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CHAPTER I
INTRODUCTION

There are many computationally di�cult problems in the study of p-adic �elds,
among them the classi�cation of �eld extensions and the decomposition of global
ideals. The main goal of this work is to present e�cient algorithms, leveraging the
Newton polygons and residual polynomials, to solve many of these problems faster and
more e�ciently than present methods. Considering additional invariants, we extend
Krasner's mass formula [Kra66], dramatically improve general extension enumeration
[PR01] using the reduced Eisenstein polynomials of Monge [Mon14], and provide a
detailed account of algorithms that compute Okutsu invariants [Oku82], which have
many uses, through the lens of partitioning zeros.

In the following we give an account of the history of p-adic �elds followed by an
overview over this thesis.

1.1 Early History of the p-Adics

The p-adic numbers were created by an analogy. As a student of Kronecker, Kurt
Hensel was working on extending Kronecker's work on the factoring of prime ideals
in number �elds when he made a keen observation. He observed that the prime
ideals of C[x], namely the functions (x − a), have an role analogous to the role of
the prime ideals of Q, namely the prime numbers. Hensel concluded that methods
from complex analysis where one can consider the global properties of a function by
expanding functions locally, should be translatable to number theory. Analogously
to the Laurent series expansion of a complex function f ∈ C(x) about a point a ∈ C

f(x) =
∞∑
i=N

ai(x− a)i

he considered the Laurent series expansion of a rational number r ∈ Q in terms of
powers of a prime number p,

r =
∞∑
i=N

rip
i.

Hensel called this series the p-adic expansion of r. With respect to a prime number
p ∈ Z, any rational number can be expressed p-adically in this way. These p-adic
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expansions yield local information about r near p, analogous to how the Laurent series
expansion yield local information about f(x) near a.

Hensel showed that the set of all such series for a given prime p form a �eld,
the �eld of p-adic numbers, which he denoted by K(p), but in modern notation is
written Qp. Though a �eld by modern standards, Qp failed to meet the requirement
of Dedekind's de�nition of �eld that it be a sub�eld of the complex numbers, which
motivated Steinitz's work on abstract �eld theory [Ste10]. The introduction of p-adic
�elds led to the de�nition of what we now call local �elds. Hensel introduced the
p-adic numbers in a short paper [Hen97] and expounded on the subject in further
papers and books. In particular, he found that one could factor the ideal generated
by p in a number �eld if you can factor the generating polynomial of that number
�eld over Qp.

In his development of the p-adics, Hensel introduced a topological viewpoint by
de�ning the p-adic absolute value of r ∈ Q

‖·‖p : Q→ R, r 7→ ‖r‖p = p−vp(r),

where r = pvp(r)a

b
with a, b, and p pairwise coprime and by convention vp(0) =∞, so

that ‖0‖p = 0. Inspired by Hensel, speci�cally his book on algebraic numbers [Hen08],
Josef Kürschák set out to provide a solid foundation of the p-adic numbers, in a man-
ner similar to that of Cantor for the real and complex numbers. His result, announced
at the Cambridge International Congress of Mathematicians in 1912 [Kür12], stated
the �rst abstract structure theorems on valued �elds. Kürschák's paper on the subject
[Kür13] provided a general theory of valuations (of which Hensel's vp are examples)
and laid the groundwork for valuation theory as a separate, axomitized �eld of study.
This presentation and paper was, however, his only contribution to the subject.

After Kürschák began the study of valuations, Alexander Ostrowski provided
much of its early development. Ostrowski left Kiev in 1911 to study with Hensel
in Marburg. In his �rst paper there [Ost13], he answered a standing question of
Kürschák by showing that a separable algebraic extension of a complete valued �eld
is again complete if and only if it is a �nite extension of that �eld. When revisiting
and reproving the results from that paper in [Ost17], he proved that the extension
of a valuation to its algebraic closure is unique. Finally, Ostrowski determined all
possible valuations on on Q:

Theorem 1.1 (Ostrowski [Ost18]). An absolute value on Q either coincides with
(‖·‖p)r for some prime p and some r ∈ [0, 1], or with (‖·‖∞)r for some r ∈ R where
‖·‖∞ is the traditional absolute value.
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In 1921, the connection between the rational numbers and p-adic numbers was so-
lidi�ed by a student of Hensel's, Helmut Hasse. For his thesis, he classi�ed quadratic
forms with rational coe�cients in terms of the simpler classi�cation of quadratic forms
over real and p-adic numbers. This result was the �rst of many to be referred to as
a Local-Global Principle. In the years to follow, Hasse published several other im-
portant papers in quick succession, elaborating upon this and further demonstrating
how number theoretic problems could be solved by local methods. His development
of Local-Global Principles required working with norm symbols which would lead to
his foundational work on local class �eld theory in 1930 [Has30]. Local class �eld
theory describes the Galois group of the maximal abelian extension of a local �eld
and through a reciprocity map, the means to study �nite abelian extensions of local
�elds. With the aim of de�ning this without the use of its global equivalent, Hasse,
in 1931, determines the structure of the Brauer group, which could be translated
to provide local class �eld theory. An explicit construction can be seen in papers
of Hasse [Has33] and Chevalley [Che33a, Che33b]. The global theory then follows
through the use of Local-Global Principles, as proved jointly by Brauer, Hasse and
Noether [BHN32]. Thus, the p-adic numbers, and in general, local �elds, developed
into a crucial part of algebraic number theory.

1.2 Classi�cation of Extensions

For a �nite extension K of the �eld of p-adic numbers Qp, the description of all
extensions of K in a �xed algebraic closure is an important problem. Restricted to
abelian extensions, local class �eld theory gives a one-to-one correspondence between
the abelian extensions of K and the open subgroups of the unit group K× of K.
An algorithm that constructs the wildly rami�ed part of the class �eld as towers of
extensions of degree p was given in [Pau06]. Recently Monge [Mon14] has published
an algorithm that, given a subgroup of K× of �nite index, directly constructs the
generating polynomial of the corresponding totally rami�ed extension. In the non-
abelian case, such a complete description is not yet known. However, a description of
all tamely rami�ed extensions is well known and all extensions of degree p have been
described completely by Amano [Ama71].

Krasner worked on building a non-abelian local class �eld theory. In [Kra66], he
gave a formula for the number of totally rami�ed extensions, using his famous lemma
as a main tool.

Theorem 1.2 (Krasner's Lemma). Let K be a local �eld complete with respect to
non-archimedian absolute value ‖·‖ and let K be a separable closure of K. Let α ∈ K
with conjugates α = α(1), α(2), . . . , α(n). If β ∈ K is such that

‖α− β‖ < ‖α− α(i)‖ for 2 ≤ i ≤ n,
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then K(α) ⊆ K(β).

It follows from Krasner's Lemma that a local �eld has only �nitely many extensions
of a given degree and discriminant. Following his approach, Pauli and Roblot [PR01]
presented the �rst general algorithm that returned a set of generating polynomials
for all extensions of a given degree and discriminant. They used the root-�nding
algorithm described by Panayi [Pan95] to obtain one generating polynomial for each
extension. This algorithm of Pauli and Roblot has been used extensively by Jones
and Roberts [JR06, JR07, JR08] and Awtrey [AS13, AS15] for computing tables of
extensions of p-adic �elds and their invariants.

A new approach for determining whether two polynomials generate the same ex-
tension was recently presented by Monge [Mon14]. He introduces reduced polynomials
that yield a canonical set of generating polynomials for each totally rami�ed extension
of a local �eld K. Monge's methods also considerably reduce the number of gener-
ating polynomials that need to be considered when computing a set of polynomials
de�ning all totally rami�ed extensions of K.

1.3 Decomposition of Ideals

Ideal decomposition is the foundational problem of the p-adic numbers, and deeply
related to the computation of polynomial factorizations and integral bases. To factor
prime ideals in algebraic extensions of the rational numbers, Hensel would factor
polynomials over p-adic �elds. For unrami�ed primes, those that do not divide the
discriminant of the extension, this method su�ces.

In 1907, Bauer adapted the techniques of Newton polygons, which had tradition-
ally been used to study singularities of plane curves, to study arithmetical questions
[Bau07]. By drawing the lower convex hull of the points (i, vp(ai)) where ai are the
coe�cients of the generating polynomial of a number �eld, one can detect a factoriza-
tion if there is more than one segment. In the 1920s, Ore greatly expanded on Bauer's
methods by introducing a more general concept of the polygon and attaching to each
segment a residual polynomial over a �nite �eld [Ore24, Ore28]. Newton polygons
and residual polynomials are at the center of many algorithms for computations in
local �elds, including those presented in this work.

Ore's methods worked de�ning polynomials satisfying a condition of p-regularity,
but he wondered if, by constructing further generalizations of Newton polygons and
residual polynomials, a method for the general case existed. Saunders MacLane
answered this question in 1936 [ML36a,ML36b] with more general results. For any
discrete valuation v on a �eld K, MacLane classi�ed all extensions of v to K[x].
These valuations are described by a sequence of augmented valuations, where a speci�c
polynomial of a certain type is assigned a valuation. These augmentations provide
the needed generalization of Ore's methods to factor ideals in general.
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The task of factoring ideals in number �elds is closely related to the computation
of integral bases of local and global �elds. The Round Four algorithm of Zassenhaus
[FL94,For87] was originally conceived as an algorithm for the computation of integral
bases of algebraic number �elds, and since its introduction, has seen many improve-
ments [CG00,FPR02,PR01] and has implementations in Maple [FL94], Pari [PG14],
and Magma [BCP97]. These algorithms work to �nd successively better approxima-
tions to the input polynomial's irreducible factors until gaining su�cient precision to
apply Hensel lifting. However, they su�er from precision loss in computing charac-
teristic polynomials and in approximating greatest common divisors, both of which
are used in the core part of the algorithm as well as in the lifting of the factorization.

As an alternative to Round Four, the Montes algorithm [GMN11,GMN12,Mon99,
MN92] avoids the computation of characteristic polynomials by exploiting Newton
polygons of higher order. Here the most expensive operations are division with
remainder and polynomial factorization over �nite �elds. The algorithm is based
on Ore's suggestion of �higher-order� Newton Polygons [Ore26]. In 2006, Guardia,
Montes, and Nart [GMN12] revisited Montes' work, and this has led to a wealth of
improvements and to a better understanding of the algorithm, including complexity
analyses [BNS13,FoVe10,Ver09].

Many of the intermediate values computed in the process of the Round Four and
Montes algorithms are Okutsu invariants. In a series of papers [Oku82], Okutsu
de�ned sequences of invariants of a polynomial whose construction can build an in-
tegral basis. Algorithms that compute these, which we will call OM algorithms, are
the subject of Chapter VI.

1.4 Overview

In Chapter II, we present the necessary theory of local �elds and their extensions
from a modern viewpoint. We begin with the basic de�nitions of the p-adic numbers,
their absolute value, and valuation, culminating in the general de�nition of a local
�eld. The terminology and basic facts regarding local �eld extensions follow, with
some discussion of Hensel lifting and Newton polygons. Rami�cation groups, their
�ltration, and the Hasse-Herbrand function close the chapter.

In the third chapter, we consider three extension invariants: the discriminant, the
rami�cation polygon, and the class of residual polynomials of rami�cation polygon
segments. Each of these is dependent on the prior, e�ectively partitioning extensions
into �ner sets. The discussion of the discriminant recalls results of Ore and Krasner on
what discriminants are possible and how a choice of discriminant limits the possible
generating polynomials for an extension. We begin considering rami�cation polygons
from a lemma of Scherk [Sch03] and develop a necessary and su�cient set of conditions
for a convex polygon to be a rami�cation polygon. Given these, we can compute all
possible rami�cation polygons for extensions of a given degree and discriminant. Much
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as in the case of the discriminant, we can use the choice of rami�cation polygon to give
conditions on generating polynomials. Our �nal invariant, based upon the residual
polynomials of the segments of a rami�cation polygon, is new. Such polynomials were
used by Greve and Pauli in [GP12] to determine the sub�elds of splitting �elds of
Eisenstein polynomials and the splitting �eld itself in the case when the rami�cation
polygon consists of one segment. As with the rami�cation polygon, we �nd conditions
suitable for enumerating all possibilities, and the e�ects of a choice of invariant on
the generators of extensions.

