ = 2 + 321"z’ € Okla] is

the minimal polynomial of a then i (z) = "¢ (g) with 191 = 6" is the minimal
polynomial of da.

Lemma 3.28. Let ¢ € Ok|z] be Fisenstein of degree n and Sy : K — K, a — a”.

(a) If and only if § € Sy(K), there is i € Ok[z] Eisenstein with ¢, = dyp | such
that Klxl/(¢) = K[z]/(¢)-

(b) If n = p" for some r € Z7° then S, is surjective and there is ¢ € Ok|z]
Eisenstein with ¢ =1 such that K[z]/(¢) = K[z]/(¢).

This corresponds to the reduction step 0 in Monge’s reduction [Monl14, Algo-
rithm 1]. If n = p"eo with ged(p, €9) = 1 then ¢ | determines the tamely ramified

subextensions of K[z]/(y), that can be generated by z° + ¢ 7.
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If we fix (1 then the set of representatives of A becomes
A = {(1514,(8" @), - v50 A (8" w)) 6 € KX, 8" =1} (3.4)

where 5, = 67hedeede and vs5; = 5,010 "84 for 1 < i < £ — 1. Thus fixing
©o1 yields a partition of A. Also, if n is a power of p then A* contains exactly one
representative of A.

Remark. Let a ramification polygon R and A,,..., A, € K|[z] satisfying Proposition
3.23. Let A as in Theorem 3.25 and A = A" U--- U A* be the partition of A
into sets as in Equation (3.4). Let v € K*. Then there is no transformation do
of the uniformizer a of an extension with R and residual polynomials in A* for
some 1 < i < k generated by ¢ € Oklx| with $o, = such that the residual
polynomials of the segments of R, = R is not in A*. Thus the construction of

generating polynomials for all extensions with R and A can be reduced to constructing
polynomials with residual polynomials in the sets A*.

Lemma 3.29. Let (A,,...,4,) € A*. If ¢ € Oklz| is a polynomial with residual
polynomials in A*, then there is a polynomial ¢ € Ok|x] with residual polynomials
(4., Ay) such that Klz]/ () = K[z]/ ().

Proof. Let A, ..., A, be the residual polynomials of 1. As (A4],..., A;) € A* there
exists a 0 € K™ with §" = 1 so that

(Alv s 7AZ) = (75,14/1(éh1x)7 B 7’75,54/6(éhex)) .

where s, = 079 A and 75, = 5000 A for 1 <i < 00— 1.

Let « be a root of 1 and ¢(z) = 6"(6 'z) be the minimal polynomial of da.
This gives us that K[z|/(v) = K[z]/(p).

Let us find the residual polynomials of ¢. From Proposition 3.21, we have that the
residual polynomial for a segment S; of slope h/e with endpoints (p®i, Ji, = ax,n+bg,)
and (p*i, J,, = an+by,) is
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Performing our substitution we have that this polynomial is

l;
Z 571 bjw ( )((5a) ajn—n m(ijfpsh)/e — Z 5n7bjfajnfn A;J — Zﬁégg
J=ki

j=k; Jj=ki

Next, let us perform the deformation of A} by 4. First, we consider 7;,;. Notice
that for the A., the residual polynomial of the segment S; with endpoints (p®:, Jy)
and (p*:, Ji),

5Tk ifi =1
é_hi deg A} _ é/\i(P i—pki) _ éJli_Jki — éJli—Jli,l if2<i</( .
§ e =5k =1

This shows us that for 1 < i < £ —1, 75; = V55110 984 = 5’k and in general,
vs5: = 0 7. So the deformation of A} by & is

l;

A, = oAl (") = 6% ZA ™) _ 5, ZA bhh =3 5 AL

Jj=ki

Thus, the residual polynomials of ¢(z) are (A,,...,4,) and Klx]/(¢) = Klz]|/(p).
[

Example 3.30 (Example 3.16 continued). Let Ry = {(1,10),(3,3),(9,0)}. There
are two choices for the invariant A, namely Ay; = {(1 + 22,2 + 2?), (1 + 2,1 + 2*)}
(compare Example 3.26) and Ao = {(2+ 22,2 + %), (2 + 2,1 + 2%)}.

By Lemma 3.28 all extensions of Q3 with ramification polygon R can be generated
by polynomials gp € Zs[z] with @9 = 3 mod 9. Fixing o1 = 1 gives the partition
Ag1 = A5 U A% with AL = {(1+4 22,2+ 2°)} and -’421 ={(1+x1+2%}

For the generamng polynomials of the fields with A by Lemma 3.27 we get,
from the point (1,10) = (3°,1-9 4+ 1) on R, that and from the point
(3,3) = (31,0-94 3) on R, that p3; = 2. The polynomials given by R, and A*! are
described by:
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9 8 7 6 5 4 3 2 1 0

3*{o} {0} {0}  {o} {0y {0} {o} {0y {0} {0}
33140} {0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2}
32/{0} {0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2} {0,1,2}
3oy {o} {0} {o,1,2} {o}  {o} {2} {0} {0} {1}
{1y {o} {0} {0} {0} {oy {0y {0} {0} {0}

By Remark 3.4.2 proceeding as above with A;?l yields a template for generating
polynomials for the remaining extensions with ramification polygon R and invariant

A.

3.5 Enumerating Residual Polynomials of Segments

To compute all possible (4,,...,A4,) for a given ramification polygon R, we can
create sequence of residues, with one assigned to each point of R, insuring that the
requirements of Proposition 3.23 hold, and directly construct the polynomials. By
making the assignment to points, the matching of the leading term of one polynomial
to the constant term of the next is handled by construction. The principle problem,
then, is to make sure that coefficients linked to each other as in Proposition 3.23 (c)
are correctly computed. This requires us to choose the constant coefficient of our
Eisenstein polynomial, effectively choosing a tamely ramified subextension.

Our algorithm Al1ResidualPolynomials (Algorithm 3.31) does just this. It does
not, however, directly compute all possibilities for the invariant A. Instead it finds
all representatives of possible A* given the fixed choice of ;. By Remark 3.4.2, if
n is a power of p, then each (A4,,...,A4,) in the output belongs to a disjoint .A*. On
the other hand, if n is not a power of p, then the output may contain more than one
representative of each A*. In order to compute the possible A*, one would need to
construct the set from Equation (3.4) for each (A,,...,A4,) in the output and check
their intersections to partition them into the distinct A*.

At any degree, multiple elements of the output may belong to the same invari-
ant A. Similar to partitioning into distinct A*, we can compute the possible A by
constructing the sets from Equation (3.3) for each (A,,...,A4,) in the output and
comparing to partition them into the distinct A.
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Algorithm 3.31 (Al11ResidualPolynomials).

Input: A m-adic field K, ramification polygon R, and residue of constant coeffi-
cient ©o,1

Output: All (A4,,...,A,) satisfying the conditions of Proposition 3.23.

(a) If by =0 then L < {(n(—po1)"%)}, else L+ {() : 6 € K™}
(b) While mingep{len(A)} < #R do
(i) Remove A from the front of L and let s < len(A) + 1.
Let (s, asn + b,) be the st point of R.
(ii) If bs = 0 then
e If x, = n then append 1 to A, else append (i)(—go[),l)"‘s to A.
e Append A to the end of L.
(iii) Else if b, = b, for some ¢ < s then append (z) (22)71(—@,1)%7% to A, and
append A to the end of L.
(iv) Else for 6 € K*, let A’ be A with § appended and append A’ to L.
(c) R« {}.
(d) For Ain L do
(i) P« {}.
(ii) For each segment S of R do
o Let (z, Ji) be the left endpoint and _?h be the slope of S.
e Append Z Agz@smme)le g6 p
(zs,Js)ES
(iii) Append P to R.

(e) Return R.
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CHAPTER IV
COUNTING EXTENSIONS WITH GIVEN INVARIANTS

In |[Kra66]|, Krasner gave a formula for the number of totally ramified extensions
of a p-adic field, using his famous lemma as a main tool. In addition to the choice
of degree, his formula depended on the choice of discriminant. This choice allows
the construction of a finite set of Eisenstein polynomials which generate all totally
ramified extensions of given discriminant. A metric on polynomials provides us one
of the needed bounds for this set and relates the number of these polynomials to
the number of extensions. In this chapter, we generalize these methods to compute
the number of totally ramified extensions with the additional choice of ramification
polygon and residual polynomials of segments.

4.1 An Ultrametric Distance of Polynomials

For two irreducible polynomials f, g € K[x] of degree n, we define an ultrametric
distance that we will later relate to the distance of the roots of these two polynomials.

Proposition 4.1. Let f,g € K|x] be two irreducible polynomials of degree n. If
a is any root of f and B is any root of g, then d(f,q) = |f(B)| = |g()| defines
an ultrametric distance over the set of irreducible polynomials of degree n in K|x].
Additionally, if o = oy, ..., are the roots of f, and [ is one of the roots of g which
1s closest to a, then

a(f.9) = T[418 - al. o = aul).

Proof. The proof closely follows that of Proposition 4.1 in [PRO1].

To begin, let d(f,g) = |f(B)|. It is clear that d(f,g) = 0 if and only if f = g.

First we show that d(f,g) = |f(8)| does not depend on the choice of 5. Let 3" of
g be any root of g and ¢ be in the Galois group of g over K such that o(f) = §'. As
o is isometric, we have |f(B8)| = [o(f(5))| = |f(a(B))| = |f(F')|, and d(f, g) does not
depend on the choice of root of 5.

Next we show that |f(5)| = |g(«)|. Let @« = aq,...,a, be the roots of f and
B = p1,..., 0B, be the roots of g, and notice that

@ =T =118 - o
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As the last formula is symmetric with respect to f and ¢, and |f(«)|,|f(8)] € RT,

this gives us that | f(8)] = |g(@)[. Thus, [f(8)| = |g(a)| and d(f,g) = d(g, f)-
Now let us fix a root a of f and choose § from the roots of g such that |§ —

a| is minimal. Notice that this distance does not depend on our choice of a. If
| — i # |8 — af, then from our choice of /3, we have |5 — ;| > |8 — «|. Thus,
la — ;| = |(a— B) + (6 — ;)| = |8 — ;|- This gives us our desired formula,

a(f.9) = T[418 - al. o = aul).

Finally, we show that d(f, g) satisfies the ultrametric inequality. Let h € K[z] be
irreducible and of degree n and assume that v and + are roots of h such that |5 — 7|
and |« — +/| are minimal. Then

d(f7 h’) = Hmax{]a - fyl" |O{ - O‘z|} S Hmax{|a - 7|> ’Oé - a1|}
i=1 =1
< [ mas{masc{le — 81,18 = 1}l — a3
=1

< Hmax{max{|a — B, | — ay| }, max{|8 — 7], |a — a4|} }

=1

< max{d(f,g),d(g, f)}.

Thus, d(f,g) is an ultrametric distance with the desired properties. O]
We can calculate the distance d(f, g) easily using the following lemma.

Lemma 4.2 ([PRO1|,Lemma 4.2). Using the same notation as Proposition 4.1, write
fl@)=a"+ foo12" o+ fo and g(x) = 2" + go12" 4+ + go, and set

0<i<n—1

. l
w = min {vﬂ(gi—fi)—l—g}.

Then d(f,g) = |=|".
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Proof. Notice that
g(a) = g(a) = fla) =D (g: = fi)o,

and since « is a prime element v, () = 1/n. All of the terms in this sum must then
have different valuations, of which g(«) is the minimum. O

4.2 Bounded Sets of Eisenstein Polynomials with Given Invariants

In this section, we will use the various restrictions to generating polynomials
provided by choices of invariants to construct finite sets of Eisenstein polynomials.

Throughout this section, we will use the following notation to refer to elements
in local field K with m-adic coefficients bounded above and below. Let [, m be two
integers with 1 < [ < m, let R;,, be a fixed set of representatives of the quotient
(m)!/(m)™, and let R}, be the subset of Rj,, whose elements have 7-adic valuation
of exactly (.

4.2.1 FEisenstein Polynomials with a Given Discriminant

Using Lemma 3.2 as a lower bound for coefficient valuations and a bound over
which the m-adic coefficients of a generating polynomial are chosen to be 0, we con-
struct a finite set of Eisenstein polynomials. Krasner’s bound (Lemma 3.3) gives a
specific bound over which the m-adic coefficients of a generating polynomial can be
chosen to be 0, while still generating the same extensions, but its proof will be shown
as a consequence of Theorem 4.9.

First we define [(7), which gives the minimum valuation for the coefficients of the
generating polynomials of extensions with given discriminant, and claim that poly-
nomials satisfying this have a given discriminant. These are effectively a restatement
of Lemma 3.2.

Definition 4.3. Let Jy = agn + by satisfy Ore’s conditions. For 1 <7 <n —1 Let

(i) = max{2 + ag — v (i), 1} if i < by,
Y7\ max{l +ap— vs(d), 1} if i > bp.

Lemma 4.4. An Eisenstein polynomial p € Ok|[z] has discriminant (7)™~ where

Jo = agn + by with 0 < by < n fulfills Ore’s conditions if and only if v (p;) > 1(7)
and, if by # 0, vz(pp,) = 1(bo)-
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Next we construct our set of polynomials using [(i) as a lower bound.