In the fourth chapter, a set of mass formulas are developed, one for each invari-
ant, generalizing the work of Krasner [Kra66]. These results also appear in [Sin15].
The principal argument is developed by generalizing Krasner's original method. We
present his metric on Eisenstein polynomials, whose relation to the metric on the �eld
is essential. Next we construct a �nite set of Eisenstein polynomials generating all ex-
tensions with given invariants, based upon discs in this polynomial metric. Through
the relation of the two metrics, we can relate the number of these polynomials to the
number of extensions.

Equipped with detailed descriptions of these invariants and their e�ects on gener-
ating polynomials, the �fth chapter presents an algorithm to enumerate all extensions
of a p-adic �eld given these invariants. This algorithm, and the results leading to it,
�rst appear in [PS14]. The premise of this algorithm is similar to that of Pauli and
Roblot [PR01], who used Krasner's constructive description of a �nite set of Eisenstein
polynomials capable of generating all extensions of given degree and discriminant. In
addition to a �ner classi�cation of extensions, the algorithm is far faster than current
methods, due to results of Monge [Mon14], who used residual polynomials of com-
ponents to obtain his reduced set of Eisenstein polynomials. By constructing only
reduced polynomials, we greatly reduce and frequently eliminate the need to check
our set of generating polynomials for isomorphisms.

In the sixth chapter, a general description of OM algorithms is given in the context
of partitioning the the set of zeros of a polynomial. This approach is similar to the
one used in [MPS15], which describes an OM algorithm for computing splitting �elds.
OM Algorithms are a versatile family of algorithms with numerous applications in
algebraic number theory. Data computed by OM algorithms can be used to compute
integral bases (both local and global), to factor polynomials over local �elds, to deter-
mine valuations in extensions, and to solve the de�ning problem of p-adic numbers,
the decomposition of ideals in global �elds.

1.5 Implementations

All algorithms presented in this work have been implemented in computer algebra
systems. We have implemented the new algorithms for enumerating invariants (Al-
gorithms 3.17 and 3.31), counting extensions (Mass formulas from Chapter IV), and
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enumerating extensions (Algorithms 5.8, 5.11, and 5.13) described in this thesis in
Magma [BCP97]. Additionally implemented is an aggregation of extension counting
which produces a number of extensions for over all possibilities for invariants, see
Table 2 and http://www.uncg.edu/mat/numbertheory/tables/local/counting/.
There are several existing implementations of OM Algorithms. In Pari [PG14], they
are used for polynomial factorization over Zp and the computation of maximal orders
of number �elds. In Magma [BCP97], the power computing maximal orders, general
local �eld polynomial factorization [Pau10], and an entire package for working with
ideals [GMN10a]. We have added OM functionality to SAGE [S+14], allowing poly-
nomial factorization over Zp and the construction of polynomials with given Okutsu
invariants.

1.6 Future Work

While the algorithms for enumerating extensions in this work greatly improve
upon current methods, there is more that can be done. The polynomials returned
by Algorithm 5.8 do not necessarily generate distinct extensions, and the cost of
�ltering that list is more expensive than �nding it. Using Monge's reduction methods
[Mon14] instead of Panayi's root �nding [Pan95] is helpful, but ideally, neither would
be needed. In certain cases, we know our polynomials generate distinct extensions
(see Theorem 5.10). As we see in Example 5.9, generalization of residual polynomials
of segments could provide additional cases where we can avoid �ltering or possibly a
method to avoid it in all cases.

The formulas and algorithms of this paper are all developed over p-adic �elds,
not local �elds in general. To work in local �elds, they would need to be formulated
for characteristic p local �elds. As many of the results required here, in particular
the work of Krasner, have seen generalization to characteristic p local �elds, the
generalization of this work should be possible as well.

7
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CHAPTER II
LOCAL FIELDS AND THEIR EXTENSIONS

In this chapter, we provide an introduction to fundamental concepts in the theory
of local �elds. The material here is ordered in the manner of a modern instructional
treatment as opposed to its historical development. For a more detailed introduction
to the theory see [Ser79] or [FeVo02].

2.1 Local Fields

De�nition 2.1. A map ‖·‖ from a �eld K to the non-negative real numbers is said
to be an ultrametric or non-archimedian absolute value on K if the following hold:

‖x‖ > 0 if x 6= 0, with ‖0‖ = 0,

‖xy‖ = ‖x‖ · ‖y‖
‖x+ y‖ ≤ max{‖x‖, ‖y‖}

The third property (the ultrametric inequality) distinguishes this class from gen-
eral absolute values that are only bound by the weaker triangle inequality: ‖x+ y‖ ≤
‖x‖+ ‖y‖. Absolute values satisfying the triangle inequality, but not the ultrametric
inequality are called archimedian absolute values.

Remark. Notice that if ‖x‖ < ‖y‖, then

‖x+ y‖ ≤ max{‖x‖, ‖y‖} = ‖y‖ = ‖x+ y − x‖ ≤ max{‖x+ y‖, ‖x‖} = ‖x+ y‖,

which shows that ‖x+ y‖ = ‖y‖. Thus, if ‖x‖ 6= ‖y‖, then ‖x+ y‖ = max{‖x‖, ‖y‖}.

De�nition 2.2. An (exponential) valuation on the �eld K is a map v : K → Q∪{∞}
such that for a, b ∈ K,

v(a) =∞⇐⇒ a = 0

v(ab) = v(a) + v(b)

v(a+ b) ≥ min{v(a), v(b)}

A valuation is discrete if v(K∗) is isomorphic to Z.
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Remark. Similar to the previous remark, notice that if v(a) > v(b), then

v(a+ b) ≥ min{v(a), v(b)} = v(b) = v(a+ b− a) ≥ min{v(a+ b), v(a)} = v(a+ b).

Thus, v(a+ b) = v(b). In general, if v(a) 6= v(b), then v(a+ b) = min{v(a), v(b)}.

Example 2.3. Let p be a prime number and r be a rational number. There is a
unique expression of r by r = pk(a/b) where (a, b) = 1 and p divides neither a or b.
We can de�ne the following:

• The map ‖r‖p = p−k is a non-archimedian absolute value on Q called the p-adic
absolute value.

• The map vp(r) = k is a discrete valuation on Q called the p-adic valuation.

Example 2.4. The absolute value ‖·‖∞, de�ned by

‖a‖∞ =

{
a if a ≥ 0
−a if a < 0

is an archimedian absolute value on Q.

Theorem 2.5 (Ostrowski [Ost18]). An absolute value on Q either coincides with
(‖·‖∞)r for some r ∈ R, or with (‖·‖p)r for some prime p and some r ∈ [0, 1].

Example 2.6. Let q be a power of a prime number p. Consider the �eld of formal
Laurent series Fq(t) over the �nite �eld Fq. Let α ∈ Fq(t) with α =

∑∞
i=m ait

i where
am is a non-zero coe�cient. The map v(α) = m is a discrete valuation on Fq(t).

De�nition 2.7. A local �eld is a �eld complete with respect to a discrete non-
archimedian absolute value.

Let K be a local �eld, complete with respect to ‖·‖. The valuation ring of K is

OK = {α ∈ K : ‖α‖ ≤ 1}.

OK is a local ring with principal, maximal ideal

p = {α ∈ K : ‖α‖ < 1}.

9



A generator of p is called a prime element or uniformizer of K and denoted πK . The
corresponding valuation, normalized so that the valuation of π is 1, is denoted by vπ
or vK .

The residue class �eld of K is

K = OK/p,

and for α ∈ OK , we write α to denote the class α + p in K. We will also represent
by RK a �xed set of representatives of K in OK , and by R×K the set RK without the
representative for 0 ∈ K.

We may write any element of α ∈ K as a πK-adic expansion

α =
∞∑

i=vK(α)

aiπ
i
K where ai ∈ K.

Most of the time we are mainly interested in the �rst nonzero term in the π-adic
expansion of an element.

Example 2.8. Let p be a prime number. The completion of Q with respect to ‖·‖p
is a local �eld denoted Qp. An element α ∈ Qp can be written uniquely as the sum∑∞

i=m aip
i, where ai ∈ Fp and am is non-zero (m ∈ Z need not be positive). We have

the non-archimedian absolute value ‖α‖p = p−m and the valuation vp(α) = m. The
valuation ring of Qp is the ring of p-adic integers, denoted by Zp, consisting of those
elements of Qp for which m ≥ 0. The principal, maximal ideal of Zp is (p) and so p
is a uniformizer of Qp. The residue class �eld of Qp is Zp/(p) = Fp.

Example 2.9. Let q be a power of a prime number p. The �eld of formal Laurent
series Fq(t) over the �nite �eld Fq is a local �eld. The valuation ring of Fq(t) is the
ring of formal power series Fq[t] over Fq with principal, maximal ideal (f), generated
by any irreducible polynomial f . The residue class �eld of Fq(t) is Fq[t]/(t) = Fq.

2.2 Extensions of Valuations and Local Fields

Let K be a local �eld and let ϕ ∈ K[x] be a separable, monic, and irreducible
polynomial with degϕ = n. By adjoining a root α of ϕ toK, we construct an algebraic
extension L of K. So we have that L = K(α) and L is isomorphic to K[x]/(ϕ). The
degree of the extension L/K is [L : K] = degϕ = n.

De�nition 2.10. Let K be an algebraic closure of K. Denote the roots of ϕ in K
by α(1), α(2), . . . , α(n) where α(1) = α. We say that α(i) is the i-th conjugate of α.

10



The extension L is a vector space overK of dimension n with basis {1, α, . . . , αn−1}.
For an element γ ∈ L, there is a unique representation with respect to the basis:

γ =
n∑
i=0

giα
i with gi ∈ K for 0 ≤ i ≤ n− 1.

The conjugates of γ are γ(i) =
∑n−1

i=0 gi
(
α(i)
)i

and we de�ne the norm of γ to be
NL/K(γ) =

∏n
i=0 γ

(i) and the trace of γ to be trL/K(γ) =
∑n

i=0 γ
(i).

Theorem 2.11. Let K be a local �eld with valuation vK and L/K a �nite algebraic
extension of degree n. Then there exists a unique extension of the valuation vK to a
valuation vL : L→ Q ∪ {∞} with the restriction of vL to K coinciding with vK. The
local �eld L is complete with respect to vL, which is de�ned by vL(γ) = vK(NL/K(γ))/n
for γ ∈ L.

Given the uniqueness of this extension, we will commonly denote both the val-
uation of a local �eld K and its extension to an algebraic closure K of K (or to
any intermediate �eld) by v when its meaning is clear. We introduce an equivalence
relation on the elements of K which re�ects this.

De�nition 2.12. For γ ∈ K∗ and δ ∈ K∗ we write γ ∼ δ if

v(γ − δ) > v(γ)

and make the supplementary assumption 0 ∼ 0. For ϕ(x) =
∑n

i=0 cix
i and ψ(x) =∑n

i=0 bix
i in K[x] we write ϕ ∼ ψ if

min 0≤i≤n v(ci − ei) > min 0≤i≤n v(ci).

It follows immediately that the relation ∼ is symmetric, transitive, and re�exive.
Let L be a �nite extension of K with uniformizing element πL. Two elements γ =
γ0πL

u ∈ L and δ = δ0πL
w ∈ L with v(γ0) = v(δ0) = 0 are equivalent with respect to

∼ if and only if u = w and γ0 ≡ δ0 mod (πL).

De�nition 2.13. A local �eld that is a �nite extension of Qp is called a p-adic �eld.

De�nition 2.14. Let L/K be an algebraic extension. Let Aut(L/K) be the group of
automorphisms of L that �x K point-wise. If #Aut(L/K) = [L : K] then we say that
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the extension L/K is Galois and that Gal(L/K) = Aut(L/K) is the Galois group of
L/K. If L is the splitting �eld of a non-constant polynomial ϕ ∈ K[x], then we call
Gal(ϕ) = Gal(L/K) the Galois group of ϕ.

De�nition 2.15. If L/K is an algebraic extension of degree n, then OL is a free
OK-module of degree n, and we say that a basis for OL over OK is an integral basis
of L/K.

De�nition 2.16. Let ϕ ∈ K[x] be a monic polynomial of degree n with such that
ϕ(x) =

∏n
i=1(x− α(i)) in K. We de�nite the discriminant of ϕ to be

disc (ϕ) =
∏
i<j

(
α(i) − α(j)

)2
=
∏
i 6=j

(−1)(n2−n)/2
(
α(i) − α(j)

)

If ϕ is an irreducible polynomial and α a root of ϕ, then disc (ϕ) = NK/K(ϕ′(α)).

De�nition 2.17. Let L/K be an algebraic extension of degree n with integral basis

(δ1, . . . , δn). Then we de�ne the discriminant of L/K to be disc (L/K) =
(

det(δ
(i)
j )
)2

.

De�nition 2.18. Let L be an algebraic extension of K. If [L : K] = [L : K], then
L/K is unrami�ed. If [L : K] = 1, then L/K is totally rami�ed.

There exists a unique unrami�ed extension for any positive integer degree. In fact,
given any irreducible polynomial ϕm ∈ K[x] of degree m, any monic lift of ϕm to K[x]
de�nes the unrami�ed extension of K of degree m. If L/K is an unrami�ed extension
of degree m de�ned by ϕm, then the uniformizer of L is the same as that of K (that
is, πL = πK), Gal(L/K) = Gal(L/K), and vK(disc (ϕm)) = vK(disc (L/K)) = 0.

Given an extension L/K, we can construct the unique intermediate extension
Lur, which is unrami�ed and of degree [L : K]. This provides a decomposition of the
extension L into the tower L/Lur/K where L/Lur is totally rami�ed and Lur/K is
unrami�ed.

De�nition 2.19. Let L be a �nite algebraic extension of K. We say that the inertia
degree of L/K is fL/K = [L : K] and that the rami�cation index of L/K is eL/K =
[L : Lur]. The degree of the extension L/K is n = eL/K · fL/K .

2.3 Totally Rami�ed Extensions and Eisenstein Polynomials

De�nition 2.20. We call a monic polynomial ϕ ∈ OK [x] with ϕ(x) =
∑
ϕix

i an
Eisenstein polynomial if vK(ϕ0) = 1 and vK(ϕi) ≥ 1 for 1 ≤ i ≤ n− 1.
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Eisenstein polynomials are irreducible and de�ne totally rami�ed extensions. The
valuation of the discriminant of an extension de�ned by an Eisenstein polynomial
is precisely the valuation of the discriminant of the polynomial itself. Furthermore,
any prime element of a totally rami�ed extension of �nite degree is the root of an
Eisenstein polynomial and is a generating element for the extension.

Let the residue class �eld K have characteristic p. We say that an extension
L/K is tamely rami�ed if p - eL/K and wildly rami�ed otherwise. Given a totally
rami�ed extension L/K, we can construct an intermediate extension Ltame, so that
our extension splits into the tower L/Ltame/K, where L/Ltame is wildly rami�ed and
Ltame/K is tamely rami�ed.

Theorem 2.21 ([GP12, Proposition 2.1]). Let n = e0p
m with p - e0 and let

ϕ(x) = xn +
n−1∑
i=1

ϕix
i + ϕ0 ∈ OK [x]

be a polynomial whose Newton polygon is a line of slope −h/n, where gcd(h, n) = 1.
Let α be a root of ϕ. The maximum tamely rami�ed subextension Ltame of L = K(α)
of degree e0 can be generated by the Eisenstein polynomial xe0 + ψb0π

e0a with ψ0 ≡ ϕ0

mod (πh+1) and where a and b are integers such that ae0 + bh = 1.

In examples we will frequently use a table to represent sets of polynomials. For a
polynomial ϕ ∈ OK [x] of degree n, we denote its coe�cients by ϕi (0 ≤ i ≤ n) such
that ϕ(x) = ϕnx

n+ϕn−1x
n−1+· · ·+ϕ0 and write ϕi =

∑∞
j=0 ϕi,jπ

j
K where ϕi,j ∈ RK . If

ϕ is Eisenstein, then ϕn = 1, ϕ0,1 6= 0 and ϕi,0 > 0 for 1 ≤ i < n. In our table, each cell
contains a set from which the corresponding coe�cient ϕi,j of the πK-adic expansion of
the coe�cient ϕi =

∑∞
j=0 ϕi,jπ

j
K of the polynomial ϕ(x) = ϕnx

n+ϕn−1x
n−1 + · · ·+ϕ0

can be chosen.

Example 2.22. The Eisenstein polynomials of degree n over OK are represented by
the template:

xn xn−1 xn−2 · · · x4 x3 x2 x1 x0

...
...

...
...

...
...

...
...

...
π2
K {0} RK RK · · · RK RK RK RK RK

π1
K {0} RK RK · · · RK RK RK RK R×K
π0
K {1} {0} {0} · · · {0} {0} {0} {0} {0}
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2.4 Hensel Lifting and Newton Polygons

Hensel lifting yields a factorization of polynomials over local �elds in certain cases
and Newton polygons give useful information about the roots of polynomials. We
show how these two tools can be used to obtain proper factorizations in more general
cases.

Theorem 2.23 (Hensel's Lemma). Let Φ ∈ OK [x] be monic. If Φ ≡ ϕ1ϕ2 mod (π)
where ϕ1 and ϕ2 are coprime modulo π, then there is a factorization Φ = Φ1Φ2 with
Φ1 ≡ ϕ1 mod (π) and Φ2 ≡ ϕ2 mod (π).

For an example of an e�cient Hensel lifting algorithm that lifts a factorization
modulo (π) to a factorization modulo (π)s for any given s, see [Zas69]. We can also
obtain an approximation to a factorization of Φ if Hensel lifting can be applied to the
characteristic polynomial of an element ϕ+ (Φ) in OK [x]/(Φ).

De�nition 2.24. Let Φ(x) =
∏N

j=1(x− θj) ∈ OK [x]. For ϕ ∈ K[x] we de�ne

χϕ(y) :=
N∏
i=1

(y − ϕ(θi)) = resx(Φ(x), y − ϕ(x)) ∈ L[y].

Proposition 2.25. Let γ ∈ K[x] with χγ ∈ OK [y]. If χ
γ
has at least two distinct

irreducible factors then Φ is reducible in OK [x].

Proof. Suppose χ
γ
has at least two irreducible factors. Then, Hensel's lemma gives

relatively prime monic polynomials χ1 ∈ OK [y] and χ2 ∈ OK [y] with χ1χ2 = χγ.
Reordering the roots θ1, . . . , θN of Φ if necessary, we may write

χ1(y) = (y − γ(θ1)) · · · (y − γ(θr)) and χ2(y) = (y − γ(θr+1)) · · · (y − γ(θN)),

where 1 ≤ r < N . It follows that

Φ = gcd(Φ, χ1(γ)) · gcd(Φ, χ2(γ))

is a proper factorization of Φ.

De�nition 2.26 (Newton Polygon). Let Φ(x) =
∑N

i=0 cix
i. The lower convex hull of

{(i, v(ci)) | 0 ≤ i ≤ N} is the Newton polygon of Φ.
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The negatives of the slopes of the segments of the Newton polygon of Φ are the
valuations of the roots of Φ. The length of the segment (in x-direction) is the number
of roots with this valuation. The negatives of the slopes of the Newton polygon of
the characteristic polynomial χϕ of ϕ + (Φ) are the valuations v(ϕ(θ)) for the roots
θ of Φ. Proposition 2.25 yields a constructive method for �nding a factorization of Φ
if χϕ has more than one segment:

Corollary 2.27. Let ϕ ∈ K[x] with χϕ ∈ OK [y]. If there are roots θ and θ′ of Φ such
that v(ϕ(θ)) 6= v(ϕ(θ′)) then we can �nd two proper factors of Φ over OK [x].

Proof. Let Θ be the set of roots of Φ and let h/e = min{v(ϕ(θ)) | θ ∈ Θ}. Setting
γ := ϕe/πh we get

max{v(γ(θ)) | θ ∈ Θ and γ(θ) = 0} > min{v(γ(θ)) | θ ∈ Θ and γ(θ) = 0} = 0.

Thus Proposition 2.25 yields a factorization of Φ.

Remark. Repeated application of Corollary 2.27 yields one factor of Φ for each seg-
ment of the Newton polygon of χγ.

2.5 Rami�cation Groups

The rami�cation groups de�ne a sequence of decreasing normal subgroups which
are eventually trivial and which give structural information about the Galois group
of a p-adic �eld. Throughout this section, let L/K be a Galois extension with Galois
group G. We �rst de�ne a function on the Galois group of L/K, iL/K : G→ Q∩{∞}
by iL/K(σ) = infx∈OL vL(σ(x) − x). Notice that if α is such that OL = OK [α], then
iL/K(σ) = vL(σ(α) − α). For any real number x, we de�ne the following subsets of
the Galois group

Gx = {σ ∈ G : iL/K(σ) ≥ x+ 1}.

For non-integers x, we have that Gx = Gbxc. If we restrict our consideration to
integers, we de�ne the rami�cation groups of G.

De�nition 2.28. For an integer i ≥ −1, we de�ne the i-th rami�cation group of G
to be

Gi = {σ ∈ G : iL/K(σ) ≥ i+ 1}.
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The group G0 is called the inertia group, the group G1 is called the rami�cation
group, and the groups Gi, i > 1, are called the higher rami�cation groups of L over
K. Each Gi is a normal subgroup of G, and Gi is trivial for large enough i.

Proposition 2.29. Let L/K be a Galois extension with Galois group G.

(a) G−1 = G.

(b) G0 is trivial if and only if L/K is unrami�ed.

(c) G1 is trivial if and only if L/K is tamely rami�ed.

Now let us consider the rami�cation �ltration of a subextension �xed by a sub-
group of G, and see how this allows us to restrict the study the higher rami�cation
groups to the case of totally rami�ed extensions. Let H be a subgroup of G, and K ′

be the subextension of L �xed by H.

Proposition 2.30. Gal(L/K ′) = H, Hi = Gi ∩H, and for every σ ∈ G, iL/K′(σ) =
iL/K(σ)

Corollary 2.31. Let Lur be the maximum unrami�ed subextension of L/K. Then
L/Lur has the same rami�cation groups of index ≥ 0 as L/K.

Suppose additionally that the subgroup H is normal. Then we can consider the
extension K ′/K and its rami�cation groups.

Proposition 2.32. Gal(K ′/K) = G/H, and for every σ ∈ G/H,

iK′/K(σ) =
1

eL/K

∑
s→σ

iL/K(s).

Corollary 2.33. If H = Gj for some integer j ≥ 0, then (G/H)i = Gi/H for i ≤ j
and (G/H)i = {1} for i ≥ j.

In addition to the sequence of decreasing groups, we can consider the particular
indices at which the sets become strictly smaller and how they are related to one
another.

De�nition 2.34. Integers i such that Gi 6= Gi+1 are called the (lower) rami�cation
breaks of L/K.

Proposition 2.35. If G is abelian, then every rami�cation break must be divisible by
the order of G0/G1.

Proposition 2.36. Let p be the characteristic of L and i and j be any two rami�cation
breaks of L/K. Then i ≡ j mod p.
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2.6 The Hasse-Herbrand Function

Let L/K be a Galois extension with Galois group G. We de�ne the Hasse-
Herbrand function on L/K by

φL/K(u) =

∫ u

0

dt

[G0 : Gt]
.

We can make the de�nition of φ more explicit by observing that our rami�cation
breaks occur at integers, that is, Gt = Gbtc. Let m ∈ Z>0 and u ∈ R with m ≤ u ≤
m+ 1. Then

φL/K(u) =
1

#G0

(#G1 + . . .#Gm + (u−m)#Gm+1)

and in particular for integers,

φL/K(m) + 1 =
1

#G0

m∑
i=0

#Gi

Proposition 2.37. The function φL/K has the following properties.

(a) The function φL/K is continuous, piecewise linear, increasing, and concave.

(b) φL/K(0) = 0.

(c) Let ∂+φL/K and ∂−φL/K denote the right and left derivatives of φL/K, then
∂−φL/K(u) = [G0 : Gu]

−1 and

∂+φL/K(u) =

{
∂−φL/K(u) = [G0 : Gu]

−1 if u is not an integer
[G0 : Gu+1]−1 if u is an integer

.

Let ψL/K be the inverse of φ.

Proposition 2.38. The function ψL/K has the following properties.

(a) The function ψL/K is continuous, piecewise linear, increasing, and convex.
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(b) ψL/K(0) = 0.

(c) If v = φL/K(u), then ∂−ψL/K(v) =
(
∂−φL/K(u)

)−1
and ∂+ψL/K(v) =

(
∂+φL/K(u)

)−1
.

In particular, ∂−ψL/K and ∂+ψL/K are integers.

(d) If v is an integer, then so is u = ψL/K(v).

These functions allow us to de�ne the upper numbering of rami�cation groups.
While the lower numbering is well suited for the consideration of subgroups, the
upper number is adapted to quotients.