Definition 4.5. Let [, m be two integers with 1 <[ < m, let Iz;,, be a fixed set of
representatives of the quotient (m)'/(7)™, and let R}, be the subset whose elements

have m-adic valuation of exactly [. Let Jy = agn + by, ¢ > 1 + 2a¢ + Qnﬂ, and let
U, 1, (c) be the set of all polynomials ¢(z) = 2™ 4+ > ¥z’ € Og[z] with

Rf, ifi=0
); € Rlx(l%c ifi="5by#0
Ry if1<i<n—1andi# by

These polynomials satisfy Lemma 4.4 by construction.

Proposition 4.6. The polynomials in V,, 5, (c) are Eisenstein polynomials of discrim-
inant (m) oL,

4.2.2  Eisenstein Polynomials with o Given Ramification Polygon

Now let us construct a similar set of Eisenstein polygons given a ramification
polygon. Similar to the case of discriminants, we have an analogous function Lz (7) for
the lower bounds of the valuation of our coefficients (Definition 3.11). The following
is true as a consequence of Proposition 3.14.

Proposition 4.7. Let I,m be two integers with 1 < | < m, let R;,, be a fized
set of representatives of the quotient (m)'/(m)™, and let R}, be the subset whose
elements have m-adic valuation of exactly . For a ramification polygon R with points
(P°, Jo), (p**, 1), ..., (p%, Ju), where J; = a;n+0b;, let Br be the set of non-zero b;. Let
c> 1+2a0+%, and let U, j, r(c) be the set of all polynomials () = x™+Y a’ €
Ok |z] with

I ifi1=0

Riniye #1<i<n—1andi¢ Bg

The polynomials in V,, 5, r(c) generate totally ramified extensions of K of degree n,
discriminant ()"t~ and ramification polygon R.

4.2.3  FEisenstein Polynomials with Given Residual Polynomsials

Finally, we construct a set of Eisenstein generating polynomials for extensions
with given degree, discriminant, ramification polygon, and invariant A. This set
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U, 50r,A(c) is a subset of U, ; =(c), so its members have the desired discriminant
and ramification polygon, and setting certain residues will give us residual polynomials
(A,,...,4,) € A by construction.

Proposition 4.8. Let [,m be two integers with 1 < | < m, let R, be a fized
set of representatives of the quotient (m)'/(m)™, and let R}, be the subset whose
elements have w-adic valuation of exactly . For a ramification polygon R with points
(P°, Jo), (p°1, 1), ..., (p°, i), where J; = a;n + b;, let Br be the sel of non-zero
b;. Let ¢ > 1+ 2ag + %, and let U,, 5, r.a(c) be the set of all polynomials ¢(x) =
"+ Y it € Oklx] with

R;,  ifi=0
@/)i - RER(U# Zfl - BR
Ripw,e #1<i<n—1andi¢ Bg

and where all ¢ L) for i € Bgr are set by the same choice of (A,,...,4,) € A

according to Lemma 3.27. The polynomials in Y, j, r.a(c) generate totally ramified
extensions of K of degree n, discriminant (7)""7071 ramification polygon R, and
invariant A.

4.3 A Generalization of Krasner’s Mass Formula

Now we extend Krasner’s results to the cases where we have chosen additional in-
variants. In order to do this generically, let X be a set of invariants of a totally ramified
extension over K minimally containing a degree n and discriminant ()7 =1,

Let Kx denote the set of totally ramified extensions over K with invariants X
and Ex denote the set of Eisenstein polynomials in K[z] generating extensions with
invariants X. The roots of the polynomials in Ex generate all extensions in Kx. Let
c¢> 14 (2Jy)/n and Ux(c) be the set of all Eisenstein polynomials with coefficients
in R; . whose roots generate totally ramified extensions with invariants X.

Theorem 4.9 (Krasner). The set E, j, of Eisenstein polynomials of degree n and
discriminant (7)""7071 over K is the disjoint union of the closed discs Dg, , (¢,7)
with centers ¢ € W, 5, (c) and radius r = |p°|.

Proof. In Proposition 4.6, we showed that polynomials ¢y € W, ; (c) are, in fact,
elements of E, j,. Let ¢ = Y 0 ja’ and ¢ = 7 4la’ be distinct elements of
U, 5, (c), and i be such that v, # ..

v,,(wi—wg)+i<c—1+i<c
n n
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and by Lemma 4.2, d(¢,v¢’) > r. Therefore, by the ultrametric property of d, we
have that the discs Dy and D, are disjoint.

Next, let f € E,j, with f(z) = 2™ + f,_12" '+ + fo. Let Jy = agn + by. As
f is Eisenstein, v.(fo) = 1 and there exists 1y € Ry, such that fo =y mod p°. If
by # 0, then we have that vr(fy,) = l(bo), so there is thy, € Ry, . such that fo, = s,
mod p°. For all 1 <1i < n —1 with ¢ # by, v-(f;) > [(¢), so there is ¥; € Ry, such
that f; = mod p°. We claim that f € Dg, , (¢,r) with ¢ = 3" ¢z" and r = [p°].
By our choices of 1;, we have that v, (f; —1;) > cfori=0,...,n— 1. Therefore, for
all 4,

Uw(fz'—?/fi)‘i‘% >c

which, by Lemma 4.2, proves our claim. O
Krasner’s bound (Lemma 3.3) is a direct consequence of the following corollary.

Corollary 4.10. Let f be an Eisenstein polynomial of degree n and discriminant
pt o=t over K and write f(z) = 2"+ f2" -+ fo. Let g(x) = 2"+ gp12™
<-4+ go be a polynomial such that g; = f; mod p°. Let o be a root of f and B a root
of g such that |8 — a| is minimal. Then o € K(f).

Proof. First we observe that v,(g;) = v.(f;) and so by Lemma 3.8, g is also an
Eisenstein polynomial with discriminant pm*7/0—1,

Let a = aq, o, ..., q, denote the roots of f and let Af be the minimal distance
between o and any other root of f. Then, since the «; are prime elements,

/(@) =[]l — el < AF - [pn=2/m].

1=2

However, | f/(0)] = [p+ /|, and so Af > [pto-/
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Now, by Theorem 4.9, we have that d(f, g) < r = |p°|. We claim that |f—a| < Af,
as otherwise

A(f.9) = [[max{|8 - al.la - o} = [[ max{Af.|o - ai]}
i=1 1=1

> Af [ e — aul = AfIf/ ()] > [p+2/n),

=2

which contradicts d(f,g) < r = |p°|, by the particular choice of c¢. Thus, |f—a| < Af,
and by Krasner’s Lemma (Theorem 1.2) we have that o € K(f5). O

The following is simply a result of the fact that Ex C E, j and Dg,(r) C
DEn,JO (T)

Corollary 4.11. The set Ex is the disjoint union of the closed discs Dg, (¢, ) with
centers 1 € Vx(c) and radius r = |p°|.

Lemma 4.12. Let X be a set of invariants of a totally ramified extension over K
containing degree n and discriminant (m)"*%=1. Let ¢ > 1+2ao+22 and let #Dg, (r)
denote the number of disjoint closed discs of radius r = |7¢| in Ex. Then the number
of elements in Kx s

n
(q _ 1>qnc—(n+J0—1)—2

#Kx = #Dg, (1)

Proof. Let Ilx denote the set of all prime elements of members of Kx. IIx can be
differently defined as the union of sets pr, \ p? where p; is the prime ideal of some
member L of Ky. Let y be the map that sends a prime element in IIx to its minimal
polynomial in Ex.

Let t > Jy + 1 be an integer and let s = |r("+0=1+0/n| Tet y = |7|/" and let
a, B € lx such that |a — ] < u. By Krasner’s Lemma, o and § generate the same
field. Let a = aq, ag, ..., a, denote the roots of y(a). Then

d(x(a), x(8)) =Hmax{|5 —al, o — o]}

< u]le —auf = ul(x(@))'(@)] = uls" /"] = s
1=2
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s, we have x(Dn(a,u)) C Dg,(x(a),s). Conversely, let f,g € Ex such that
d(f,g) < s. Let o be a root of f so f = x(«) and 8 be the root of g such that
|/ — «| is minimal. We claim that | — a| < u, as otherwise

Let Dy(a, u) denote the closed disc of center a and radius win IIx. As d(x(a), x(5)) <

d(f,g) = [ max{|B - al. la — auf} = [ mafu o — aul}
i=1 i=1

> u]Jlo— ol = ulf' (o)) = ulz =0 = 5,

=1

which contradicts the assumption that d(f,g) < s. As |8 — a| < u, we have
Dg. (x(@),s) C x(Dn(a,u)). So, for all a € I,

Dey (x(a), s) = x(Du(e, ).

It is clear that the map y is n-to-one and surjective. Now, the inverse image of x(«) is
the set of conjugates of « over K. Ast > j+1, the closed discs of radius u centered at
these conjugates are all disjoint. Thus, the inverse image of any closed disc of radius
s in Ex is the disjoint union of n closed discs of radius u in Ily. However, by the
earlier remark, any such disc is contained in py, \ p? for some L € K. Therefore, the
number of disjoint closed discs of radius u in Iy is equal to #Kx times the number
of disjoint closed discs in py \ p%, which does not depend on L and is ¢'~! — ¢'~2.
Thus,

#Kx ¢"*(q— 1) = n #Dg, (s),

and choosing t = nc — (n + Jy — 1) gives us our result. ]

4.4 Mass Formula Given a Discriminant (Krasner)

Proposition 4.13. Let V,, 5, be the set of polynomials over K with degree n and
discriminant (m)"t0~1 whose coefficients are in Ry .. The number of polynomials in
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\I/mjo ’iS

24 (n—1)e=S"""11(;
4Dy (o) = (@ DgHeEE0 - forb =0
En, 1, (q— 1)2 qc—2+(n—1)c—2§”:_fl(i)—1 forb >0

Proposition 4.14. The number of distinct totally ramified extensions of K of degree
n and discriminant ()"0 ~1 s

4K, — n g mRin 1) . for b =0
0 n(qg—1)g" 1= O for b >0

Example 4.15. As an example, let us count all totally ramified extensions of Q3
with degree 9 and discriminant (3)°77~1. From this discriminant, we have Jy = 7. We
find minima for the v, (y;) if ¢ is to be an Eisenstein polynomial of this discriminant.
By Lemma 3.2,

| 2 forie {1,2,4,5}
1(i) = ve(i03) > { 1 foric {3,6,7,8}

So, - 1(i) = 12, and from the formula, we find that there are 9-2- 3977171271 = 162
degree 9 extensions of Q3 with discriminant (3)%T7~1.

4.5 Mass Formula Given a Ramification Polygon

Proposition 4.16. Let U, ;, r(c) be the set of Eisenstein polynomials with degree
n, discriminant ()"~ and ramification polygon R with coefficients whose coeffi-
cients above ¢ are zero (see Lemma 3.3). Then

#\Dn Jo R<C> = (q - 1)#BR+1 q672+(n71)072?:711 L(i)—#Br

Proof. The number of elements in R} ,is (¢—1) q“~2. For each i ¢ Bg, the number of
elements in Ry (.. is ¢ @, and for i € Bg the number in Ry .18 (q— 1)geto-1,
The product of these is our result O]
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Proposition 4.17. The number of distinct totally ramaified extensions of K of degree
n, discriminant ()"t~ and ramification polygon R is

n(q — 1)#Br gnJo=1-S15 L)~ #Br

Proof.

n #DEn,JO,R (C> — n( _ 1)#BR n+J071722";01 L(l)*#BR D
(q — 1)gre—(n+do—D—2 q q

Example 4.18 (Example 4.15 continued). Now let us count all totally ramified ex-
tensions of Q3 with degree 9 and discriminant (3)°"~! where we make a choice of
ramification polygon. Again, we have Jy = 7 and

S [ 2 forie{1,2,45}
ZR(%O) - l(l) o { 1 fOI' ) < {3767778}

There are two possible ramification polygons for this degree and discriminant:
Ry with vertices {(1,7),(9,0)} and Ry with vertices {(1,7),(3,3),(9,0)}. We have
already considered the conditions on the polynomial dictated by the vertex (1,7), so
it only remains to consider the effect of a vertex (or lack thereof) above 3.

For R4, no vertex above 3 means Iz, (3,1) = 2 and I, (6,1) = 1. For an Eisen-
stein polynomial to have ramification polynomial R, the minimum valuations of the
coefficients would have to be

. | 2 foric{1,2,34,5
L (i) = max{i, (i, s)} :{ 1 forie }6 7,8} }

So, > Lg,(i) = 13. Next we consider the set of fixed valuations of an Eisenstein
polynomial generating such an extension and find that

Br, ={Jimod n:0<i<s;and J; mod n # 0} = {7}
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The number of fixed valuations is# Bz, = 1. Thus, by applying the formula, we find
that there are 9 - 21 - 3947~ 1=13-1 — 54 degree 9 extensions of Q3 with ramification
polygon R;.