De�nition 2.39. The upper number of rami�cation groups is

Gv = GψL/K(v) or, equivalently, G
φL/K(u) = Gu.

Any number v such that Gv 6= Gv+ε is an upper rami�cation break of L/K.

Proposition 2.40. If H is a normal subgroup of G, then (G/H)v = GvH/H.

Theorem 2.41 (Herbrand). If v = φL/K(u), then GuH/H = (G/H)v for all v.

The upper numbering is particularly interesting in the abelian case.

Theorem 2.42 (Hasse-Arf). If G is an abelian group and if v is an upper rami�cation
break, then v is an integer.
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CHAPTER III
INVARIANTS OF LOCAL FIELD EXTENSIONS

In this chapter, we develop the properties of three invariants of local �elds, the
discriminant, the rami�cation polygon, and residual polynomials of segments. For
each, we will develop conditions for the invariant to take a certain value, conditions
on generating polynomials, and describe and enumerate the permissible values.

3.1 Discriminant

We recall some of the results Krasner used to obtain his formula for the number
of extensions of a p-adic �eld [Kra66]. These can also be found in [PR01].

The possible discriminants of �nite extensions are given by Ore's conditions [Ore26]:

Proposition 3.1 (Ore's conditions). Let K be a �nite extension of Qp, OK its valua-
tion ring with maximal ideal (π). Given J0 ∈ Z let a0, b0 ∈ Z be such that J0 = a0n+b0

and 0 ≤ b0 < n. Then there exist totally rami�ed extensions L/K of degree n and
discriminant (π)n+J0−1 if and only if

min{vπ(b0)n, vπ(n)n} ≤ J0 ≤ vπ(n)n.

The proof of Ore's conditions yields a certain form for the generating polynomials
of extensions with given discriminant.

Lemma 3.2. An Eisenstein polynomial ϕ ∈ OK [x] with discriminant (π)n+J0−1 where
J0 = a0n+ b0 with 0 ≤ b0 < n ful�lls Ore's conditions if and only if

vπ(ϕi) ≥ max{2 + a0 − vπ(i), 1} for 0 < i < b0,

vπ(ϕb0) = max{1 + a0 − vπ(b0), 1},
vπ(ϕi) ≥ max{1 + a0 − vπ(i), 1} for b0 < i < n.

Krasner's Lemma yields a bound over which the coe�cients of the π-adic expan-
sion of the coe�cients of a generating polynomial can be chosen to be 0 [Kra66].

Lemma 3.3. Each totally rami�ed extension of degree n with discriminant (π)n+J0−1

where J0 = a0n + b0 with 0 ≤ b0 < n can be generated by an Eisenstein polynomial
ϕ ∈ OK [x] with ϕi,j = 0 for 0 ≤ i < n and j > 1 + 2a0 + 2b0

n
.
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With Lemma 3.2 and Lemma 3.3 we obtain a �nite set of polynomials that generate
all extensions of a given degree and discriminant. In [PR01] this set in conjunction
with Krasner's mass formula [Kra66] and Panayi's root �nding algorithm is used to
obtain a generating polynomial for each extension of a given degree and discriminant.

Example 3.4. We want to �nd generating polynomials for all totally rami�ed ex-
tensions L of Q3 of degree 9 with v3(disc (L)) = 18. Denote by ϕ =

∑9
i=0 ϕix

i an
Eisenstein polynomial generating such a �eld L. By Lemma 3.2 with J0 = 10, a0 = 1,
and b0 = 1 we get vπ(ϕ1) = 2 and vπ(ϕi) = 2− vπ(i) for 1 < i < n. Furthermore by
Lemma 3.3 ϕi,j = 0 for 0 ≤ i ≤ 9 and j > 3. Thus the template for the polynomials
ϕ is:

x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

34 {0} {0} {0} {0} {0} {0} {0} {0} {0} {0}
33 {0} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2}
32 {0} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {1,2} {0, 1, 2}
31 {0} {0} {0} {0, 1, 2} {0} {0} {0, 1, 2} {0} {0} {1, 2}
30 {1} {0} {0} {0} {0} {0} {0} {0} {0} {0}

3.2 Rami�cation Polygons

To distinguish totally rami�ed extensions further we use an additional invariant,
namely the rami�cation polygon.

De�nition 3.5. Assume that the Eisenstein polynomial ϕ de�nes L/K. The ram-
i�cation polygon Rϕ of ϕ is the Newton polygon N of the rami�cation polynomial
ρ(x) = ϕ(αx+ α)/(αn) ∈ K(α)[x] of ϕ, where α is a root of ϕ.

The rami�cation polygon Rϕ of ϕ is an invariant of L/K (see [GP12, Proposition
4.4] for example) called the rami�cation polygon of L/K denoted by RL/K . Rami�-
cation polygons have been used to study rami�cation groups and reciprocity [Sch03],
compute splitting �elds and Galois groups [GP12], describe maximal abelian exten-
sions [Lub81], and answer questions of commutativity in p-adic dynamical systems
[Li97].

Let ϕ(x) =
∑n

i=0 ϕix
i ∈ K[x] be an Eisenstein polynomial, denote by α a root of

ϕ, and set L = K(α). Let ρ(x) =
∑n

i=0 ρix
i ∈ L[x] be the rami�cation polynomial of

ϕ. Then the coe�cients of ρ are

ρi =
n∑
k=i

(
k

i

)
ϕk α

k−n
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As vα(α) = 1 and vα(ϕi) ∈ nZ we obtain

vα(ρi) = min
i≤k≤n

{
vα

((
k

i

)
ϕk α

k

)
− n

}
= min

i≤k≤n

{
n

[
vπ

((
k

i

)
ϕk

)
− 1

]
+ k

}
.

(3.1)

Lemma 3.6 ([Sch03, Lemma 1]). Let ϕ(x) =
∑n

i=0 ϕix
i ∈ K[x] be an Eisenstein

polynomial and n = e0p
m with p - e0. Denote by α a root of ϕ and set L = K(α).

Then the following hold for the coe�cients of the rami�cation polynomial ρ(x) =∑n
i=0 ρix

i = ϕ(αx+ α)/αn ∈ OL[x] of ϕ:

(a) vα(ρi) ≥ 0 for all i;

(b) vα(ρpm) = vα(ρn) = 0;

(c) vα(ρi) ≥ vα(ρps) for ps ≤ i < ps+1 and s < m.

This gives the typical shape of the rami�cation polygon (see Figure 1).

i

vα(ρi)

1 ps1 ps2 ps3 psu−1 psu = pvp(n) n

−λ1

−λ2

−λ`

(1, J0)

(ps1 , J1)

(ps2 , J2)

(ps3 , J3)

(psu−1 , Ju−1) (psu , 0) (n, 0)

Figure 1. Rami�cation polygon of an Eisenstein polynomial ϕ of degree n and dis-
criminant (π)n+J0−1 with `+1 segments and u−1 points on the polygon with ordinate
above 0.
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Remark. Throughout this paper we describe rami�cation polygons by the set of points

P = {(1, J0), (ps1 , J1), . . . , (psu−1 , Ju−1), (psu , 0), . . . , (n, 0)}

where not all points in P have to be vertices of the polygon R. We write R = P .
This gives a �ner distinction between �elds by their rami�cation polygons and also
allows for an easier description of the invariant based on the residual polynomials of
the segments of the rami�cation polygon, see Section 3.4.

We now investigate the points on a rami�cation polygon further.

Lemma 3.7. Let ρ =
∑n

i=1 ρix
i be the rami�cation polynomial of an Eisenstein

polynomial ϕ(x) =
∑n

i=0 ϕix
i ∈ OK [x]. Denote by

{(1, J0), (ps1 , J1), . . . , (psu−1 , Ju−1), (psu , 0), . . . , (n, 0)} ⊆ {(i, vα(ρi)) : 1 ≤ i ≤ n}

the points on the rami�cation polygon of ϕ and write Ji = ain+ bi with 0 ≤ bi < n.

(a) For psu ≤ i ≤ n we have vα(ρi) = 0 and ρi ≡
(
n
i

)
mod (α) if and only if

vα
(
n
i

)
= 0.

(b) For 0 ≤ i ≤ u we have

ρpsi ∼ ϕbi

(
bi
psi

)
αbi−n.

It follows from (a) that, modulo (α), the coe�cients of the rami�cation polynomial
that correspond to the horizontal segment of its Newton polygon only depend on the
degree of ϕ.

Lemma 3.8. If the rami�cation polygon of an Eisenstein polynomial ϕ ∈ OK [x] has
the points {(1, J0), (ps1 , J1), . . . , (psu−1 , Ju−1), (psu , 0), . . . , (n, 0)} where Ji = ain + bi
with 0 ≤ bi ≤ n− 1. Then for 0 ≤ t ≤ u, we have

vπ(ϕi) ≥

 2 + at − vπ
(
i
pst

)
for pst ≤ i < bt

1 + at − vπ
(
i
pst

)
for bt ≤ i ≤ n− 1
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and vπ(ϕbt) = at + 1− vπ
(
bt
pst

)
if bt 6= 0.

Proof. By Equation (3.1), for all k with st ≤ k ≤ n,

Jt = atn+ bt ≤ n

[
vπ

((
k

pst

)
ϕk

)
− 1

]
+ k,

which solved for vπ(ϕk) gives

1 + at − vπ
(
k

pst

)
+
bt − k
n
≤ vπ(ϕk) for st ≤ k ≤ n.

As vπ(ϕk) is an integer, we may take the ceiling of the fraction. As 0 ≤ bt ≤ n − 1
and pst ≤ k ≤ n, if k < bt, then

⌈
bt−k
n

⌉
= 1, and if k ≥ bt, then

⌈
bt−k
n

⌉
= 0. Therefore,

vπ(ϕi) ≥

 2 + at − vπ
(
i
pst

)
for pst ≤ i < bt

1 + at − vπ
(
i
pst

)
for bt ≤ i ≤ n− 1

.

Now if we consider a point (pst , atn + bt) with bt 6= 0, then by Equation (3.1) we
have

atn+ bt = min
pst≤k≤n

{
n

[
vπ

((
k

pst

)
ϕk

)
− 1

]
+ k

}
,

and as 0 < bt < n, the minimum is attained at k = bt. Hence at =
[
vπ

((
bt
pst

)
ϕbt

)
− 1
]

and vπ(ϕbt) = at + 1− vπ
(
bt
pst

)
.

From this, we can generalize Ore's conditions (Proposition 3.1) from a statement
about the exponent of the discriminant, which is related to the ordinate of the point
above 1, to the ordinates of all points.
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Lemma 3.9. Let Rϕ be the rami�cation polygon of ϕ as in Lemma 3.8. Then for
each point (psi , Ji) where Ji = ain+ bi with 0 ≤ bi ≤ n− 1,

min

{
vπ

(
bi
psi

)
n, vπ

(
n

psi

)
n

}
≤ Ji ≤ vπ

(
n

psi

)
n.

Proof. The k = n term of Equation (3.1) is

Ji ≤ n
[
vπ

((
n
psi

)
ϕn

)
− 1
]

+ n = vπ
(
n
psi

)
n.

If bi 6= 0, then by Lemma 3.8, vπ(ϕbi) = ai + 1 − vπ
(
bi
psi

)
. So nvπ(ϕbi) + bi =

nai + n − nvπ
(
bi
psi

)
+ bi and nvπ(ϕbi) + bi − n + nvπ

(
bi
psi

)
= nai + bi = Ji. As ϕ is

Eisenstein we have vπ(ϕbi) ≥ 1, hence nvπ(ϕbi) − n ≥ 0. This combined with bi > 0
gives us that

Ji = nvπ(ϕbi) + bi − n+ nvπ

(
bi
psi

)
≥ bi + nvπ

(
bi
psi

)
≥ nvπ

(
bi
psi

)
.

If bi = 0, then the minimum term of Equation (3.1) de�ning Ji must be such that
k|n, which only occurs in the k = n term, so Ji = vπ

(
n
psi

)
n, which is less than

vπ
(

0
psi

)
n =∞.

Lemma 3.10. Let Rϕ be the rami�cation polygon of an Eisenstein polynomial ϕ ∈
OK [x] with points

Rϕ = {(1, J0), (ps1 , J1), . . . , (psu−1 , Ju−1), (psu , 0), . . . , (n, 0)},

but no point with abscissa pi, where st < i < st+1 for some 1 ≤ t ≤ u. Then for k
such that pi ≤ k ≤ n,

vπ(ϕk) >
1

n

[
Jt+1 − Jt
pst+1 − pst

(pi − pst) + Jt − k
]

+ 1− vπ
(
k

pi

)
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Proof. If there is no point on Rϕ with abscissa pi, then the point (pi, vα(ρpi)) must be
above the segment from (pst , Jt) to (pst+1 , Jt+1). Thus, Jt+1−Jt

pst+1−pst (p
i−pst)+Jt < vα(ρpi),

and so by Equation (3.1), for k in pi ≤ k ≤ n,

Jt+1 − Jt
pst+1 − pst

(pi − pst) + Jt < n

[
vπ

((
k

pi

)
ϕk

)
− 1

]
+ k.

Solving for vπ(ϕk) provides the result of the lemma.

We collect the results of Lemmas 3.8 and 3.10 to de�ne functions lRϕ(i, s) for
1 ≤ s ≤ su and ps ≤ i ≤ n that give the minimum valuation of ϕi due to a point (or
lack thereof) above ps on the rami�cation polygon Rϕ of ϕ. By taking the maximum
of these over all s, we de�ne LRϕ(i) so that vπ(ϕi) ≥ LRϕ(i) for 1 ≤ i ≤ n− 1.

De�nition 3.11. Let Rϕ be the rami�cation polygon of ϕ with points

Rϕ = {(1, J0), (ps1 , J1), . . . , (psu−1 , Ju−1), (psu , 0), . . . , (n, 0)},

and where Ji = ain+ bi with 0 ≤ bi ≤ n− 1. For 0 ≤ t ≤ u, let

lRϕ(i, st) =

 max{2 + at − vπ
(
i
pst

)
, 1} if pst ≤ i < bt,

max{1 + at − vπ
(
i
pst

)
, 1} if i ≥ bt.

If there is no point above pw with st < w < st+1, then for pw ≤ i ≤ n− 1, let

lRϕ(i, w) = max

{⌈
1

n

[
Jt+1 − Jt
pst+1 − pst

(pw − pst) + Jt − k
]

+ 1− vπ
(
k

pw

)⌉
, 1

}

Finally, set

LRϕ(i) =


1 if i = 0
max{lRϕ(i, t) : pt ≤ i} if 1 ≤ i ≤ n− 1
0 if i = n

.
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Lemma 3.12. Let Rϕ be the rami�cation polygon of ϕ with points

Rϕ = {(1, J0), (ps1 , J1), . . . , (psu−1 , Ju−1), (psu , 0), . . . , (n, 0)}

where Ji = ain+ bi with 0 ≤ bi ≤ n− 1. Then psi | Ji for 0 ≤ i ≤ u.

Proof. As J0 is an integer, p0 = 1 divides J0, and as Ju = 0, clearly psu|Ju.
Suppose that for some 1 ≤ i < u we have vp(Ji) = t < si. If R is the rami�cation

polygon of ϕ with rami�cation polynomial ρ and contains (psi , Ji), then t < si must
imply that Ji < vα(ρpt), which is bounded above by the k = bi term of Equation
(3.1). By Lemma 3.8, we have that vπ(ϕbi) = ai + 1 − vπ

(
bi
psi

)
. If we substitute this

value of vπ(ϕbi) into Equation (3.1), then

vα(ρpt) ≤ n

[
vπ

(
bi
pt

)
+ vπ(ϕbi)− 1

]
+ bi = n

[
vπ

(
bi
pt

)
+ ai − vπ

(
bi
psi

)]
+ bi

As pt||bi, the pt-term of the base p expansion of bi is non-zero, so vp
(
bi
pt

)
= 0 and

consequently vπ
(
bi
pt

)
= 0. Thus, vα(ρpt) ≤ n

[
ai − vπ

(
bi
pi

)]
+ bi ≤ ain + bi = Ji. This

implies that R cannot have the point (psi , Ji), and by contradiction, our claim is
shown.

So far we have described many necessary conditions for rami�cation polygons.
We now propose a necessary and su�cient description of a rami�cation polygon of
an extension.

Proposition 3.13. Let

P = {(1, J0), (ps1 , J1), . . . , (psu−1 , Ju−1), (psu , 0), . . . , (n, 0)},

be a convex polygon with points where Ji = ain+ bi with 0 ≤ bi ≤ n− 1. There is an
extension L/K with rami�cation polygon P, if and only if

(a) For each Ji, min
{
vπ
(
bi
psi

)
n, vπ

(
n
psi

)
n
}
≤ Ji ≤ vπ

(
n
psi

)
n.

(b) If bi = bk, then ai = ak − vπ
(
b
psk

)
+ vπ

(
b
psi

)
where bi = bk.
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(c) For each point (psi , ain+ bi), we have that

ai ≥

 1 + at − vπ
(
bi
pst

)
+
(
bi
psi

)
if pst ≤ bi < bt

at − vπ
(
bi
pst

)
+
(
bi
psi

)
if bi ≥ bt

for all other points (pst , Jt) with Jt = atn+ bt 6= 0.

(d) If there is no point of P above pi, with st < i < st+1, then for each point
(psk , akn+ bk) of P with bk > pi,

ak >
1

n

[
Jt+1 − Jt
pst+1 − pst

(pi − pst) + Jt − bk
]
− vπ

(
bk
pi

)
+ vπ

(
bk
psk

)
.

(e) The points with abscissa greater than psu are (i, 0) where vπ
(
n
i

)
= 0.

Proof. Suppose P is the rami�cation polygon for L/K with generating Eisenstein
polynomial ϕ. Assumption (a) follows from Corollary 3.9. If bi = bk, then by Lemma
3.8

vπ(ϕbi) = ai + 1− vπ
(
bi
psi

)
= ak + 1− vπ

(
bi
psk

)
.

Thus ai = ak − vπ
(
bi
psk

)
+ vπ

(
bi
psi

)
, giving us assumption (b). Let (psi , ain + bi) be a

point of P , then by Lemma 3.8, we have that for all other points (pst , Jt),

vπ(ϕbi) = ai + 1− vπ
(
bi
psi

)
≥

 2 + at − vπ
(
bi
pst

)
for pst ≤ bi < bt

1 + at − vπ
(
bi
pst

)
for bi ≥ bt

,

from which we see assumption (c). If there no point of P above pi, with st < i < st+1,
then by Lemma 3.10, for each point (psi , ain+ bi) of P with bi > pi,

vπ(ϕbi) = ai + 1− vπ
(
bi
psi

)
≥ 1

n

[
Jt+1 − Jt
pst+1 − pst

(pi − pst) + Jt − bi
]

+ 1− vπ
(
bi
pi

)
,
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from which we have assumption (d). Assumption (e) is given by Lemma 3.7. Thus, if
P is a rami�cation polygon of an extension L/K, then these properties are necessary.

Next we will show su�ciency by constructing a polynomial ψ(x) =
∑
ψix

i ∈
OK [x] such that Rψ = P . First, we let ψn = 1 and ψ0 be an element of valuation 1 in
OK . For each point (psi , ain+ bi) in P , with bi 6= 0, let ψbi be an element of OK with
valuation 1 + ai − vπ

(
bi
psi

)
. By assumption (b), ψbi is well de�ned even if it is given

by multiple points as those de�nitions coincide, and by assumption (a) we have that
vπ(ψbi) ≥ 1. If ψj in 0 < j < n is not assigned by some bi, we set ψj = 0. We now
have an Eisenstein polynomial ψ, and we proceed by computing Rψ.

Let Rψ be the rami�cation polygon of ψ, the Newton polygon N of the rami�-
cation polynomial ρ(x) = ψ(αx + α)/(αn) ∈ K(α)[x], where α is a root of ψ. Let
ρ(x) =

∑
ρix

i. Let B be the set of nonzero bi in the points of P . For all 0 < i < n
with i /∈ B, vπ(ψi) =∞, so we can simplify Equation (3.1) by only needing to consider
terms k ∈ B ∪ {n} to

vα(ρi) = min

{
min

k∈B,k≥i

{
n

[
vπ

((
k

i

)
ψk

)
− 1

]
+ k

}
, nvπ

(
k

i

)}
.

Substitution of our values for vπ(ψbt) gives

vα(ρi) = min

{
min

{(psk ,Jk)∈P:bk≥i}

{
n

[
ak − vπ

(
bk
psk

)
+ vπ

(
bk
i

)]
+ bk

}
, nvπ

(
n

i

)}
.

Consider (psi , ain+ bi) ∈ P , and let us �nd vα(ρpsi ).

vα(ρpsi ) = min

{
min

{(psk ,Jk)∈P:bk≥psi}

{
n

[
ak − vπ

(
bk
psk

)
+ vπ

(
bk
psi

)]
+ bk

}
, nvπ

(
n

psi

)}
.

(3.2)
If bi 6= 0, then the bk = bi term in the minimum is ain + bi. For (psk , akn + bk) ∈ P
with psi ≤ bk < bi, by assumption (c), we have ak ≥ 1 + ai − vπ

(
bk
psi

)
+
(
bk
psk

)
. Thus,

for all of the terms of (3.2) with psi ≤ bk < bi,

n

[
ak − vπ

(
bk
psk

)
+ vπ

(
bk
psi

)]
+ bk ≥ n [1 + ai] + bk ≥ ain+ bi
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For points (psk , akn + bk) on P with bk ≥ bi, by assumption (c), we have ak ≥
ai − vπ

(
bk
psi

)
+
(
bk
psk

)
. Thus, for all of the terms of Equation (3.2) with bk ≥ bi,

n

[
ak − vπ

(
bk
psk

)
+ vπ

(
bk
psi

)]
+ bk ≥ ain+ bk ≥ ain+ bi

Thus vα(ρpsi ) = min
{
ain+ bi, nvπ

(
n
psi

)}
, which is ain + bi by assumption (a). On

the other hand, if bi = 0, then ai = vπ
(
n
psi

)
, and for all of the terms of the inside

minimum of Equation (3.2), as ak ≥ ai − vπ
(
bk
psi

)
+
(
bk
psk

)
, we have

n

[
ak − vπ

(
bk
psk

)
+ vπ

(
bk
psi

)]
+ bk ≥ ain+ bk ≥ ain = nvπ

(
n

psi

)

So, vα(ρpsi ) = ain, and all of the points of P are points of Rψ.
Suppose there is no point on P with abscissa pi for some i with st < i < st+1. We

take our assumption

ak >
1

n

[
Jt+1 − Jt
pst+1 − pst

(pi − pst) + Jt − bk
]
− vπ

(
bk
pi

)
+ vπ

(
bk
psk

)
,

and substitute it into Equation (3.2). After simplifying we get

vα(ρpi) > min

{
min

{(psk ,Jk)∈P:bk≥psi}

{
Jt+1 − Jt
pst+1 − pst

(pi − pst) + Jt

}
, nvπ

(
n

psi

)}
.

As the vα(ρpi) must be greater than the ordinate above pi on the line segment between
(pst , Jt) and (pst+1 , Jt+1), there is no point on Rψ with abscissa pi. Finally, by Lemma
3.7, Rψ has points satisfying Assumption (e). Thus Rψ = P .

Proposition 3.14. An Eisenstein polynomial ϕ has rami�cation polygon R with
points

R = {(1, J0), (ps1 , J1), . . . , (psu−1 , Ju−1), (psu , 0), . . . , (n, 0)},
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where Ji = ain+ bi with 0 ≤ bi ≤ n− 1, if and only if

(a) vπ(ϕi) ≥ LR(i)

(b) For 0 ≤ t ≤ u, vπ(ϕbt) = LR(bt) if bt 6= 0.

where LR is as de�ned in De�nition 3.11.

Proof. If ϕ has rami�cation polygon R, then this is the result of Lemmas 3.8 and
3.10.

Suppose ϕ satis�es these assumptions and ρ is the rami�cation polynomial of ϕ.
If (pst , Jt = atn + bt) is a point of R, then substitution of lR(k, st) for vπ(ϕk) into
Equation (3.1) gives us

vα(ρpst ) = min

{
min

pst≤k<bt
{nat + n+ k}, min

bt≤k<n
{nat + k}, nvπ

(
n

pst

)}

If bt = 0, then this reduces to

vα(ρpst ) = min

{
nat + n+ pst , nvπ

(
n

pst

)}
= nvπ

(
n

pst

)
= Jt.

as nat + n+ pst ≥ Jt = nvπ
(
n
pst

)
, by Proposition 3.13 (a). If bt 6= 0, then this reduces

to

vα(ρpst ) = min

{
nat + bt, nvπ

(
n

pst

)}
= nat + bt = Jt

as Jt ≤ nvπ
(
n
pst

)
, by Proposition 3.13 (a). So Rϕ contains the points of R.