For R,, the vertex (3,3) gives us that Iz,(3,1) = 1 and Ig,(6,1) = 1. For an
Eisenstein polynomial to have ramification polynomial Rs, the minimum valuations
of the coefficients would have to be

' ) 2 fOTiE 1727475
Lz, (i) = mgx{lng(l,s)} = { 1 forie }3 6,7 8{ '

So, > Lg,(i) = 12. Next we consider the set of fixed valuations of an Eisenstein
polynomial generating such an extension and find that

Br,={Jimodn:0<i<s,and J; mod n # 0} ={3,7}

The number of fixed valuations is # Bz, = 2. Thus, by applying the formula, we find
that there are 9 - 22 . 397717122 — 108 degree 9 extensions of Q3 with ramification
polygon Ro.

Krasner’s mass formula states that there are 162 totally ramified extensions of Qs
with degree 9, which we have partitioned by the two possible ramification polygons.

4.6 Mass Formula Given Residual Polynomials

Proposition 4.19. The number of Eisenstein polynomials of degree n, with given
discriminant (m)" T~ ramification polygon R, and invariant A with coefficients
whose coefficients above ¢ are zero (see Lemma 3.3) is

(#A) (¢ — 1) g= 2= De= T Lr () —#Br

Proof. The choice of A does not change the constant term, so for that coefficient
we have the number of elements in R, which is (¢ — 1) q“~2. For each i ¢ Bgr, we
have the number of elements in R ., which is ¢ . For i € Bg, the choice of

(Ay,...,4) € A, fixes the first non-zero coefficient of our coefficients. The number
of elements in RER(Z.) . with a fixed first non-zero coefficient is ¢ FO=1 We have #A
ways to fix those coefficients, and the product of these is our result. O
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Proposition 4.20. The number of distinct totally ramaified extensions of K of degree
n, discriminant ()"t~ ramification polygon R, and invariant A is

(e A) I L)

Example 4.21 (Example 4.18 continued). As an example, let us count all totally
ramified extensions of Q3 with degree 9, discriminant (3)°77~1, and ramification poly-
gon Ry = {(17 7)7 (37 3)7 (9’ O)}

As before, for an Eisenstein polynomial to have ramification polynomial R, the
minimum valuations of the coefficients would have to be

. . 2 forie{1,2,4,5
Ly,(1) = mgx{le(z,S)} = { 1 forie }3 6,7 8{ ’

So, > Lg,(i) = 12 and the number of fixed valuations is #Bg, = 2.
There are four possible sets of residual polynomials of segments (A, A,) for ex-
tensions with ramification polygon Rs, belonging to two invariants A:

A ={(z*+1,2° +1), (222 +2,2° +2)} and Ay = {(z* +2,2° + 1), (22* +1,2° +2)}.

Each of these invariants contain two polynomials, so by applying the formula, we find
that there are 9 -2 . 39777171272 — 54 degree 9 extensions of Q3 with ramification
polygon Rs and a choice of A. This partitions the 108 extensions of degree 9 with
Rs.

4.7 Examples

In Table 2, we show the number of extensions of degree 9 over Q3 with given
invariants. For discriminants (3)°T/0~! with Jy < 12, we list all possible ramification
polygons, as generated by Algorithm 3.17, all residual polynomials, as generated by
Algorithm 3.31, and how many extensions exist with each set of invariants.

Additional examples for different base fields and degrees with all possible discrim-
inants can be found at

http://www.uncg.edu/mat/numbertheory/tables/local/counting/.
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Jo | Ramification Polygon | Representative of A | #A | Extensions
1| {{L1),09,0)) (z+1) 2 |18 118 |18
(22 +1) 1 9
2| {(1,2),(9,0)} GE) o 18] 18
"+ 1) L9
(z*+2z+41) 2 | 18
{(1,4),(3.3),(9,0)} T+ 212 > 18| %O
{1.5), .0} (z+1) 2 |18 |18
5 (22 + 1,2+ 1) 2 | 18 54
{(175>7(373)7(970>} (2224_1’234-2) 2 18 30
{@L7.0.0 (2 +1) 2 | oe ) o
2 3
T, 3.3, 0,00} gzﬂﬂ’ 23112)) s
(2% +1) 1 9
(z+1,25+1) 2 | 54
8 {(1,8),(3,3),(9,0)} Cr2 1) 5= 108 o
GEEESY L9
(25 +2+1) 1 19
{(178>7(376)7(970>} (28+22+2) 1 9 36
(2% +222+2) 1 9
(22 +1) 1|27
{(1,10),(9,0)} GED) o7
(241,23 +1) 2 ] 162
(22 +1,254+1) 1|27
2 [§
((L10), 300, 0.0 2t ES L LT
(222 + 2,25+ 2) 1|27
{(1,11), (9,0)} (z+1) 2 | 54 | 54
(241,23 +1) 2 ] 162
11| A1), 3,3), 0.0} ot 6] 32 | ass
(z+1,25+1) 2 | ¥4
{(1,11),(3,6),(9,0)} CESRE) 5= 108
(22 + 1,23+ 2) 1 243

Table 2. Number of extensions of degree 9 for all possible ramification polygons and
residual polynomials over Q3 with discriminant (3)%70~1 for J, < 12.
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CHAPTER V
ENUMERATING EXTENSIONS WITH GIVEN INVARIANTS

As we have seen, Krasner’s method of counting extensions [Kra66| and our gener-
alization in Chapter IV construct a finite set of Eisenstein polynomials which generate
all totally ramified extensions with given invariants. Pauli and Roblot [PRO1] pre-
sented an algorithm that returned a set of generating polynomials for all extensions of
a given degree and discriminant, following Krasner’s approach. They used the root-
finding algorithm described by Panayi [Pan95| to obtain one generating polynomial for
each extension. A recent paper by Monge [Monl4| provides a new method for deter-
mining whether two polynomials generate the same extension and introduces reduced
polynomials that yield a canonical set of generators for totally ramified extensions
of K. Monge’s methods considerably reduce the number of generating polynomials
that need to be considered when computing a set of polynomials defining all totally
ramified extensions of K.

In this chapter, we present an algorithm that for each extension with given in-
variants constructs a considerably smaller set of defining polynomials than the set
obtained with Krasner’s bound. In many cases this eliminates the need to check
whether two polynomials generate the same extension. The polynomials constructed
are reduced in Monge’s sense.

While our algorithm only generates totally ramified extensions, it can be used to
enumerate in the general case. As any finite extension L/K can be uniquely split into
a tower L/L" /K where L/L" is totally ramified and L""/K is unramified, general
enumeration can be achieved by enumerating over suitable unramified extensions.
More details can be found in [PRO1, Section 2|.

5.1 Residual Polynomials of Components

We now apply some results of Monge [Mon14] to reduce the number of polynomials
that we need to consider to generate all extensions with given invariants.

Definition 5.1. Let A/ be a Newton polygon. For A € Q, the A\-component of N is
Ny ={(k,w) e N | Mk +w=min{\ +u | (I,u) € N}}.

Remark. If N has a segment with slope X then N, contains that segment. Otherwise
N, consists of only one point.

To each component of integral slope of a ramification polygon we attach a residual
polynomial.
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Definition 5.2. Let ¢ € Ok|x] be Eisenstein, o a root of ¢, p the ramification
polynomial of ¢, and R the ramification polygon of ¢. For A € Z>° the residual
polynomial of the (—\)-component of R is

5,(x) = pla*z)/ conty (p(a’x))

where cont, (p(a*z)) denotes the highest power of a dividing all coefficients of p(a’z).

The quantity cont,(p(az)) only depends on the ramification polygon. Namely
if p(x) = > 1, pir® we have p(a’z) = > 1 pi(atz)’ = >"1 pi(a?)iz? and obtain

ngr(A) = min v(p;) + iA = conty (p(a’z))

0<i<n

for the Hasse-Herbrand function ¢ of R (Definition 3.15). Thus [Mon14, Proposition
1] yields

nor(A) = conta (p(a’z)) = nor/x(N).

To calculate ngr(\), we only have to take the minimum of the v(p;) + ¢\ for the
points (v(p;),4) on the polygon. For p* < i < p*™', we have v,(pps) < va(p;) (Lemma
3.6 (c)) and p® < ¢, which gives us that v,(pps) +0°A < v4(p;) +iA. This demonstrates
the formula for ¢ from Definition 3.15.

Lemma 5.3. Let R be the ramification polygon of .

(a) If R has a segment S of integral slope —m € 7Z, with left endpoint (k,w) and
residual polynomial A then S, (z) = 2*A(z).

(b) If R has no segment of slope —m € Z then S,,(z) = 27" where 0 < s < v,(n)
such that v(pps) 4+ p° - m = ming<, <y, (n) V(ppr) +p" - M.

(c) For all m € Z7° the residual polynomial S,, of R_,, is an additive polynomial.
(d) S, : K — K is F,-linear.

Proof.  (a) By Remark 5.1 the component R_,,) contains S and by Remark 3.20((a))
Sy () = 2 A(x).
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s mentioned 1n Remark o. —m) an only have one point in common. By

b) A ioned in R k 5.1 M(_n) and R only h int i B
Lemma 3.6 this point is of the form (p®, v(p,s)). It follows from Lemma 3.6 that
if the ramification polygon R of ¢ has no segment of slope —m then

v (conty(p(a™x))) = o%glnv(pi) +i-m= O<Igin( )U(pp’”) +p"-m
<i< <r<uvp(n

and S, (z) = 27" where 0 < s < v,(n) such that v(pp:)+p*m = ming<, <y, n) V(P )+
p"-m.

(c) By Lemma 3.6 the abscissa of each point on R is of the form p®. Thus the
residual polynomial of R(_,, is the sum of monomials of the form 2#° which
implies that S, is additive.

(d) Is a direct consequence of (c). O

We now investigate the effect of changing the uniformizer o of K(«) on the coef-
ficients of its minimal polynomial (compare [Mon14, Lemma 3]).

Proposition 5.4. Let ¢ € O[] be Eisenstein of degree n, let o be a root of ¢ and
let p be the ramification polynomial of ¢. Let B = o+ ya™ ! where v € L = K(a)
with v(y) = 0 be another uniformizer of L and ¢ € O[] its minimal polynomial.

(a) If0 < j <n and j = v, (p(ya™)) mod n then p; —1; = o™ p(ya™)
(b) If 0 < k < n and k = v,(conty(p(a™x))) mod n then

(¢r = i)/ (" " conta(p(a™2))) = S8,,(7)-

Proof.  (a) By Definition 3.5 we have

n—1

D (pi—vi)B' = (B) — ¥(B) = ¢(B) = a"p(B/a — 1) = a"p(ya™).  (5.1)

1=0

Since v, (p;) € Z and v (¢;) € Z and v (f) = % we have

Ur (Z(% - ¢i)5i> = nggél_lvw ((pi =) B7) -

=0
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Thus for 0 < j < n and j = v, (p(ya™)) mod n we have ¢; —; = a"p(ya™).

(b) Dividing Equation (5.1) by a” cont,(p(a™x)) yields

(0(B) = ¥(B)) [ (a" conta(p(a™z))) = a"p(ya™)/ (@ conta(p(a™x))) = 5,,(7)-

For 0 < k < n with k = v(cont,(p(a™x))) mod n we get

(¢r — ¥n)B*/(a" conta (p(a™x))) = S,,(3)-

With 8 = a mod (a?) we obtain the result. O

5.1.1 Generating Polynomials

Using the results from above we can reduce the set of generating polynomials
with given invariants considerably. We show how the coefficients of a generating
polynomial can be changed by changing the uniformizer. The coefficients that we can
change arbitrarily this way we set to 0, thus reducing the number of polynomials to
be considered.

Corollary 5.5. Let ¢ € Oklx] be Fisenstein of degree m, let o be a root of ¢,
let L = K(a), and let p be the ramification polynomial of ¢. Let m € Z7°, ¢ =
va(conty(p(a™z))), 0 < k < n with k = cmod n, and j = 2=tc,

(a) If § € S,,(K) then for the minimal polynomial ¢ € Oklz] of B = a + ya™ !
where vy € S,.'({0}) we have ykj =P~ J.

(b) If S,, : K — K is surjective we can set 0 = #,,; and obtain P, = 0.

(c) If S,,(v) =0 and d = vo(a"p(ya™)), 0 <1 < nwithl = dmod n, andi = —”_ffd
then ¢, . = ¢, — T p(ya™).

The next Lemma follows directly from Corollary 5.5.

Lemma 5.6. Let ¢ € Oklx] be Fisenstein of degree n, R its ramification polygon.
Assume there is m € Z7° such that k = ngg(m) mod n and j = %(m)fk and let
S, be the residual polynomials of R(_p).

(a) If S,, is surjective then there is an Fisenstein polynomial ¢ € Ok x| with ¢y ; =
0. such that K|x]/(v) = K(«).
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(b) If v € Ok[x] has the same ramification polygon with the same residual polyno-
mials as @ and o ; — Vi ¢ S, (K) then Klz]/(¢) 2 Klx]/().

Example 5.7 (Example 3.30 continued). The ramification polygon R» = {(1, 10), (3,3),(9,0)}
has no segments with integral slope. We get S; = 23, S, = 2%, and S; = 23, with
9¢(1) = 6, 9¢(2) = 9, and 9¢(3) = 12. Thus @1 = 0, Yoo = 0, and 3, = 0.
Furthermore S,, = « for with 9¢(m) = 10 +m for m > 4. Thus by Lemma 5.6 we
can set ¢y ; =0 for k+9(j7 — 1) > 14.