If there is no point on R with abscissa pi, with st < i < st+1, then for k in
pi ≤ k ≤ n,

vπ(ϕk) ≥ lR(k, i) >
1

n

[
Jt+1 − Jt
pst+1 − pst

(pi − pst) + Jt − k
]

+ 1− vπ
(
k

pi

)
.
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Some algebraic manipulation of this inequality gives us

Jt+1 − Jt
pst+1 − pst

(pi − pst) + Jt < n

[
vπ

((
k

pi

)
ϕk

)
− 1

]
+ k,

which shows that vα(ρpi) = minpi≤k≤n

{
n
[
vπ

((
k
pi

)
ϕk

)
− 1
]

+ k
}
is greater than the

value above pi on the segment from (pst , Jt) to (pst+1 , Jt+1). So there is no point on
Rϕ above pi, and thus Rϕ = R.

De�nition 3.15. We call a polygon R with points

R = {(1, J0), (ps1 , J1), . . . , (psu−1 , Ju−1), (psu , 0), . . . , (n, 0)},

that ful�lls the conditions of Proposition 3.13 a rami�cation polygon. We call the
function φR : R>0 → R>0, λ 7→ min0≤i≤u{ 1

n
(Ji + λpsi)} the Hasse-Herbrand function

of R.

Remark. The function φR in De�nition 3.15 agrees with the connections between
the rami�cation polygon and the Hasse-Herbrand transition function as observed in
[Lub81,Li97]. Note that these works de�ne the rami�cation polygon as the Newton
polygon of ϕ(x + α). For normal extensions L/K, our function φR agrees with the
classical φL/K de�ned in [Ser79, FeVo02]. For non-Galois extensions, our function
agrees with the transition function for rami�cation sets de�ned by Helou in [Hel90].

Example 3.16 (Example 3.4 continued). There are three possible rami�cation poly-
gons for extensions L of Q3 of degree 9 with v3(disc (L)) = 18. These polygons are
R1 = {(1, 10), (9, 0)}, R2 = {(1, 10), (3, 3), (9, 0)}, and R3 = {(1, 10), (3, 6), (9, 0)}
and are illustrated in Figure 2.

Since by Lemma 3.8 we have v(ϕ3) = 1, the polynomials ϕ generating extensions
with rami�cation polygon R2 are given by:

x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

34 {0} {0} {0} {0} {0} {0} {0} {0} {0} {0}
33 {0} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2}
32 {0} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {1, 2} {0, 1, 2}
31 {0} {0} {0} {0, 1, 2} {0} {0} {1,2} {0} {0} {1, 2}
30 {1} {0} {0} {0} {0} {0} {0} {0} {0} {0}
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i

vα(ρi)

(1, 10)

(9, 0)

−5
4

R1 = {(1, 10), (9, 0)}
i

vα(ρi)

(1, 10)

(3, 3)

(9, 0)

−7
2

−1
2

R2 = {(1, 10), (3, 3), (9, 0)}
i

vα(ρi)

(1, 10)

(3, 6)

(9, 0)

−2

−1

R3 = {(1, 10), (3, 6), (9, 0)}

Figure 2. Possible rami�cation polygons of extensions L of Q3 of degree 9 with
v3(disc (L)) = 18.

3.3 Enumerating Rami�cation Polygons

In order to use later counting and enumerating results, we need a method of com-
puting all of the possible rami�cation polygons for a given base �eld, degree, and
discriminant. A naive method exists: Rami�cation polygons only depend on the
valuations of the coe�cients of an Eisenstein polynomial, and by Krasner's bound
(Lemma 3.3), those are bounded above, so we can simply try all sequences of val-
uations. However, no matter how fast �nding a rami�cation polygon by Equation
(3.1) may be, this still requires at least (c − 1)n−2 such computations. Proposition
3.13 provides a necessary and su�cient set of conditions for a set of points to be a
rami�cation polygon, which gives rise to a far more e�cient enumeration method.

Given a degree n = e0p
r and discriminant valuation n−J0+1, we know that (1, J0)

must be on our polygon, and that we have a segment from (pr, 0) to (n, 0). This gives
us a partial rami�cation polygon P to start from, after which we can consider what
points may be above pr−1 and then continue from right to left, considering each
abscissa. Our algorithm proceeds recursively, considering the next abscissa from a
partial polygon P .

Assume we have a partial polygon P and the minimum valuations of ϕi required
for the points of P and wish to �nd all points above ps that we can attach. Let
(pt, Jt) be the next point in P to the right of ps. Geometrically, the ordinate above ps

must be between the continuation of the segment ending at pt and the segment from
(pt, Jt) and (1, J0). This can be seen in Figure 3. Algebraically, using Lemma 3.8, we
can use our minimum values of ϕi and Equation (3.1) to �nd a minimum for v(ρps)
and the valuations �xed by the points of the polygon to �nd a maximum. In this
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i

vα(ρi)

(1, J0)

1 ps pt

(ps,ms)

(ps,Ms)

Figure 3. Possible points on a rami�cation polygon above ps based on existing points.

allowable range, we only have to consider multiples of ps, by Lemma 3.12. In order
to add a point, we simply have to verify that the valuation �xed by the new point
is not below our existing minimum valuations and that the change to our minimum
valuations from adding the point (Lemma 3.8) and any absence of points for all pk

with ps < pk < pt (Lemma 3.10) do not increase existing v(ϕi) �xed by the points P .

Algorithm 3.17 (AllRamificationPolygons).

Input: A π-adic �eldK, partial rami�cation polygon P , exponent s of the abscissa
to consider, and V (i), minimum valuations for ϕi based on P .

Output: All rami�cation polygons that may di�er from P by points above p to ps.

(a) Let (pt, Jt) be the point of P with minimal t given t > s.

(b) If s = 0, then

(i) For k ∈ {t− 1, t− 2, . . . , 1} do
• Mv ← v(ρpk) assuming v(ϕi) = V (i) for i ∈ {y mod n|(x, y) ∈ P}∪{n}

• If Mv <

(
J0 − Jt
1− pt

)
(pk − 1) + J0 then return ∅.

• V (i)← max{V (i), l(i, k)} with l computed for no point above pk.

(ii) Return {P}.
(c) mv ← v(ρpk) assuming v(ϕi) = V (i).
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(d) ms ← max{ps, λ(ps − pt) + Jt} where λ is the slope of the segment with pt as
left vertex.

(e) Mv ← v(ρpk) assuming v(ϕi) = V (i) for i ∈ {y mod n|(x, y) ∈ P} ∪ {n}.

(f) Ms ←
(
J0 − Jt
1− pt

)
(ps − 1)

(g) m← max{mv,ms} and M ← min{Mv,Ms}.
(h) If m > M , then return AllRamificationPolygons(K,P , s− 1, V ).

(i) R← {P}.
(j) For y ∈ {y ∈ Z | m ≤ y ≤M and y mod ps ≡ 0} do

(i) b← y mod n.

(ii) If b > 0 and V (s) > l(b, s) (using the point (ps, y)), then next y.

(iii) Vy(i)← max{V (i), l(i, s)} with l(i, s) computed for point (ps, y).

(iv) For k ∈ {t− 1, t− 2, . . . , s+ 1} do
• Mv ← v(ρpk) assuming v(ϕi) = V (i) for i ∈ {y mod n|(x, y) ∈ P}∪{n}.

• If Mv <

(
y − Jt
ps − pt

)
(pk − ps) + y then next y.

• Vk(i)← l(i, k) computed for no point above pk.

• If V (i) < Vk(i) for any i ∈ {y mod n|(x, y) ∈ P} ∪ {b} then next y.
• Vy(i)← max{Vy(i), Vk(i)}.

(v) If minps≤i≤n

{
n
[
vπ
(
i
ps

)
+ Vy(i)− 1

]
+ i
}
6= y then next y.

(vi) Append P ∪ {(ps, y)} to R.
(k) Return

⋃
r∈RAllRamificationPolygons(K, r, s− 1, Vy).

The algorithm AllRamificationPolygons (Algorithm 3.17) does what we have
described and can be used to �nd all rami�cation polygons for a given degree n = e0p

r

and discriminant valuation n + J0 − 1, by initializing P = {(1, J0), (n, 0), (pr, 0)} ∪
{(i, 0) | pr < i < n and vp

(
n
i

)
= 0} and V (i) = l(i, 0) (De�nition 3.11).

Example 3.18. In Table 1, we consider all rami�cation polygons for extensions of
Q3 with discriminants given by the following values of J0: 1, 11, 33, and 81. For all
of these except 11, there is only one rami�cation polygon actually possible.

The table shows, from left to right, the recursions of the algorithm. We �rst
begin with our initial polygon P . There are three stages in this example, considering
possible points above 9 and 3, and then verifying our polygon if it has no point above
3 (and possibly 9 as well). It should be noted that the absence of a point is not
checked until another point is added, or we reach s = 0. For instance, we know that

34



Table 1. Construction of all rami�cation polygons for degree 27 extensions over Q3

with discriminant (3)27+J0−1 for J0 ∈ {1, 11, 33, 81}.

J0 Initial P Above 9 Above 3 Notes

1 {(1, 1), (27, 0)} none (step h) none (step h) Only polygon for J0 = 1

11 {(1, 11), (27, 0)} none (step h)

none Valid polygon
(3,3) Valid polygon
(3,6) Valid polygon
(3,9) Fails in step (j)(v)

33 {(1, 33), (27, 0)}
none

none Fails in step (b)(i)(2) (k = 1)
(3,6) Only polygon for J0 = 33

(9,9) none Fails in step (b)(i)(2) (k = 1)
(9,18) � Fails in step (j)(v)

81 {(1, 81), (27, 0)}
none

none Fails in step (b)(i)(2) (k = 1)
(3,54) Fails in step (j)(iv)(2) (k = 2)

(9,27)
none Fails in step (b)(i)(2) (k = 1)
(3,54) Only polygon for J0 = 81

we cannot have the polygon {(1, 81), (27, 0)} because of the check performed at the
s = 0 stage, whereas we learn that we cannot have {(1, 81), (3, 54), (27, 0)} when we
attempt to add (3, 54). Except for waiting to check the validity of a missing point,
the algorithm discards a branch as soon as it is clear that no valid polygons will come
from it. This is what happens when we attempt to add (9, 18) to {(1, 33), (27, 0)}.

3.4 Residual Polynomials of Segments

Residual (or associated) polynomials were introduced by Ore [Ore28]. They yield
information about the unrami�ed part of the extension generated by the factors of a
polynomial. This makes them a useful tool in the computation of ideal decomposi-
tions and integral bases [GMN13,Mon99,MN92] and the closely related problem of
polynomial factorization over local �elds [GNP12,Pau10].

De�nition 3.19 (Residual polynomial). Let L be a �nite extension of K with uni-
formizer α. Let ρ(x) =

∑
i ρix

i ∈ OL[x]. Let S be a segment of the Newton
polygon of ρ of length l with endpoints (k, vα(ρk)) and (k + l, vα(ρk+l)), and slope
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−h/e = (vα(ρk+l)− vα(ρk)) /l then

A(x) =

l/e∑
j=0

ρje+kα
jh−vα(ρk)xj ∈ K[x]

is called the residual polynomial of S.

Remark. The rami�cation polygon of a polynomial ϕ and the residual polynomials
of its segments yield a sub�eld M of the splitting �eld N of ϕ, such that N/M is a
p-extension [GP12, Theorem 9.1].

From the de�nition we obtain some of the properties of residual polynomials.

Lemma 3.20. Let L be a �nite extension of K with uniformizer α. Let ρ ∈ OL[x].
Let N be the Newton polygon of ρ with segments S1, . . . ,S` and let A1, . . . , A` be the
corresponding residual polynomials.

(a) If Si has integral slope −h ∈ Z with endpoints (k, vα(ρk)) and (k + l, vα(ρk+l))
then Ai(x) =

∑l
j=0 ρj+kα

jh−vα(ρk) xj = ρ(αhx)α−k−vα(ρk) xn−l ∈ K[x].

(b) If for 1 ≤ i ≤ `−1 the leading coe�cient of Ai is denoted by Ai,degAi
and Ai+1,0

is the constant coe�cient of Ai+1 then Ai,degAi
= Ai+1,0.

(c) If ρ is monic then A` is monic.

From now on we consider the residual polynomials of the segments of a rami�cation
polygon. From the de�nition of the residual polynomials and Lemma 3.7 we obtain:

Proposition 3.21. Let ϕ ∈ OK [x] be Eisenstein of degree n = pre0 with gcd(p, e0) =
1, let α be a root of ϕ, ρ the rami�cation polynomial, and Rϕ the rami�cation polygon
of ϕ.

(a) If e0 6= 1 then Rϕ has a horizontal segment of length pr(e0 − 1) with residual
polynomial A =

∑n−pr
i=0 Aix

i where Ai =
(
n
i

)
6= 0 if and only if vα

(
n
i

)
= 0.

(b) If (psk , Jk), . . . , (p
sl , Jl) are the points on a segment S of Rϕ of slope −h

e
, then

the residual polynomial of S is

A(x) =
l∑

i=k

ρpsiα
−Ji x(psi−psk )/e =

l∑
i=k

ϕbi
(
bi
psi

)
α−ain−n x(psi−psk )/e.
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We immediately get:

Corollary 3.22. Let ϕ ∈ OK [x] be Eisenstein and Rϕ its rami�cation polygon.

(a) The residual polynomial of the rightmost segment of Rϕ is monic.

(b) Let (psl , Jl) be the right end point of the i-th segment of Rϕ and Ai =
∑mi

j=0Ai,j
its residual polynomial and let (psk , Jk) be the left end point of the (i + 1)-st
segment of Rϕ and Ai+1 =

∑mi+1

j=0 Ai+1,j its residual polynomial. Then Ai,mi =
Ai+1,0.

We now give criteria for the existence of polynomials with given rami�cation
polygon R and given residual polynomials.

Proposition 3.23. Let n = pre0 with gcd(p, e0) = 1 and let R be a polygon with
points

R = {(1, J0), (ps1 , J1), . . . , (psk , Jk), . . . , (p
r, 0), . . . , (pre0, 0)}

satisfying Proposition 3.13. Write Jk = akn + bk with 0 ≤ bk ≤ n. Let S1, . . . ,S` be
the segments of R with endpoints (pki , Jki) and (pli , Jli) and slopes −hi/ei (1 ≤ i < `).
For 1 ≤ i < ` let Ai(x) =

∑(pli−pki )/ei
j=0 Ai,jx

j ∈ K.
There is an Eisenstein polynomial of degree pre0 with rami�cation polygon R and

segments S1, . . . ,S` with residual polynomials A1, . . . , A` ∈ K[x] if and only if

(a) Ai,degAi
= Ai+1,0 for 1 ≤ i < `,

(b) Ai,j 6= 0 if and only if j = (q − pski )/ei for some q ∈ {ps1 , . . . , pr} with pki ≤
q ≤ pli,

(c) if for some 1 ≤ t, q ≤ u we have bt = bq and ski ≤ st ≤ sli and skj ≤ sq ≤ slj
then

Ai,(pst−pski )/ei =
(
bt
pst

)(
bt
psq

)−1
(−ϕ0)aq−atA

j,(psq−p
skj )/ej

.

Proof. Suppose that ϕ is an Eisenstein polynomial of degree pre0 with rami�cation
polygon R and segments S1, . . . ,S` with residual polynomials A1, . . . , A` ∈ K[x].
Property (a) is given by Lemma 3.20 (b) and property (b) is given by Proposition
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3.21 (b). To establish property (c), suppose that for some 1 ≤ t, q ≤ u we have bt = bq
and ski ≤ st ≤ sli and skj ≤ sq ≤ slj . From Proposition 3.21, we have that

Ai,(pst−pski )/ei = ϕbt
(
bt
pst

)
α−atn−n and A

j,(psq−p
skj )/ej

= ϕbq
(
bq
psq

)
α−aqn−n.

As bt = bq, we have that ϕbt = ϕbq . Since

Ai,(pst−pski )/ei
(
bt
pst

)−1
αatn+n = ϕbt = ϕbq = A

j,(psq−p
skj )/ej

(
bt
psq

)−1
αaqn+n,

we have

Ai,(pst−pski )/ei =
(
bt
pst

)(
bt
psq

)−1
(−ϕ0)aq−atA

j,(psq−p
skj )/ej

.

Conversely, suppose that R is a rami�cation polygon with segments S1, . . . ,S`
with residual polynomials A1, . . . , A` ∈ K[x] with properties (a), (b), and (c) of the
proposition. Let ψ be a polynomial in OK [x] with ψe0pr = 1, vπ(ψ0) = 1 and

ψ
bt,1+at−vπ( btpst)

= Ai,(pst−pski )/ei

(
bt
pst

)−1

(−ψ0,1)at+1πvπ(
bt
pst) for i with pki ≤ pst ≤ pli

for each point (pst , atn + bt) in R. For ψ to be well de�ned, we must check that
the same coe�cient is not assigned di�erent values. Multiple assignments occur at
vertices (when one point contributes to two Ai) and when multiple points have the
same bt. If (pst , atn+ bt) is a vertex of R, then we have

ψ
bt,1+at−vπ( btpst)

= Ai,(pst−pski )/ei

(
bt
pst

)−1

(−ψ0,1)at+1πvπ(
bt
pst)

= A
i+1,(pst−p

ski+1 )/ei+1

(
bt
pst

)−1

(−ψ0,1)at+1πvπ(
bt
pst).

Cancellation gives us Ai,(pst−pski )/ei = A
i+1,(pst−p

ski+1 )/ei+1
. As a vertex, pst is the

abscissa of both the right endpoint of Si (psli = pst) and the left endpoint of Si+1
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(pski+1 = pst). Thus (pst−pski )/ei = degAi and (pst−pski+1 )/ei+1 = 0. So, Ai,degAi
=

Ai+1,0, which is property (a). On the other hand, if for some 1 ≤ t, q ≤ u, we have
bt = bq, with ski ≤ st ≤ sli and skj ≤ sq ≤ slj , then let b = bt = bq and we have

ψ
b,1+at−vπ( btpst)

= Ai,(pst−pski )/ei

(
b

pst

)−1

(−ψ0,1)at+1πvπ(
b
pst)

ψ
b,1+aq−vπ( b

psq)
= A

j,(psq−p
skj )/ej

(
b

psq

)−1

(−ψ0,1)aq+1πvπ(
b
psq).

As R is a rami�cation polygon, by Proposition 3.13 (b), bt = bq implies that at =
aq − vπ

(
b
psq

)
+ vπ

(
b
pst

)
, so we have that 1 + at − vπ

(
b
pst

)
= 1 + aq − vπ

(
b
psq

)
. These two

assignments of coe�cients of ψb set the same coe�cient, and by property (c), they
have the same value. Thus, ψ is well-de�ned, and we have set at most one π-adic
coe�cient for each polynomial coe�cient.

By property (b), none of the assigned coe�cients are zero and no others are non-
zero. Thus, vπ(ψbt) = 1 + at − vπ

(
bt
pst

)
, and as per the construction in the proof of

Proposition 3.13, ψ is an Eisenstein polynomial with rami�cation polygon R.
Next we consider the residual polynomials of the segments of R as given by ψ. Let

Si be a segment of R containing points (psk , Jk), . . . , (p
sl , Jl) of slope −hi/ei. Let A∗i

be the residual polynomial of Si. From Proposition 3.21, for each point (pst , atn+ bt)
with sk ≤ st ≤ sl, we get

A∗i,(pst−psk )/e = ψbt

(
bt
pst

)
α−atn−n.

We need the right side to reduce to our intended value. By our assignment,

ψbt = Ai,(pst−pski )/ei

(
bt
pst

)−1

(−ψ0,1)at+1πvπ(
bt
pst)π1+at−vπ( btpst).

With αn ∼ −NK(α)/K(α) = −ψ0 ∼ −ψ0,1π we get

ψbt
(
bt
pst

)
α−atn−n = Ai,(pst−pski )/ei

(
bt
pst

)−1
(−ψ0,1)at+1πvπ(

bt
pst)π1+at−vπ( btpst)

(
bt
pst

)
(−ψ0,1π)−at−1
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from which cancellation gives us our desired result A∗i,(pst−psk )/e = Ai,(pst−psk )/e.

3.4.1 The invariant A of L/K

We introduce an invariant of L/K, that is compiled from the residual polynomials
of the segments of the rami�cation polygon of ϕ. From the proof of [GP12, Proposition
4.4] we obtain:

Lemma 3.24. Let ϕ ∈ OK [x] be Eisenstein and α a root of ϕ and L = K(α).
Let S be a segment of the rami�cation polygon of ϕ of slope −h/e and let A be its
residual polynomial. Let β = δα with vα(δ) = 0 be another uniformizer of L and
ψ its minimal polynomial. If γ

1
, . . . , γ

m
are the (not necessarily distinct) zeros of A

then γ
1
/δh, . . . , γ

m
/δh are the zeros of the residual polynomial of the segment of slope

−h/e of the rami�cation polygon of ψ.

Thus the zeros of the residual polynomials of all segments of the rami�cation
polygon change by powers of the same element δ when transitioning from a uniformizer
α to a uniformizer δα. With Proposition 3.23 we obtain:

Theorem 3.25. Let S1, . . . ,S` be the segments of the rami�cation polygon R of an
Eisenstein polynomial ϕ ∈ OK [x]. For 1 ≤ i ≤ ` let −hi/ei be the slope of Si and
Ai(x) =

∑mi
j=0 its residual polynomial. Then

A =
{(
γδ,1A1(δh1x), . . . , γδ,`A`(δ

h`x)
)

: δ ∈ K×
}

(3.3)

where γδ,` = δ−h` degA` , and γδ,i = γδ,i+1δ
−hi degAi for 1 ≤ i ≤ `− 1 is an invariant of

the extension K[x]/(ϕ).

Example 3.26. Let ϕ(x) = x9 + 6x3 + 9x + 3. The rami�cation polygon of ϕ
consists of the two segments with end points (1, 10), (3, 3) and (3, 3), (9, 0) and residual
polynomials 1 + 2x and 2 + x3. We get A = {(1 + 2x, 2 + x3), (1 + x, 1 + x3)}.

3.4.2 Generating Polynomials

We show how the choice of a representative of the invariant A determines some
of the coe�cients of the generating polynomials with this invariant.

Lemma 3.27. Let ϕ ∈ OK [x] be Eisenstein of degree n. Let S be a segment of
rami�cation polygon of ϕ with endpoints (psk , akn+ bk) and (psl , aln+ bl) and residual
polynomial A(x) =

∑psl−psk
j=1 Ajx

j ∈ K[x]. If (psi , ain+ bi) is a point on S with bi 6= 0
then

ϕ
bi,j

= A(psi−psk )/e

(
bi
psi

)−1
(−ϕ0,1)ai+1π

vπ( bipsi)
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where j = ai + 1− vπ
(
bi
psi

)
.

Proof. By Lemma 3.8, vπ(ϕbi) = j and by Proposition 3.21

A(x) =
l∑

i=k

ϕbi
(
bi
psi

)
α−ain−n x(psi−psk )/e.

Thus A(psi−psk )/e = ϕbi
(
bi
psi

)
α−ain−n. With αn ∼ −NK(α)/K(α) = −ϕ0 ∼ −ϕ0,1π we

get

A(psi−psk )/e = ϕbi
(
bi
psi

)
(−ϕ0)−ai−1.

As by Lemma 3.7 vα(ϕbi) = vα(ρpsi )− vα
(
bi
psi

)
− bi + n = ain+ bi − vα

(
bi
psi

)
− bi + n =

n(ai + 1)− vα
(
bi
psi

)
we have ϕbi ∼ ϕbi,jπ

ai+1−vπ( bipsi). Therefore

A(psi−psk )/e = ϕbi,j
(
bi
psi

)
(−ϕ0,1π)−ai−1π

ai+1−vπ( bipsi) = ϕ
bi,j

(−ϕ
0,1

)−ai−1
(
bi
psi

)
π
−vπ( bipsi).

A change of the uniformizer α of L = K(α) to δα with v(δ) = 0 that determines the
representative (A1, . . . , A`) ∈ A also e�ects the constant coe�cient of the generating
polynomial. Namely if the Eisenstein polynomial ϕ = xn +

∑n−1
i=0 ϕix

i ∈ OK [x] is
the minimal polynomial of α then ψ(x) = δnϕ

(
x
δ

)
with ψ0,1 = δnϕ0,1 is the minimal

polynomial of δα.