For the generating polynomials with A;}l we get the template:

z? 8 z’ 0 x5 x? z3 z? x! 20

st {0y {op {o} {o} {op {0} {o} {op {0} {o}
321 {0} {o} {o} {o} {o} {o} {o} {0} {o} {o}
321 {0} {o} {0} {o} {o} {0,1,2} {o} {0,124 {1} {0}
st {op {0} {o} {o} {o} {op {2 {0} {0} {1}
31 {1p {op {o} {0} {op {0} {0} {0} {0} {o}

Since changing the uniformizer cannot change ¢35 and ¢4 independently from the
other coefficients of ¢ we obtain a unique generating polynomial of each extension
with ramification polygon R, and A3}

5.2 Enumerating Generating Polynomials

We use the results from the previous sections to formulate an algorithm that
returns generating polynomials of all extensions with given ramification polynomials
and residual polynomials. In certain cases this set will contain exactly one polynomial
for each extension.

Algorithm 5.8 (Al1ExtensionsSub).

Input: A m-adic field K, a convex polygon R with points (1, agn+bg), (p*,a1n+
b1),...,(p*, ayn+b,) = (p*,0),...,(n,0) satisfying Proposition 3.13 where
0 <b <nforl <i<u=uvyn), S,...,S the segments of R, a
representative §, of a class in K™ /(K*)", and A,,..., A, € K[z] satistying
Proposition 3.23.

Output: A set that contains at least one Eisenstein polynomial for each totally ram-
ified extension of degree n, that can be generated by a polynomial ¢ with

ramification polygon R, Poq = d,, and residual polynomials 4, ..., A,.
(a) ¢+ [142a0+ 2] -1 [Lemma 3.3
(b) Initialize template (Ti,j)Ogignfl,lSjgc with Tij = {Q} C K
(¢c) For0<i<mn—1land Lg(i) <j<c [Definition 3.11]
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n—it+nér(m) .

o If there is no m € Z>° with i = ngr(m) mod n and j = <

O T %K

(@) For 1< m < | lmsbt)fomsin) |

n—i+ner(m)
n

e i< nor(m)modn, j <

e 7,; < R where R is a set of representatives of K/S,, (K). [Lemma 5.6]
(e) For 1 <i < u:

e Find a segment S; of R such that (p®*,a;n 4+ b;) is on ;.

. j%ai—i—l—vﬂ(bi)

pi
X N1 (B
® Thj {At,(psifpsk)/e(_éo)al+1(15);2‘) ™ G )} : [Lemma 3.27|
where (p°*, ain + by) is the left end point of S; and —h/e is the slope of S;.
(f) 701 < {do} [Lemma 3.28|

(g) Return {:E" +3 (Z;zl g0i7j7r]> z' € Oklz]: ¢i; € Rk such that @, € Tm}

As is evident from the following example Algorithm 5.8 may return more than one
generating polynomial for some extensions.

Example 5.9. The polygon R3 = {(1,10),(3,6),(9,0)} has segments with slopes
25 = —2 and =2 = —1. With the choice ¢y = 3 mod 9 the possible pairs of
residual polynomials are Az ; = {(2+ 22,1 + 2%}, Aso = {(2+22%, 2+ 25)}, A33 =
{(1+22%2+ 2%}, and Az 4 = {(1+ 2%, 1+ 2%}

For A3s = {(2 + 22%,2 + 2%)} we get p12 = 2 and furthermore this choice also
gives S; = (2+2%)2? S, = (222 + 2)z = 2(2® + ), and S,, = x for m > 3 with
S,(F3) = {0}, S5(F3) =Fs, and S,,(F3) = Fs5. As S, is surjective we can set ¢35 = 0.
As 8, for m > 3 we can set ¢ ; = 0 for k+9(j — 1) > 14 where 0 < k < 9. As the
image of S, is {0} changing the uniformizer does not affect 5. Thus Algorithm 5.8
generates the template:

0 b z’ 8 x5 z? 3 z? x! 20

381 {0} {o} {o} {o} {o} {o} {o} {o} {o} {0}
32 | {0} {o} {0} {o} {o} {o} {o} {0} {o} {0}
321 {0} {o} {o} {o} {o} {o} {o} {0,1,2} {0,1,2}
31| {0} {0} {0} {0y {0y {0} {0y {op {1}
391 {1y {op {o} {o} {op {o} {o} {0} {0} {0}

Of the corresponding polynomials ¢.q = z° 4+ 62° 4+ 9c - 22 + 182 + 3 + 9d (¢,d €
{1,2}) more than one polynomial generates each extension. Let « be root of ¢4
and p its ramification polynomial . For v € {1,2} we have v,(p(ya)) = 11. If
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P(z) = 37, ir' denotes the minimal polynomial of 4 ya? then by Proposition
5.4 (a) we have py — 1)y = a”p(ya). and hence 195 = a2 — p(ya)/a® #Z 0 mod a. As
v+ (@) = p(ya)/art + () = 2y + («) is surjective, changing the uniformizer from «
to a + ya results in a change of ¢55. Thus we can choose 7 such that ¢s9 = 0 and
get that all extensions with ramification polygon Rs and residual polynomials As; -
are generated by exactly one polynomial of the form ¢; = 2% + 62° + 182 + 3 + 9d
where (d € {1,2}).

Theorem 5.10. Let F' be the set of polynomials returned by Algorithm 5.8 given K
and a ramification polygon R, d, € K and polynomials A, ..., A, € K[z].

(a) F contains at least one Eisenstein polynomial for each totally ramified extension
of degree n, that can be generated by a polynomial © with ramification polygon
R, ¢, = 8o, and residual polynomials A, ..., A,.

(b) If S, : K — K is surjective for all segments with integral slope —m, then no
two polynomials in F' generate isomorphic extensions.

(¢c) If there is exactly one S,, : K — K that is non-surjective, and for all integers
k > nor(m), there is an m' € Z7° such that npgr(m’) = k, then no two
polynomials in F generate isomorphic extensions.

Proof. (a) Let ¢ € F. In Algorithm 5.8 step (c) we have ensured that v, (p;) >
Lz(i) and in step (e) we assign nonzero values to ¢y, ; so that v-(yy,) = Lz (bi)
for points (p*, a;n + b;) with b; # 0. So by Proposition 3.14, ¢ has ramification
polygon R. By Lemma 3.27, the values assigned in step (e) ensure that R,
has residual polynomials (A;,...,A,). Thus each extension generated by a
polynomial with the input invariants is generated by a polynomial in /' and all
polynomials in F' have these invariants.

(b) If S,, : K — K is surjective for all segments with integral slope —m, then all
of the nonzero coefficients in our template 7 are either fixed by dq or A, or free
because they are not set by a choice of element in the image of some S,,. Any
deformation of the uniformizer that might result in two polynomials in F' to
generate the same extension would have to change one of these free coefficients,
but such a change cannot be made independently of the choices we made in
order to set coefficients to zero by Lemma 5.6. So no two polynomials in F
generate isomorphic extensions.

(c) Suppose there is exactly one S, : K — K that is non-surjective, and for
all integers k > n¢r(m), there is an m’ € Z”° such that nogr(m’) = k. As
S,, : K — K is non-surjective, there will be more than one choice for ¢; ; where
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jn+1i=ne¢r(m). By Proposition 5.4, the corresponding change of uniformizer
(from « to a+~va™*!) can change @, where j'n+i' > jn+i. Since there exists
m' € Z7° such that ngr(m’) = j'n + 4, then Algorithm 5.8 will assign ¢y ;s
based on S,,,. Given that m # m’, S, is surjective, ¢, j» can be set to zero by
Lemma 5.6. As all coeflicients ¢ j with j'n +4' > jn + i are assigned by the
residual polynomials of components, no two polynomials generate isomorphic
extensions. O

As in general the algorithm returns more than one polynomial generating each
extension with the given invariants, the output needs to be filtered by comparing the
generated extensions by

(a) computing all reduced generating polynomials using [Mon14, Algorithm 3] and
comparing these or

(b) using a root finding algorithm (compare [PRO1]).

The product [[~_, #ker S,, is an upper bound for the number of automorphisms of
L/K. This together with the number of reduced polynomials of ¢ gives the number of
automorphisms of L/K ([Monl4, Theorem 1|). Alternatively the number extensions
generated by each polynomial can be computed using root finding.

5.2.1 Enumerating Extensions of Given Ramification Polygon and Invariant A

Now we present an algorithm to enumerate all extensions with a given invariants.
It may require multiple calls to Algorithm 5.8 Al11ExtensionsSub depending the
structure of A and the number of tame subextensions.
Algorithm 5.11 (A11Extensions).
Input: A m-adic field K, a ramification polygon R, and invariant A

Output: A set F' that contains one generating Eisenstein polynomial for each totally
ramified extension of K with ramification polygon R and invariant A

(a) Sp < a set of representatives of K> /(K*)™.
(b) For 6 € Sy do
(i) Partition A into disjoint sets A*!, ..., A* by Equation (3.4).
(i) For A* € {A*, ... A*} do
e Let A be a representative of A*.
e [ < AllExtensionsSub(K, R, A,0). |Alg. 5.8]

e Unless avoidable by Theorem 5.10, filter £’ so that no two polynomials
generate the same extension using method of choice.
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o [+ FUF'.
(c) Return F.

Theorem 5.12. Let F be the set of polynomials returned by Algorithm 5.11. For
each extension L/K with ramification polygon R and invariant A, the set F' contains
exactly one generating polynomial.

Proof. Let L/K be a totally ramified extension with ramification polygon R and in-
variant A. Let 10 € O[z] be an Eisenstein polynomial generating L with 1y, € Sp.
Let A®) be the residual polynomials of segments of R given 1). As 1 generates L with
invariant A, A® belongs to some A* in our partition of A. If A is our choice of repre-
sentative of A*, then by Lemma 3.29, there is a ¢ € Og[x] with residual polynomials
A such that K[z|/(¢) = K|z]/(¢). Thus, L/K can be generated by an Eisenstein
polynomial ¢ with residual polynomials A, and (o1 = %1, and by Theorem 5.10,
there is at least one ¢ € F’ with F” returned by Al1ExtensionsSub(K, Ry, A, 1)
generating L/K. The output F' contains one generator for every extension that can
be generated by any polynomial in any F’ produced, and so there is a polynomial in
F generating L/K.

To show that no two polynomials in F' generate the same extension, it suffices
to show that no polynomials produced by different calls to Algorithm 5.8 generate
the same extension. Let ¢ and i be in two such polynomials. By Lemma 3.28, if
wo1 # Yo1, then as @o1,v01 € K*/(K™)", Klx]/(¢) 2 Klz]/(¢). Now suppose
©01 = ¥o1. By Remark 3.4.2, if the residual polynomials of ¢ and ¢ are not in
the same A* then K[z]/(¢) 2 K|[z]/(¢). Thus, if two polynomials are generated by
Algorithm 5.8 with different inputs of § or residual polynomials returned by Algorithm
5.11, they cannot generate the same extension. O

5.2.2  Enumerating Ezxtensions of Given Degree and Discriminant

We generalize our enumeration process with an algorithm to enumerate all exten-
sions with a given degree and discriminant, which calls all of our previous enumeration
algorithms.

Algorithm 5.13 (Al1ExtensionsDisc).
Input: A m-adic field K, a degree n = egp”, and Jy satisfying Ore’s Conditions

Output: A set F' that contains one generating Eisenstein polynomial for each totally
ramified extension of K of degree n and discriminant of valuation n+.Jy—1.

(a) Sy < a set of representatives of K™ /(K ™)".
(b) F < {}
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(¢) P+ {(1,),(n,0),(p",0)} U{(:,0) | p < i < n and v,(}) = 0}.
(d) V(i) < 1(z,0) for 1 <i <n.

(e) For R in Al1RamificationPolygons(K,P,r — 1,V (i)) do [Alg. 3.17]
e For y € Sy do
(i) P < AllResidualPolynomials(K,R,0). [Alg. 3.31]

(ii) Partition P into disjoint sets A*!, ..., A** by Equation (3.4).
(iii) For A* € {A*, ..., A*} do
o Let A be a representative of A*.
o F' <+ AllExtensionsSub(K,R,A,0). |Alg. 5.8]

Unless avoidable by Theorem 5.10, filter F” so that no two polynomials
generate the same extension using method of choice.

o F+ FUF'.
(f) Return F.

@)

Theorem 5.14. Let K be a m-adic field, n = eqp” € Z7° and Jy satisfying Ore’s
Conditions. Let F be the set of polynomials returned by Algorithm 5.13. For each
extension L/K of discriminant ()"0~ the set F' contains exactly one generating
polynomial.

Proof. Let L/K be a totally ramified extension of degree n = epp” € Z~° and dis-
criminant (7)""/~1. Let ¢ € Og|x] be an Eisenstein polynomial generating L with
o1 € So. We know such a polynomial exists by Lemma 3.28. The ramification
polygon of L/K must satisfy the conditions of Proposition 3.13, so R, is generated
by Algorithm 3.17. Let A®) be the residual polynomials of segments of R,. As A®)
satisfies the conditions of Proposition 3.23, it must be generated by Algorithm 3.31.
A®) belongs to some A* in our partition of P. If A is our choice of representative of
A*, then by Lemma 3.29, there is a ¢ € Ok|x] with residual polynomials A such that
Klz]/(¢) = Klz]/(¢). Thus, L/K can be generated by an Eisenstein polynomial ¢
with Ry, residual polynomials A, and g1 = 19,1, and by Theorem 5.10, there is at
least one ¢ € F’' with F’ returned by Al1ExtensionsSub(K, Ry, A, 11) generating
L/K. The output F' contains one generator for every extension that can be generated
by any polynomial in any F’ produced, and so there is a polynomial in F' generating
L/K.

To show that no two polynomials in F' generate the same extension, it suffices
to show that no polynomials produced by different calls to Algorithm 5.8 generate
the same extension. Let ¢ and 9 be in two such polynomials. If R, # Ry, then
they cannot generate the same extension. So suppose R, = R,. By Lemma 3.28,
if wo1 # o1, then as wo1,1%01 € K*/(K*)", Klz]/(v) 2 Klz]/(¢). Now suppose
o1 = o and that Kz]/(¢) and K[z]/(¢) have the same invariant A. By Remark
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3.4.2, if the residual polynomials of ¢ and 1) are not in the same A* then K[x]/(1)) 2
K[z]/(¢). Thus, if two polynomials are generated by Algorithm 5.8 with different
input of ramification polygon, d, or residual polynomials in the process of Algorithm
5.13, they cannot generate the same extension. O

5.3 Examples

In Figure 4 we compare the implementation of the algorithm from [PRO1] in
Magma [BCP97] (A11Extensions) and Pari [PG14] (padicfields) with our imple-
mentation of Algorithm 5.13 in Magma using root finding to filter the set of polynomi-
als to obtain a minimal set. In the implementation of the method from [PR01| Magma
we replaced the deterministic enumeration of polynomials by random choices, which
yields a considerable performance improvement. In our implementation of Algorithm
5.13 the filtering out of redundant polynomials can accelerated by using reduction
[Mon14] instead of root finding.

K |n|v(disc)| #F |Magma [PRO1||Pari [PRO1]|Magma (Alg. 5.13)
Q39 9 2 10 ms 37 ms 10 ms

Qs 9] 22 96 67 s 11s 30 ms + 5.77 s}
Q3| 9| 26 81 16.61 s 3.64 s 0.05 s

Qs |27 27 2 30 ms 56 h 10 ms
Qs[27| 107 11,594,323| > 5 days - 17 min

Figure 4. Time needed to compute a minimal set F' of generating polynomials of all
extensions of K of degree n with discriminant exponent v(disc). All timings were
obtained on a computer with a Intel Core 2 Quad CPU at 2.83GHz and 8Gb RAM
running Ubuntu Linux 14.04 LTS. (} time required to filter output of Alg. 5.8)

We now present generating polynomials for totally ramified extensions of degree
15 over Q5 (Example 5.15), totally ramified extensions of degree 8 over an unramified
extension of degree 2 over Q, (Example 5.16), totally ramified extensions of degree 9
over a ramified extension of Q3 of degree 3 (Example 5.17), and an example over Q3
that shows that in general not all extensions with the same ramification polygon and
invariant A have the same mass (Example 5.18).

Example 5.15. We find generating polynomials for all totally ramified extensions L
of Q5 of degree 15 with vs(disc (L)) = 29, the highest possible valuation by Proposition
3.1. There is only one possible ramification polygon R = {(1, 15), (5,0), (10,0), (15,0)}
and only one possible set of residual polynomials A = {(3z + 2, 21 + 32° + 3)} for
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such extensions. Denote by ¢(x) = Zio ©;x" an Eisenstein polynomial generating
such a field L.

By Lemma 3.28 all extensions of Q5 with ramification polygon R can be generated
by polynomials ¢ € Zs[z] with g = 5 mod 25. As b, = 0 for all points (p*, a;n+b;) €
R, Proposition 3.14 only gives us restrictions on ¢ based on Lz and no coefficients
are set by Lemma 3.27. This provides the following template for ¢:

‘11,‘15 .1‘14 xlS .’1312 fL‘ll mlO $9 138 IIJ7 1‘6 $5 .’174 .%‘3 $2 .’L‘l {I,‘O

52 {0} RFs R]Fs RIFF) R]Fs R]Fs R]Fs RFs RFs R]Fs R]Fsa R]Fs RFs R]Fs RFs R]Fs
5'[{0} {0} {0} {0} {0} Rw, {0} {0} {0} {0} Rw, {0} {0} {0} {0} {1}
5°[{1} {0} {0} {0} {o} {o} {0} {0} {0} {o} {0} {0} {0} {o} {0} {0}

The ramification polygon Ry has no segments with non-zero integral slope. We
get S; =z, S, = 2, and S; = 2%, with 15¢(1) = 5, 15¢(2) = 10, and 15¢(3) =
15. Thus ¢51 = 0, w101 = 0, and g2 = 0. Further, for m > 4, S, = z. As
15¢(m) = 15+m for m > 4, by Lemma 5.6, we can set ¢, ; = 0 for k+9(j —1) > 19.
Therefore, the generating polynomials ¢ of the fields over Q5 with invariants R and
A follow this template:

‘$15 .7514 .5(713 l‘12 1‘11 IlO 1,9 338 1,7 136 335 .T4 I3 1,2 Tl .T,‘O

52 {07 {0} (0J {0} {0} {0} (0} (0] {0 {0} (0] 0] Re, R, Rey (0
51/ {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {1)
59/ {1} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0}

As all of the S, are surjective, by Theorem 5.10 (b), no two of these 125 polynomials
generate isomorphic extensions of Qs.

Example 5.16. Let K be the unramified extension of Q, generated by y?> +y+1 €
Qaly]. Let v be a root of 4> +y + 1, so K = Fy(y). We want to find generating
polynomials for all totally ramified extensions L of K of degree 8 with vy(disc (L)) =
16, ramification polygon with points R = {(1,9),(2,6),(8,0)}, and A containing
(72 + 7, 2% + 7). Denote by ¢ = Z?:o @;x" an Eisenstein polynomial generating such
a field L.

By Proposition 3.14, we have v(y1) = 2 and v(pg) = 1, and that v(p;) > 2 for
i €42,3,4,5,7}. By Lemma 3.27, the point (1,9) = (2°,1-8+1) on R gives us that
¢12 = v and the point (2,6) = (2',0-8 + 6) on R gives us that ps; = 7. We set
o1 = 1 by Lemma 3.28 and the template for the polynomials ¢ is:

22 27 28 2® 2t 23 2% 2l 20

2°|{0} Rk Rk Rx Rk Rk Rk Rk Rk
2°/{0} Rk Rk Rx Rk Rk Rk {7} Rx
2'1{0} {0} {} {0} {0} {0} {0} {0} {1}
201{1} {0} {0} {0} {0} {0} {0} {0} {0}
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It remains to consider the S,,. Our ramification polygon R has two segments of
integral slope, —3 and —1, respectively. So by Lemma 5.3, S,(2) = 224, = 22(2° +7)
and S5(z) = zA, = z(yz+7). As S, is surjective and n¢(1) = 8, we may set g2 = 0.
As R has no segment of slope —2, S, is surjective, so with n¢(2) = 10, we may set
22 = 0. On the other hand, S, is not surjective and has image {0,v}. By Lemma
5.6 and as no(3) = 12, w42 € Rk /{0,7} = {0,1}. For m > 4, n¢(m) = 9+ m, and
so we can set ¢ ; = 0 for £+ 8(j — 1) > 13. This gives us the following template for
polynomials (:

8 T

6 5 4 3 2 1 0

2°|{0} {0} {o} {0} {o} {o} {0} {0} {o}

221{0} {0} {0} {0} {0,1} Rk {0} {»} {0}

2°1{0} {0} {~} {0} {0} {o} {0} {o} {1}

2°/{1} {0} {0} {0} {0} {o} {0} {0} {0}

As S, is the only non-surjective S, , and for all integers k greater than ne¢(3) = 12,
no(k —9) = k, we have by Theorem 5.10 (c¢) that no two of these 8 polynomials
generate the same extension.

Example 5.17. Let K = Q3[x]/(2? — 3) and let 7 be a uniformizer of the valuation
ring of K. As in Example 3.16, there are three possible ramification polygons for
extensions L of K of degree 9 with vs(disc (L)) = 18, namely R; = {(1,10), (9,0)},
Rs = {(1,10),(3,3),(9,0)}, and R3 = {(1,10),(3,6),(9,0)} (compare Figure 2).

Let us again choose to investigate Ro. By Lemma 3.8 we have v,(¢3) = 1 and by
Lemma 3.28 we can set ¢p; = 1. As K = Qg, we have the same four choices for the
invariant A: Ay = {(14+2x,2+2%)}, Ago = {(24+x,1+22%)}, Agz = {(14x, 1+2%)},
and Ay s = {(2+ 22,2 + 2°)}.

Let us choose Ay ;. By Lemma 3.27 we get from the point (1,10) = (3%,1-9+1)
on Ry that @15 =1 and from the point (3,3) = (3,09 + 3) on R, that ¢3; = 2.

The ramification polygon R, has no segments with integral slope. We get S, = 3,
Sy =12? and S; = z3, with 9¢(1) = 6, 9¢(2) = 9, and 9¢(3) = 12. Thus @1 = 0,
wo2 = 0, and 35 = 0. Furthermore S,, = x for with 9¢(m) = 10 +m for m > 4.
Thus by Lemma 5.6 we can set ¢ ; =0 for k+9(j — 1) > 14.

Proceeding as in Examples 3.16, 3.30, and 5.7 we obtain a familiar template for
the polynomials generating fields over K with ramification polygon Rs and invariant

A2,12

—

5 4 3 2 1 0

9 8 x x T T X

X $7

6

T T T

=t 1{0} {0} {0} {0} {0} {o} {o} {o} {0} {0}
w*1{0} {0} {0} {0} {0} {o} {0} {0} {o} {0}
Wj {0} {0} {0} {0} {0} {0,1,2} {0} {0,1,2} {1} {0}
71.0

{0} {0} {0} {0} {0} {0} {2} {0} {0} {1}
{1} {0} {0} {0} {0} {0} {0} {0} {0} {0}
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As all of the S,, are surjective, we obtain a unique generating polynomial of each
degree 9 extension of K with vs(disc (L)) = 18, ramification polygon R, and invariant

A 1.

While our choice of residual polynomials relate to the size of the automorphism
group of the extensions generated by our polynomials, the polynomials generated
by Algorithm 5.13 (and in general, those generating extensions of the same degree,
discriminant, ramification polygon, and .A) do not generate extensions with the same
automorphism group size.

Example 5.18. Over Qs[z], let p(x) = 2% + 625 + 182° + 3 and o (z) = 2% + 182% +
927 + 625 + 182° + 3. Both are Eisenstein polynomials generating degree 9 extensions
over Q3 with ramification polygon R = {(1,14),(3,6),(9,0)} and having residual
polynomials A; = 222 +1 and A, = 2% + 2. Using root-finding, we see that over
Qs[z]/(p), ¢ has 3 roots, while over Qs[z|/(¢), ¥ has 9 roots. Thus ) generates a
normal extension, while ¢ generates three extensions with automorphism groups of
size 3 which shows that not all extension with the same ramification polygon and
residual polynomials have the same mass.
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CHAPTER VI
OM ALGORITHMS

An OM! algorithm is an algorithm that computes the Okutsu invariants of a
polynomial ® over a local field. The Okutsu invariants include, among other data,
the ramification index and inertia degree of the irreducible factors of ®. The data
returned by an OM algorithm can be used to obtain a factorization of ®, to find local
and global integral bases, and the decomposition of ideals in global fields. Examples of
OM-algorithms are the Montes algorithm [Mon99, GMN12| and its variations [Paul0]
and the Round Four algorithm |For87,FL94,FPR02| and its variations [CG00,Pau01].

We give an OM algorithm and related results with emphasis on a complete and
comprehensive presentation that can serve as a guide for implementing the algorithm.
In part our presentation follows the approach of [PaulO| which combines the Montes
algorithm with techniques from more recent versions of the Round Four algorithm
[FPRO2,Pau01]. In the theoretical considerations we view the process of approximat-
ing the factors of a polynomials as a process of partitioning the set of its roots (section
6.1). This is followed by detailed, constructive descriptions of the first (section 6.2)
and general (section 6.3) iterations and a presentation of algorithm 6.4 as a variation
of the Montes [Mon99| algorithm.

In the description, we will frequently make use of a particular representation of
polynomials similar to the m-adic expansion of an element.

Definition 6.1. Let ® € Og[z] of degree N and ¢ € Ok]|x] of degree n be monic
polynomials. We call

[N/n]

= Z ai@i

=0

with deg(a;) < n the p-ezpansion of .

Also, by convention, fractions denoted h/e or h;/e; are always taken to be in
lowest terms.

6.1 Partitions of Zeros and Types
Let ®(z) = 2V + SN P eirt € Oklz] be squarefree and let ©g = {6;,...,0x} be

the set of zeros of ® in K. The process of approximating the irreducible factors of ®
can be regarded as a process of partitioning the set of its zeros. We obtain a tree with

By convention OM stands for the regular expression (Ore-+Okutsu)(MacLane-+Montes) [BNS13].

73



root node ©( whose leafs are the sets of zeros of the irreducible factors of . In our
description of the algorithm, we focus on one path from the root node ©g to a leaf.
We indicate where branching would be needed to investigate all irreducible factors,
thus describing the construction of all root paths in the tree. The nodes of such a
root path are subsets of ©g, with each non-root node being a subset of its parent.
As part of this process, we will need to be able to construct polynomials of bounded
degree with a particular valuation when evaluated at a root.
Lemma 6.2. Let 0 € K, (¢;)1<i<u with p; € Og[x] and ;(0) = Z— in lowest terms.
Let E; = lem(ey,...,e;)) = lem(E;_y,¢;) and ef = E;/E;_,. Assume degp; >
e degp; 1. Ifa € Z and b € Z7° with b | E,, then there exists 1 € K[x]| with
deg ) < ef degp, and v (¥ (0)) = a/b.

Proof. We prove the Lemma by induction on wu.

e u=1: If b= 1 then ¢ = 7°* with s, = a has the property v(¢(f)) = a = 2.

b
Otherwise let 1 < s; < ef such that s;h; = %ef mod €] such that

a < a hi a a
5_0(8011(9)):g_slazg—ﬁefﬁ-B@f:BefEZ

for some B € Z7°. Let s, = Be] € Z and ¢ = 75~p;'. Now v(¢)(0)) = 3 and
deg) = 51 degpy < ef deg ;.

e u > 1: Assume for @’ € Z and b € Z>°\ {0} with ¥/ | E,_; we can find ¢’ € K|x]
with v(¥/(0)) = & and deg¢)’ < e;_; deg v, 1.

If b | E,_1 then we can find ¢ by our assumption.

Otherwise we find s, € Z, 0 < s, < e such that suhu% = ¢FE, mod e}. Now

SuhyZr = 2F, + Be] for some B € Z and thus Sugt =73+ %. We get

e b
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By our assumption there exists ¢/ € K[x] with v(¢/(0)) = T and degv’ <
_ydeg y—1. Thus for ¢ = @)’ we have v (¢(0)) =

a
. and

deg1) = s, deg ¢, + deg 1)’ <sudegg0u+e 1 degp, 1
< s, degp, + deg p, < e deg p,. O

We start the first iteration with a linear monic polynomial p; = = + § € Og|x].
The negatives of the slopes of the segments of the Newton polygon of ®(x — ) are
the valuations of the roots of ®. So the set

Ly = {v(¢1(0)) | 0 € Oo}

contains the negatives of the slopes of the segments of the Newton polygon of ®(z—f3),
which yields a partition of ©¢ into the sets {# € ©¢ | v(f) = A} for A € L;. By
Corollary 2.27 each of these sets corresponds to a proper factor of ®. For some
A1 € Ly we set

O] ={0 € ¢ | v(p1(0)) = A1} (6.1)

Without computing O] explicitly we investigate the factor Hee@* (x —0) of ® further.
Let A\, = hy/e; in lowest terms. Then v(p$' (9)/7"1) = 0 for all § € ©%. We set

Ry {g [2] | p irreducible and p < L0 )/7rh1> = ( for some 0 € @T} :

If Ry contains more than one polynomial then X 1 (g) /i1 € Kz| (see Definition 2.24)
0y T

has at least two coprime factors and Proposition 2.25 yields a proper factor of ® for

each p € R;. We obtain a parition of ©7 into the sets {0 €07 | p, <<p§1(0)/7rh1> = Q}.

For some P, € R; we set

@1:{06(9{

p, (e)el /ﬂhl) - Q} . (6.2)

Without computing ©; explicitly, we investigate the factor []y.q, (v —0) of ® further.
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All information obtained in the considerations above can be derived from the tuple
(@17 )‘17 1/)1731) = (I‘, Al? Whl?ﬁl) S OK[x] X Q X K[I] X K[Z} ( in fact ¢1 - 7Th1 € K)7

which is the base for the recursive construction of a sequence of consecutively better
approximations to an irreducible factor of ®. Given (1, A1, p,) equations (6.1) and
(6.2) yield the subsets of roots ©F and ©.

For all § € ©1, E| = e] = ¢, is a divisor of the ramification index and Fy = deg p;
is a divisor of the inertia degree of K(#). Thus [K(6) : K] is divisible by E;F; and
the degrees of the irreducible factors of ® with roots in ©; are each divisible by F; F}.

The next step is the construction of a monic polynomial ¢y € Ok[z] of degree
Ey - Fy with v(pa(0)) > v(p1(6)) for all # € ©,, which is described in section 6.2.3
below. Assuming we have found such a ¢y we let Ly = {v(p2(0)) | 0 € ©1}. Again
each of the slope corresponds to a proper factor of ® (compare Corollary 2.27). We
examine one of these factors further. Let Ay = ho/es € Lo and set 05 = {0 €
O | v(p2) = A2}. For each 6 € OF the ramification index of K () is divisible by
Ey = lem{ey, e}, By Lemma 6.2, there exists 1y € K[x] with degvy < deg ps and
v(Y(0)) = —ef Xy € E%Z with e5 = Ey/F;. Now

Ry = {B e K ‘ p irreducible and p <90;;/¢2> — 0 for some € @;}

is the set of irreducible factors of x pery € K[y], each of which corresponds to a proper
factor of ®. For some p, € Ry we set

et
0, = {0 €6y p, (o5 f02) =0}
Again the sets ©3 and O can be recovered from the information contained in
(@27 A27¢27£2) S OK['I] X Q X K[[E] X Kl[z]‘

We continue this process inductively and keep track of the information computed
in a sequence of such tuples.

Definition 6.3. Let ® € Oklz]. Let t = (5, A, wi,ﬁi)lgigu where
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We call t an extended type of ® if for all f in some subset © of the set of roots of ¢
we have:

(€) v(wi(0)) = A
(f) v(vs(0)) = ef \; with e =lem(ey, ..., ¢;)/lem(ey, ..., e 1),

(8) p.(25 (6)/44(0)) = 0, and
(h) v(pi(0)) > v(pi-1(0)) and degp; = ¢ - degp, - degyp; 1 for 2 <i <.

The sequence (p;, )‘iaﬁi)lsiSu is called a type of ® of order u (see [GMN11, Definitions
1.21, 1.22 and section 2.1]).

A type t describes a root path in a tree of partitions of ©g. Ift = (¢4, Ai, Vi, pi)1<i<u
is an extended type with a corresponding subset of roots ©,,, then £, = lem(ey, ..., e,)
divides the ramification index of K(0) for § € © and F,, = degp; - - - deg p, divides
the inertia degree of K (0) for 6 € ©. As the degree of the irreducible factors of ®
are minimal polynomials of some 6 € © is divisible by E,F,, we construct ,,; of
degree F, F,. In the following sections we give methods for constructing ¢, 11, finding
v(pyur1(0)) for all 0 € O, ¥, 11, and p,1. We will see that the sets ©9 D ©; D -++ D
O, help in understanding the algorithm, but are not needed in actual computations.

It #6, = E,F,, then ¢, is an approximation to an irreducible factor of ® of
degree E,F),. Using the information in the type ¢ this approximation can be lifted to
give an approximation of any desired precision (see [GNP12]).

Definition 6.4. Let t = (¢p;, )\i,gi)lgigu be a type, write A, = h, /e, in lowest terms
and set e, = lem(ey, ..., e,)/lem(eq, ... e, 1). Let ©F ={0 € Og | v(f) = \,} and

e(50) )

where ¢ € K[z] with deg v < degy, and v(¢(0)) = ehy /e, for 6 € ©F. The type t is
called complete if £, F, = #0O,,.

@uz{ee@;
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If E;F; = 1 then no new partition of the sets of roots has been found in this step.
A type with all these elements omitted is an optimal type:

Definition 6.5. Let ¢ = (¢, )\i,gi)lgigu be a type, write \; = h;/e; in lowest terms
and set F, =lcm(ey,...,e,) and F, = degp «--- p,- The type ¢ is called optimal if
E;F; >1for1<i<u.

In section 6.6 we will see that if ¢ = (gpi,/\i,&)lgigu is complete and optimal,
then the sequence of negated slopes (\;)1<i<, and the sequence (F})1<;<y, Where F; =
deg p L p,, are invariants of ®.

6.2 The First Iteration

We start our description of an OM algorithm with the first iteration. We have
already gone through these steps in a more conceptual manner in the previous section.
As before let ¢ € Ok|x] be linear and monic, say ¢1(z) = z + 3, and let ©¢ denote
the set of zeros of ® in K. Although we use the zeros in 6 in our exposition, they
are not needed in any of the computations.

6.2.1 Newton Polygon I

The Newton polygon of ®(y — [3) yields the valuations of the zeros 6y, ...,0y of
®. We obtain the same polynomial and polygon using the ¢i-expansion of ® (see
Definition 6.1). If ® = > a;¢} is the p;-expansion of @, then

[N/ deg 1]

xiy) = > ay =2y-p (6.3)

1=0

has the zeros p1(0) where 6 € ©y. The negatives of the slopes of the segments of the
Newton polygon of x; are the valuations of ¢(0) for § € ©5. We obtain a partition
of ©¢ into the sets

{0 € ©]uv(pi(0)) = A}

where ) is the negative of the slope of a segment of the Newton polygon of x;. To find
the splitting field one continues the algorithm for each of the sets in this partition.

6.2.2 Residual Polynomial 1

Residual (or associated) polynomials were first introduced by Ore |Ore28, MN92|.
They yield information about the unramified part of the extension generated by the
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zeros of ®. Let S be a segment of the Newton Polygon of yi(y) = Zfil a;y’ (see
(6.3)), let my be the (horizontal) length of S, (k,v(ax)) and (k + mq, v(agim,)) its

v(ak)—v(ak4n)

endpoints, and \; = —

= Z—ll the negative of its slope. If

O1 = {0 € O | v(p1(0)) = A},

then |©7| = m;. We evaluate x; at ¢;(0)y and obtain a polynomial whose Newton
polygon has a horizontal segment of length m,. For 6 € ©f we consider x;(¢1(0)y).
Using the equivalence relation from Definition 2.12 we obtain

N k+ma mi/e1
Xi(e1(@)y) =" ailer @) ~ > a0y ~ Y aje, 1l (O
i=0 i=k Jj=0

The last equivalence holds, because the z-coordinates of the points on the segment
of the Newton polygon are of the form k + je; with 0 < j < m;/e;. Furthermore
for 0 < j < my/e; we have v(aje, 112} (0)) > v(arph(0)) and the polynomial
is divisible by y*. Dividing x1(01(0)y) by 7@ ¥ (0)y* we obtain a polynomial of
degree my /e; that is equivalent to a polynomial whose leading coefficient and constant
coefficient have valuation zero:

my/e1 je1 je1
aleiO) N Gt O g 0y

WU(ak)gplf(Q)yk o = ’ﬂ'v(ak’)

For € = ¢! /7" we have v(e(0)) = v(p( (0)/7") = 0. Substitution of ex™ for pf*
yields

m /el in i e
Xi1(p1(0)y) XN @je, My
O = 2 e mod (7).
=0
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Replacing ey by z and considering the resulting polynomial over K yields the residual
polynomial of S:

mi/e1

Al(z) = Z ajeﬁmjhrv(ak)zj € K[z].

J=0

For § € ©% we have that ¢ (0)/7™ € K is a zero of A,.
6.2.8 The Next Approzimation I

Let p, be one of the irreducible factors of Ay, let ©; = {0 € O] | p, (6°1/x") = 0},
and denote by p1 € Ok/[z] a monic lift of p_.

We now know that for all § € ©; the ramification index of K (6) is divisible by
FE, = ey and that F} = deg p; is a divisor of its inertia degree. We set

2 = M py (o7 /7).

The polynomial ¢y € Ok[x] is monic and has degree e; - f;.
Lemma 6.6. ¢y € Oklz] is irreducible.

Proof. For 6 € ©; we have

h
0(2(8)) = o(T" pr (9 (0)/7™) > fils 2 v(8) =
1
The Newton polygon of ¢, consists of one segment of slope —\; = —Z—ll and for each

root a of ¢y we have p, (O‘el (a)) = 0. So K(«a) = Klz]|/(p2) is an extension with

wh1

inertia degree f; and ramification index e;. Thus, as degpy = ey fi, the polynomial
g is irreducible. O]

6.2.4 Valuations I

Let a € K|x] with dega < deg ps = E1F;. We show how the data computed in the

first iteration can be used to find v(a(#)). Let a = Zf:loFrl a;} be the @;-expansion

80



of a. (Note that since degy; = 1, each a; lies in K.) Because the values

by = P

are distinct and

are linearly independent over K, we have

— ; ) = i . ;
va(®)) = _min  vlee) = min  vlag)+j(h/E).

Furthermore, if we omit all terms with valuation greater than v(a(f)) we obtain a
polynomial b that at ¢ is equivalent to a. That is, for J = {j | v(a;) + j(hi/e1) =
v(a(0))} and b= 3. ;a;pi, we have a(f) ~ b(0) for 6 € ;.

6.2.5 Arithmetic

We consider the arithmetic of polynomials of degree less than F;Fj;. Clearly
addition and subtraction of two such polynomials again yield polynomials of degree
less than FE\ Fj.

Let a(z) = Y720 gt and 7(x) = 2*7° with s1,s, € Z. Multiplication
gives a(x)7(x) = Y ,_o E1F1 — la;m* 2" which in general is a rational function or
a polynomial of degree greater than EF; — 1. We have v(p, (01 /7)) = 0. Let
7(x) = p1(z) — 2™ this gives the relation

oF I~ e fiz().

So by repeatedly substituting o?'*1 by 7717 we obtain a polynomial b € K[z] with
degb < EyFy such that b(0) ~ a(0)y(0).
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6.2.6 Representatives |

Let I' € Klx] with v(I'(#)) = 0 be reduced as described in the end of 6.2.4. As
v(T'()) = 0 it must be of the form I' = 3> g:a'™ with v(g;) = ihy. So L(0) ~
Zf:lo gi/ﬂmlll-

Each b € K, can be written as b = Zf:lgl bili with b, € K Let b; be a represen-

tative of b, in Of. Clearly for a(z) = 325" b2t we have a(f) = b.

i R

6.3 The u-th Iteration

We describe a general iteration of the algorithm. Let t = (i, Ai, ¥4, p,)1<i<u—1 be
an extended type of ® that is not complete. We write \; = h;/e; with ggd(hi, e;) =1
and set E; = lem{ey,...,e;} and ef = E;/E;_;. Assume we have found the next
approximation ¢, € Ok[z] to an irreducible factor of ® with degy, = E,_1F,_1 and
v(pu(0)) > v(pu_1(0)) for all 6 € ©,_;.

We assume we have the following methods, which rely on the data computed in
the previous steps. For each method the base case is described in section 6.2 and the
general case in this section. Because of the recursive nature of the algorithm we use
forward references in our representation.

Valuation given a € K|x] with dega < degy = E,_1, finds v(a(f)) for 6 € ©,_4
(see sections 6.2.4, 6.3.4 and Algorithm 6.9).

PolynomialWithValuation given a € Z and b € Z>° with b | E,, finds ¢ € K,[z]
with deg v < deg, = E,_1 such that v((0)) = § for all § € ©,,_; (see Lemma
6.2).

Furthermore we assume we have methods for arithmetic and reduction of polynomials
of degree less than E,, in their representations as sums of power products (see sections
6.2.5, 6.3.5 and Algorithm 6.12 (reduce).

In the wu-th iteration of the algorithm we investigate the properties of ¢, and
construct the next approximation ¢, 1 to an irreducible factor of ®.

6.3.1 Newton Polygon I

We use the p,-expansion of ® to find the valuations v(p,(0)) for § € ©,_1. Let
l, = [N/degp,] and & = Ziu:o a;0', be the @,-expansion of ®. For each root
0 € ©,_1 we have
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Hence

has the zeros ¢,(0) for 0 € ©,_;.

The method Valuation returns the valuations of the coefficients a;(#) of x, and
with these the Newton polygon of y, yields the valuations of ¢,(0) for 6 € ©,_;.
We obtain a partition of ©,_ into the subsets {6 € ©,_1 | v(¢(f)) = A} where A is
the negative of the slope of a segment of the Newton polygon of y,. By Corollary
2.27 each segment of the Newton polygon of y,, and thus each set in the partition,
corresponds to a factor of ®.

Definition 6.7. The Newton polygon of x, is called the Newton polygon of & with
respect to ¢,. It is also called a Newton polygon of higher order [Mon99, GMN12|.

6.3.2 Residual Polynomial IT

Let S be a segment of the Newton Polygon of x, of length m, with endpoints
(k,v(ag(0))) and (k + muy, v(agsm,(0))) for 8 € ©,_;. Let

A, = v(ag(0)) — v(akim, (0)) _ @7

My, €y

where ged(hy,e,) = 1 and let ©F = {6 € O,_1 | v(pu(0)) = A\,}. We have |OF] =
m, deg@,. Set E, =lem{ey,...,e,} and ef = E,/E, 1.
The method PolynomialWithValuation gives ¢, € K, 1[z] with

— et _ oy hy,
owa0) = v (@) = i = =
for 6 € ©;. We have
k+my, 4 ' mu/(e;f) » n
Xulpu(®) ~ > a(@)p(O)3' ~ D age f (O) T (O)
i=k =0
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The last equivalence holds, because the z-coordinates of the points on the segment
of the Newton polygon are of the form k + jel (0 < j < m/(e))). Division by @Fy*
yields

mu/(ed)

X" 90“ jed jei
SO Z a]e++k (P{L (0>yj .

For 7 = @(6)°% /13,(6) we have v(y) = (5 (6) /1,(6)) = 0. By substituting 7, (9)
for ¢% (6) we get

ma/(ei)

MBI~ Y s OO0

The method PolynomialWithValuation gives a polynomial 7 € K,,_;[z] with v(7(0)) =
v(a(0)) for 6 € ©,_1. Replacing vy by y and division by 7(0) yields

"L s (0)E0)
A= 3 0,

J=0

ajeprk(g)@%(e)
7(0)

By construction, v ( ) > 0, and in particular,

(@00 (a0 D 0))
(5 ) =0 e ( =0 )—0-

So the polynomial A(z) € K, ,[z], called the residual polynomial of S, has degree
ma/(e).
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6.3.8 The Next Approximation I1
We construct ¢,+1 € O[x] with

U<§0u+1(9)> > 'U(Spu<9)) and deg Putl = E,F,.

Let p(z) = szio r;y' € K, ; be one of the irreducible factors of A,(2). We set
R, = 1 and using methods from 6.3.6 and 6.2.6 we obtain polynomials R; € K|z]
with R;(0) =r, for 0 <i < f,. Now for

e fu
* w %Ouu w—1l, i€y
P = Vp (7) = Z Rl
i=0

by construction

90:;-1-1(6) = ?ﬂf“ (0)p <&(9)> > fuei)‘u > Ay = 0u(0).

As, in general, deg ), , > E,F, we reduce the degree of this polynomial. It is
sufficient to find polynomials b; € K[z] with degb < E,F, (0 < i < f,) such that
bi(0) ~ R;(0)y/*~4(#). We obtain the b; by using the methods from 6.3.5 and 6.2.5

for degree reduction and set
Fu—1

Pusr = @l Y bl
=0

6.3.4 Valuations 11

For b € K, _1[z] with degb < E,_1F,_; the method Valuation yields v(a(6)) for
0ecO, CO,.
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Let a € K,[z] with dega < E,F, and m = [dega/degp,]. Let a = 377" a;pl,
with dega; < deg¢, = E,_1 be the ¢,-expansion of a. As the valuations

are linearly independent over K, for § € ©, we have

v(a(f)) = min v (a;(0)¢l,(0)) = min v(a;(8) + j(h/E).

0<j<m 0<j<m

If we only consider the terms with valuation v(a(#)) we obtain a polynomial that at
is equivalent to a, that is, for J = {j | v(a;)+jhu/e, = v(a(f))} and b = >°._; ajpl, we
have a(0) ~ b(f) for 6 € ©,. This also shows we only need the type ((vi, Ai, p,))1<i<n
to compute the valuation v(a(f)) but not 6. -

6.3.5 Arithmetic 11

We consider the arithmetic of polynomials of degree less than E,F,. Clearly
addition and subtraction of two such polynomials again yield polynomials of degree
less than E,F,. We assume methods for handling polynomials of degree less than
E, 1F, 1 are available. That is, given a € K, 1[z] and b € K, 1[z] we can find
a polynomial ¢ € K, 1[x] with degc < E,_1F,_1 such that ¢(0) ~ a(0)b(0) for
e, C 0O, .

Let a = .20 a0l and b = 30 with s, € Z and ¢ € K[z] of degree less than
E, 1F, 1. Multiplication gives ab = Zi:o E,Fy — la;b'¢*~% which in general is a
rational function or a polynomial of degree greater than F, F,, —1. By our assumption
we can find polynomials ¢; € K[z]| with deg¢; < E,_1F,_; such that ¢;(0) ~ a;(0)b'(0)
for 0 € ©, C ©,_1. We have v(p, (¢ (0)/1(0))) = 0. Let 7 = p; — ' this gives the
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relation
oF I o iz (g,

So by repeatedly substituting ¢/« by J«7(p,/1,) we obtain a polynomial b € K|[x]
with degb < e, f, such that b(0) ~ a(0)y(8).

Proposition 6.8. Let t = ((¢;, )\i,gi))lgigu be a type of ® and O, the corresponding
subset of zeros. Let a,b € K[z| with dega < deg, and degb < degp, then there
ezxists ¢ € K[z] with degc < deg p, such that c(6) ~ a(0)b(0).

6.3.6 Representatives I1

Let I' € Klz] with v(I'(#)) = 0 be reduced as described in the end of 6.3.4. As
v(T'(6)) = 0 it must be of the form I' = 3.7 g:a'® with v(g;) = ihy. So L(f) ~
ZZF:IO gi/ﬂ—lhlll'

Each b € K, ; can be written as b = Zf:lal Z_)Zli with b, € K Let b; be a
representative of b, in Ok. Clearly for

F1—1 szl

a = E bz 7
- e
=0

we have a(f) = b.

6.4 The Algorithm

Let t = ((¢;, /\i,gi))lgigu be a type of ® and let ©, be the corresponding subset
of the roots of .

First we have to compute the @, -expansion of ® and (recursively) the p;-expansions
of the coefficients (see 6.3.1). The following step, that is, the computation of the
residual polynomial (6.2.2 and 6.3.2), can be conducted in the representation of the
polynomials as nested p;-expansions, as computed in the first step. This includes the
computation of 1 and 7, which only need to be represented as a sequence of expo-
nents. We need to return to a presentation as polynomials only when constructing
the next approximation (6.2.3 and 6.3.3).

In an implementation of the algorithm the methods described below operate on
representations of polynomials as nested ¢;-expansions. To avoid having to write
down these somewhat involved data structures, we use polynomials to formulate the
input and the output of the methods.
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Sections 6.2.5 and 6.3.5 yield these methods:

S1

div(t,a,b) given a € K|x] of degree less than E,F, and b = @’ ... o7 7", where
si < e;fi, we find C € Klx] with degc < deg ¢, such that a(0)/b(0) ~ ¢(0) for
all 0 € O,:

mult(t,a,b) given a,b € K|x] of degree less than E, F,, we find ¢ € K[z] with degc <
deg p, such that a(0)b(0) ~ c(0) for all 0 € O,;

pow(t,a,n) given a € K|[z| of degree less than E,F,, we find ¢ € K[z] with degc <
deg ¢, such that a(0)™ ~ ¢(0) for all § € O,.

Sections 6.2.6 and 6.3.6 yield the methods:

residue(t,a) given a € K[z| with dega < E,F, and v(a(f)) = 0 we find v € K,
such that a(f) = v;

representative(t,) given v € K, we find with a € K[z] with dega < E,F, such
that a(0) = ~;

We give auxiliary algorithms for the computation of v,(a) = v(a(f)) for 6 €
O,, the Newton polygon of ® with respect to ¢, polynomials with given valuations,
the reduction of elements represented as power products of polynomials, and the
computation of residues and residual polynomials.

We use Algorithm 6.9 (Valuation) to compute v (a(f)) for 6 € ©,. It follows
from the discussions in sections 6.2.4 and 6.3.4 that to find v;(a(f)) for 6§ € O,
we only need the type t = ((gpi,/\i,pi))lgigu and not 8. We thus obtain one of the
valuations of polynomial rings as classified by MacLane in [ML36a]. We write v;(a)
for the valuation computed by the algorithm and have v;(a) = vg, (a(0))

Algorithm 6.9 (Valuation).
Input: A local field L, type ((i, Ai, p,))1<i<u Over L, and a(x) € L[z].
Output: Valuation v(a).

e If a € L: Return v (a).

e Find the ¢, i-expansion of a(z) = Z][ieog“/deg%] a;(z)el (x).

e Return min {Valuation (L, (i, )\i,&,))lgigu,l, aj) + j A1 | 1< < (%ﬁf_ﬂ}
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Given a type t and § € Q with d|E,, Algorithm 6.10 (PolynomialWithValuation)
returns a polynomial ¢ such that v;(y)) = § as described in the proof of Lemma 6.2
(also see [Paul0, Algorithm 14| or [GNP12, Section 4]).
Algorithm 6.10 (PolynomialWithValuation).
Input: A type ((¢, )\mﬁi))lgigu and § € Q with d|E,,.
Output: +(z) € K|[r] with degy < degp, and v,(¥(0)) = <.

If d = 1: Return 7°.

If d|E,_1: Return PolynomialWithValuation <((<pi, )\i,gi))lgigu,l, g)

Find 0 < s < e/ such that sh, = <E, mod €.

d
If u = 1: Return i~ g$()

Return ¢ (z) - PolynomialWithValuation (((gpi, Ais P))1<i<u—1, G — sAu>.

Algorithm 6.11 (NewtonPolygonSegments) returns the set of segments of the New-
ton polygon of ® with respect to ¢ as described in section 6.2.1 and 6.3.1.

Algorithm 6.11 (NewtonPolygonSegments).
Input: A local field L, ® € L[z], a type t = ((¢i, \is p,))1<i<u Over L, and ¢ €
OL [x]
Output: Set of Segments S of the Newton polygon of & with respect to ¢.

e Find the g-expansion ® =Y " ;0" where m = [deg @/ deg ¢].
e Find v; = Valuation (L,t,a;) for 0 <i < m.
e Construct the lower convex hull of the set of points {(i,v;) | 1 <7 < m}.

e Return the set S of segments of this broken line.

In sections 6.2.5 and 6.3.5 we have described how a product [[;_, ¢i'(z) can be
reduced such that s; < ef for 1 < i < w. Algorithm 6.12 (reduce) conducts this
reduction recursively. Because, for 1 < i < u the valuations of ¢* with s; < e
are linearly independent, there is only one reduced representation of each class of
some a € L[z| with respect to the equivalence relation from Definition 2.12. Thus if

vi(a) = 0 then reduce(a) € L. In the course of our algorithm, we find ~, be such
that gpix ~ YWy
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Algorithm 6.12 (reduce).
Input:  An extended type (i, \i, i, p,))1<i<u and a(z) = @i - [[12] ¢} -6 € L[a]
with 0 € K.
Output: b(z) = pic(x) € L[z] with dege < degyy, 0 < s, < e, and a() ~ b(0)

for 0 € O,

o If a € L: Return a.

s, d < divmod(r,, e;})

® 7, < representation(t,7y) where 7 is a root of p .

Return 7, - reduce (((%’a Air iy p,) 1<i<u-1, QGRETARD | AR 5) .

The residual polynomial of a segment of a Newton polygon of higher order is
computed in Algorithm 6.13 (ResidualPolynomial).

Algorithm 6.13 (ResidualPolynomial).

Input: A type ((¢;, )\Z‘,Bi))lgisu, a segment S of the Newton polygon of ¢ with
respect to ¢, and 1 with v,(¢) = etv,(p) where et = lem{E,, e}/E, and
—h/e is the slope of S.

Output: The residual polynomial A of S.

N/ deg @, .
o Let & = Zlo/ e a;p" be the p-expansion of ®(x).
e Let m be the length of S.
e 7 < PolynomialWithValuation(t,v) where v is the y-coordinate of the first
point of S.
m/et
o A(Z) A Z IGSidue(t7 mU1t(t7 At jet (.’L’), diV(t, pOW(t, w<m)a ])7 T(Jj))))Z]
=0
e Return A.

We use Algorithm 6.14 (NextApproximation) to construct the next approximation
to an irreducible factor of ®, following the logic of sections 6.2.3 and 6.3.3. Because
we have defined the methods mult and pow so that they return polynomials that have
been reduced to appropriately bounded degrees, we do not directly call reduce.
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Algorithm 6.14 (NextApproximation).
Input:  An extended type t = ((¢;, i, wi,/_)i))lgigu, where p = Z{io r.z
Output: ¢ € Oglx] with v(p(8)) > v(p,(0)) and degp = E, F,

e b, < mult (¢, representative(t,r;), pow(t, Vy, fu — 1)) for 0 <i < f,.

e Return /v 4 ZQO_ L b plen.

6.4.1 OM Tree

The main algorithm computes a complete and optimal type for every irreducible
factor of ®. In our algorithm we use the empty type ty, which is the sequence of
length zero, as the root of the tree of approximations. In the pseudocode below t,
is the empty type, which corresponds to the set © of all roots of ®, L is the list of
complete, optimal types, and T is the stack of types to process.

Algorithm 6.15 (OMTree).
Input: & € Ok|x] monic and square-free.

Output: Set of all complete optimal types L of ®.

e Initialize L <+ { } and T + {to}
e While 7" is non-empty:
o Choose t from 7" and remove ¢ from 7'
o ¢ < NextApproximation ()
o For S € NewtonPolygonSegments (P, ¢, p)):
o Let A = —h/e be the slope of S.
o et « lem{E,,e}/E,.
o 1 < PolynomialWithValuation(t, et v (¢)).
o For each factor p(z) of ResidualPolynomial (t,S,):
e If the length of S is one: [t is complete and optimal]
o Insert ¢ into L.
e Else if e, f, = 1: [this is an improvement step]
o Insert ¢ with its last member replaced by (¢, A, 1, p(2)) into T'.
e Else: [this is a Montes step]
o Insert t with (¢, A, 9, p(2)) appended into T
e Return L.
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The termination of the algorithm is assured by the following theorem.

Theorem 6.16 ([Pau0l, Proposition 4.1]). Let ® € Ok[x] be square-free and let O
be the set of zeros of ® in K. Let ¢ € K|x] such that the degree of any irreducible
factor of ® is greater than or equal to deg . If (deg ®) - v(p(0)) > 2v(disc ®) for all
0 € Og then degp = deg ® and ® s wrreducible over K.

By Theorem 6.16 the polynomial ® is irreducible if we find a monic ¢ € Og|z]
such that (deg®)v(p,) > 2v(disc @) for some v € Z°. In every iteration of the
algorithm the increase from v(p,) to v(p,+1) is at least 1/(deg ®). Thus the algorithm
terminates after at most v(disc @) iterations.

6.5 Polynomial Factorization Example

We have implemented an OM algorithm for polynomial factorization as described
in [Paul0] along with the single factor lifting method from [GNP12] in the computer
algebra system Sage [ST14]. We now describe in the flow of Algorithm 6.15 the process
of factoring ® = 2% + 32? + 623 + 9 + 9 € Zs[z].

We begin with an empty type. Our first approximation is ¢ = z. The ;-

expansion of ® is ® = Y0 a;z". The valuations of the coefficients are v(ag) =
2,v(a1) = 2,v(az) = 1,v(aq) = 1,v(as) = oo, and v(ag) = 0. This gives us a Newton
polygon with one segment of slope —% (see Figure 5). We now have that e/ = 3 and

v(pr) = A\ = % Next, we find a polynomial 1; with valuation efv;(p1) = 1. So

Y1 = 3. The residual polynomial of our one segment is z? + 2z + 1 = (2 + 1)2, so

p,=%2+1 We proceed with one extended type in our set (z, %, 3,24 1).

The next approximation we find is ¢y = 23 — 6. The @y-expansion of ® is & =
02+ (37 + 18)¢y + (272 + 81). The valuations of the coefficients are v(ag) = min{3 +

5,4} = 2 v(a1) = min{1 + 3,2} = 2, and v(az) = 0. This gives us a higher order

Newton polygon with two segments (Figure 5), one of slope —2 and one of slope —%.

Figure 5. Newton Polygons of ®(z) = 2% + 32* + 623 + 92 + 9 € Z3[z].
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Let S be the segment of slope —2. We set Ay = 2. As the denominator of the
slope is 1 and E; = 3, we get e = 1. We find v, with valuation e v;(ps) = 2, which
gives us ¢, = 3%2. The residual polynomial is just z + 1, so p, =z + 1. This segment
has length 1, so we add (z® — 6,2,3% 2z + 1) to our list of complete extended types to
return.

Let S be the segment of slope —%. We set Ay = ‘51. As the denominator of the
slope is 3 and E; = 3, we get ej = 1. We find ¢, with valuation 3 v;(¢2) = 3, which
gives us ¢1 = 3¢y = 3z. The residual polynomial is just z + 1, so p, = z + 1. This
segment has length 1, so we add (2 — 6, %,
types to return.

To create a factorization, we call NextApproximation on each of the returned
types, and lift those to factors [GNP12|. The next approximations of our type where
Ao = 2 is x® — 24, which lifts to 2® + 3, For the type with Ay = 3, we get 2® — 6z — 6,
which lifts to #® + 3z + 3. So, ® = (23 + 3)(2® + 3z + 3).

3z, z+ 1) to our list of complete extended

6.6 Okutsu Invariants

We now describe the polynomial invariants of Okutsu |Oku82| and how they relate
to the values found in an OM algorithm. The connection between the algorithm and
these invariants was first explored in [GMN10b] and in many papers since.

Definition 6.17 ([Oku82, II, Definitions 1 and 2|). Let ® € OgJz| be irreducible
and 6 be a root of ®. We recursively define

mo = deg @,
ty = max{v(f — B) | B € K such that [K(B) : K] < m,_1},
m, = min{[K(a) : K] | a € K such that v(§ — a) = j,.}

The minimal polynomial x, € Oklz] of a with v(0 — «a) = pu, is called an u-th
primitive divisor polynomial of .

These divisor polynomials are not invariant, but properties of the extensions they
generate are. We state a reformulation of Corollary 2.8 from [GMN10b|.

Theorem 6.18. Let (p1,...,p,.) be a sequence of primitive divisor polynomials of a
monic, irreducible, and separable ® € Oklz]. Let 0 be a root of ®, L = K(0), and
K; = K(«a;) where a; is a root of ;. Then E; = e(K;/K), F; = f(K;/K), and \; =
v(p;(6)) do not depend on the choice of frame. Furthermore, E,. | --- | Ey | e(L/K)
wd F.| - | Fy | f(L/K).
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Definition 6.19. An Okutsu invariant of ® is any rational number that depends
only on Fy,...,E, and Fy,..., F,. and Ay, ..., \.. An OM algorithm is an algorithm
that computes the Okutsu invariants of a polynomial.

There are several useful examples of Okutsu invariants. As we have shown, the
ramification index and residual degree of L = K{[z|/(®) are given by these values.
Additionally, the index [GNP12, Proposition 3.5], the exponent [GMN13, Theorem
5.2], and the the conductor [Narl4, Corollary 1.9] of ® are all Okutsu invariants.
Although the different and discriminant are not Okutsu invariants, the different ideal
and thus the valuation of the discriminant can be computing using OM methods
|Nar14|.

In [GMN10b|, Guardia, Montes, and Nart show that a sequence of primitive divisor
polynomials and a sequence of polynomials (¢;); from a type are equivalent. In
their formulation, they define an Okutsu frame which reorganizes the sequence into
increasing degree order to agree with the progression of approximations in a type.

Proposition 6.20. Let t = ((SOi,)\i,Qi)hgz’gu be a ®-complete and optimal type, as
returned by Algorithm 6.15, then p; is a (u — 1)-th primitive divisor polynomial of ®.

6.7 Polynomials with Given Okutsu Invariants

An OM algorithm typically computes the Okutsu invariants of a polynomial, but
here we present an algorithm that computes a polynomial given a sequence of Okutsu
invariants. Our algorithm uses the same methods previously used to describe an OM

algorithm. We need one result, originally shown as a consequence of the construction
presented in [GMN13].

Theorem 6.21. Let ¢ = ((gDi,)\i,[_)i>>1§i§u be an optimal type of ® and O, the cor-
responding subset of the roots of ® and ¢,,1 = NextApproximation(t) the next ap-
prozimation to an irreducible factor of ®. Then t is a complete optimal type of Yui1.

One consequence of this theorem is that each ¢; in a type ((goz-,)\i,&))lgigu is
irreducible. Another is that if we have valid data for the other information in a type,
we can construct polynomials having that type. With this in mind, our algorithm
takes as input a sequence of valuations for approximations (\;)1<;<, and a sequence
of irreducible polynomials (p. )i<i<, over K, which encode the Okutsu invariants,

L

constructs a type ((¢;, )\i,gi))lgigu having these values, and concludes by generating
Pu+1-
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Algorithm 6.22 (PolynomialWithInvariants).

Input: A sequence of rational numbers (\;)1<;<y, where \; = h;/e; and a sequence
of irreducible polynomials (p,)i<i<u in K[z] where f; = degp.. Addition-

i

ally, we require \; > e; f; \i_1.

Output: A polynomial ® having the given Okutsu invariants F; = lem{eq, ..., ¢e;},
Fi:deggl---gi, and \; for 1 <17 <.

o L+ (z,M,p)
e Make t an extended type by including v, = 7.
e for 2 <i<wu:

O

Append (NextApproximation(t), A;, p.) to L.
et « lem{ey, ..., e} /lem{ey, ... e;1}.

1); < PolynomialWithValuation(t,e™)\;).

o Make t an extended type by including ;.

O

(@)

e Return NextApproximation(t).

Example 6.23. Let us find a polynomial ® € Zs[z] having (\;) = (3,3,%) and

(p,) = (v + 1,22 + 1,2 4 1). We begin with ¢; = x and ¢, = 3' and start the main
loop.

° ;=2
o NextApproximation gives us p, = z* — 6.
o et =4.
0] wz = 31x1.
o ;=3
o NextApproximation gives us o3 = 2% — 122% + 922 + 36.
oet =1.

e} '(bg = 361’3.

Finally, ®(z) = 26 — 2422 + 18210421628 — 2162° — 7832 + 72923 + 65822 + 1296.
This polynomial has the given Okutsu invariants and generates an extension over Q3
with inertia degree 2 and ramification index 8.
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