Lemma 3.28. Let ϕ ∈ OK [x] be Eisenstein of degree n and S0 : K → K, a 7→ an.

(a) If and only if δ ∈ S0(K), there is ψ ∈ OK [x] Eisenstein with ψ
0,1

= δϕ
0,1

such
that K[x]/(ψ) ∼= K[x]/(ϕ).

(b) If n = pr for some r ∈ Z>0 then S0 is surjective and there is ψ ∈ OK [x]
Eisenstein with ψ

0,1
= 1 such that K[x]/(ψ) ∼= K[x]/(ϕ).

This corresponds to the reduction step 0 in Monge's reduction [Mon14, Algo-
rithm 1]. If n = pre0 with gcd(p, e0) = 1 then ϕ

0,1
determines the tamely rami�ed

subextensions of K[x]/(ϕ), that can be generated by xe0 + ϕ0,1π.
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If we �x ϕ0,1 then the set of representatives of A becomes

A∗ =
{(
γδ,1A1(δh1x), . . . , γδ,`A`(δ

h`x)
)

: δ ∈ K×, δn = 1
}

(3.4)

where γδ,` = δ−h` degA` , and γδ,i = γδ,i+1δ
−hi degAi for 1 ≤ i ≤ ` − 1. Thus �xing

ϕ0,1 yields a partition of A. Also, if n is a power of p then A∗ contains exactly one
representative of A.
Remark. Let a rami�cation polygon R and A1, . . . , A` ∈ K[x] satisfying Proposition
3.23. Let A as in Theorem 3.25 and A = A∗1 ∪ · · · ∪ A∗k be the partition of A
into sets as in Equation (3.4). Let γ ∈ K×. Then there is no transformation δα
of the uniformizer α of an extension with R and residual polynomials in A∗i for
some 1 ≤ i ≤ k generated by ϕ ∈ OK [x] with ϕ

0,1
= γ such that the residual

polynomials of the segments of Rϕ = R is not in A∗i. Thus the construction of
generating polynomials for all extensions withR andA can be reduced to constructing
polynomials with residual polynomials in the sets A∗i.

Lemma 3.29. Let (A1, . . . , A`) ∈ A∗. If ψ ∈ OK [x] is a polynomial with residual
polynomials in A∗, then there is a polynomial ϕ ∈ OK [x] with residual polynomials
(A1, . . . , A`) such that K[x]/(ψ) ∼= K[x]/(ϕ).

Proof. Let A′1, . . . , A
′
` be the residual polynomials of ψ. As (A′1, . . . , A

′
`) ∈ A∗ there

exists a δ ∈ K× with δn = 1 so that

(A1, . . . , A`) =
(
γδ,1A

′
1(δh1x), . . . , γδ,`A

′
`(δ

h`x)
)
.

where γδ,` = δ−h` degA` , and γδ,i = γδ,i+1δ
−hi degAi for 1 ≤ i ≤ `− 1.

Let α be a root of ψ and ϕ(x) = δnψ(δ−1x) be the minimal polynomial of δα.
This gives us that K[x]/(ψ) ∼= K[x]/(ϕ).

Let us �nd the residual polynomials of ϕ. From Proposition 3.21, we have that the
residual polynomial for a segment Si of slope h/e with endpoints (pski , Jki = akin+bki)
and (psli , Jli = alin+ bli) is

li∑
j=ki

ϕbj
( bj
psj

)
α−ajn−n x(psj−pski )/e.
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Performing our substitution we have that this polynomial is

li∑
j=ki

δn−bjψbj
( bj
psj

)
(δα)−ajn−n x(psj−pski )/e =

li∑
j=ki

δn−bj−ajn−n A′i,j =

li∑
j=ki

δ−Jj A′i,j.

Next, let us perform the deformation of A′i by δ. First, we consider γδ,i. Notice
that for the A′i, the residual polynomial of the segment Si with endpoints (pski , Jk)
and (psli , Jl),

δ−hi degA′i = δλi(p
sli−pski ) = δJli−Jki =


δJl1−Jk1 if i = 1

δJli−Jli−1 if 2 ≤ i < `

δ−Jl`−1 = δ−Jk` if i = `

.

This shows us that for 1 ≤ i ≤ ` − 1, γδ,i = γδ,i+1δ
−hi degA′i = δ−Jki , and in general,

γδ,i = δ−Jki . So the deformation of A′i by δ is

Ai = γδ,iA
′
i,j(δ

hix) = δ−Jki
li∑

j=ki

A′i,jδ
−λi(psj−p

ski ) = δ−Jki
li∑

j=ki

A′i,jδ
−Jj+Jki =

li∑
j=ki

δ−Jj A′i,j.

Thus, the residual polynomials of ϕ(x) are (A1, . . . , A`) and K[x]/(ψ) ∼= K[x]/(ϕ).

Example 3.30 (Example 3.16 continued). Let R2 = {(1, 10), (3, 3), (9, 0)}. There
are two choices for the invariant A, namely A2,1 = {(1 + 2x, 2 + x3), (1 + x, 1 + x3)}
(compare Example 3.26) and A2,2 = {(2 + 2x, 2 + x3), (2 + x, 1 + x3)}.

By Lemma 3.28 all extensions of Q3 with rami�cation polygon R can be generated
by polynomials ϕ ∈ Z3[x] with ϕ0 ≡ 3 mod 9. Fixing ϕ0,1 = 1 gives the partition
A2,1 = A∗12,1 ∪ A∗22,1 with A∗12,1 = {(1 + 2x, 2 + x3)} and A∗22,1 = {(1 + x, 1 + x3)}.

For the generating polynomials of the �elds with A∗12,1 by Lemma 3.27 we get,
from the point (1, 10) = (30, 1 · 9 + 1) on R2 that ϕ1,2 = 1 and from the point
(3, 3) = (31, 0 · 9 + 3) on R2 that ϕ3,1 = 2. The polynomials given by R2 and A∗1 are
described by:
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x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

34 {0} {0} {0} {0} {0} {0} {0} {0} {0} {0}
33 {0} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2}
32 {0} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {1} {0, 1, 2}
31 {0} {0} {0} {0, 1, 2} {0} {0} {2} {0} {0} {1}
30 {1} {0} {0} {0} {0} {0} {0} {0} {0} {0}

By Remark 3.4.2 proceeding as above with A∗22,1 yields a template for generating
polynomials for the remaining extensions with rami�cation polygon R and invariant
A.

3.5 Enumerating Residual Polynomials of Segments

To compute all possible (A1, . . . , A`) for a given rami�cation polygon R, we can
create sequence of residues, with one assigned to each point of R, insuring that the
requirements of Proposition 3.23 hold, and directly construct the polynomials. By
making the assignment to points, the matching of the leading term of one polynomial
to the constant term of the next is handled by construction. The principle problem,
then, is to make sure that coe�cients linked to each other as in Proposition 3.23 (c)
are correctly computed. This requires us to choose the constant coe�cient of our
Eisenstein polynomial, e�ectively choosing a tamely rami�ed subextension.

Our algorithm AllResidualPolynomials (Algorithm 3.31) does just this. It does
not, however, directly compute all possibilities for the invariant A. Instead it �nds
all representatives of possible A∗ given the �xed choice of ϕ0,1. By Remark 3.4.2, if
n is a power of p, then each (A1, . . . , A`) in the output belongs to a disjoint A∗. On
the other hand, if n is not a power of p, then the output may contain more than one
representative of each A∗. In order to compute the possible A∗, one would need to
construct the set from Equation (3.4) for each (A1, . . . , A`) in the output and check
their intersections to partition them into the distinct A∗.

At any degree, multiple elements of the output may belong to the same invari-
ant A. Similar to partitioning into distinct A∗, we can compute the possible A by
constructing the sets from Equation (3.3) for each (A1, . . . , A`) in the output and
comparing to partition them into the distinct A.
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Algorithm 3.31 (AllResidualPolynomials).

Input: A π-adic �eld K, rami�cation polygon R, and residue of constant coe�-
cient ϕ0,1

Output: All (A1, . . . , A`) satisfying the conditions of Proposition 3.23.

(a) If b0 = 0 then L← {(n(−ϕ0,1)−a0)}, else L← {(δ) : δ ∈ K×}
(b) While minA∈L{len(A)} < #R do

(i) Remove A from the front of L and let s← len(A) + 1.
Let (xs, asn+ bs) be the sth point of R.

(ii) If bs = 0 then

• If xs = n then append 1 to A, else append
(
n
xs

)
(−ϕ0,1)−as to A.

• Append A to the end of L.

(iii) Else if bs = bq for some q < s then append
(
bs
xs

)(
bs
xq

)−1
(−ϕ0,1)aq−as to A, and

append A to the end of L.

(iv) Else for δ ∈ K×, let A′ be A with δ appended and append A′ to L.

(c) R← {}.
(d) For A in L do

(i) P ← {}.
(ii) For each segment S of R do

• Let (xk, Jk) be the left endpoint and −he be the slope of S.
• Append

∑
(xs,Js)∈S

Asz
(xs−xk)/e to P

(iii) Append P to R.

(e) Return R.
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CHAPTER IV
COUNTING EXTENSIONS WITH GIVEN INVARIANTS

In [Kra66], Krasner gave a formula for the number of totally rami�ed extensions
of a p-adic �eld, using his famous lemma as a main tool. In addition to the choice
of degree, his formula depended on the choice of discriminant. This choice allows
the construction of a �nite set of Eisenstein polynomials which generate all totally
rami�ed extensions of given discriminant. A metric on polynomials provides us one
of the needed bounds for this set and relates the number of these polynomials to
the number of extensions. In this chapter, we generalize these methods to compute
the number of totally rami�ed extensions with the additional choice of rami�cation
polygon and residual polynomials of segments.

4.1 An Ultrametric Distance of Polynomials

For two irreducible polynomials f, g ∈ K[x] of degree n, we de�ne an ultrametric
distance that we will later relate to the distance of the roots of these two polynomials.

Proposition 4.1. Let f, g ∈ K[x] be two irreducible polynomials of degree n. If
α is any root of f and β is any root of g, then d(f, g) = |f(β)| = |g(α)| de�nes
an ultrametric distance over the set of irreducible polynomials of degree n in K[x].
Additionally, if α = α1, . . . , αn are the roots of f , and β is one of the roots of g which
is closest to α, then

d(f, g) =
n∏
i=1

{|β − α|, |α− αi|}.

Proof. The proof closely follows that of Proposition 4.1 in [PR01].
To begin, let d(f, g) = |f(β)|. It is clear that d(f, g) = 0 if and only if f = g.
First we show that d(f, g) = |f(β)| does not depend on the choice of β. Let β′ of

g be any root of g and σ be in the Galois group of g over K such that σ(β) = β′. As
σ is isometric, we have |f(β)| = |σ(f(β))| = |f(σ(β))| = |f(β′)|, and d(f, g) does not
depend on the choice of root of β.

Next we show that |f(β)| = |g(α)|. Let α = α1, . . . , αn be the roots of f and
β = β1, . . . , βn be the roots of g, and notice that

|f(β)|n =
∏
i

|f(βi)| =
∏
i,j

|βi − αj|
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As the last formula is symmetric with respect to f and g, and |f(α)|, |f(β)| ∈ R+,
this gives us that |f(β)| = |g(α)|. Thus, |f(β)| = |g(α)| and d(f, g) = d(g, f).

Now let us �x a root α of f and choose β from the roots of g such that |β −
α| is minimal. Notice that this distance does not depend on our choice of α. If
|β − αi| 6= |β − α|, then from our choice of β, we have |β − αi| > |β − α|. Thus,
|α− αi| = |(α− β) + (β − αi)| = |β − αi|. This gives us our desired formula,

d(f, g) =
n∏
i=1

{|β − α|, |α− αi|}.

Finally, we show that d(f, g) satis�es the ultrametric inequality. Let h ∈ K[x] be
irreducible and of degree n and assume that γ and γ′ are roots of h such that |β − γ|
and |α− γ′| are minimal. Then

d(f, h) =
n∏
i=1

max{|α− γ′|, |α− αi|} ≤
n∏
i=1

max{|α− γ|, |α− αi|}

≤
n∏
i=1

max{max{|α− β|, |β − γ|}, |α− αi|}

≤
n∏
i=1

max {max{|α− β|, |α− αi|},max{|β − γ|, |α− αi|}}

≤ max{d(f, g), d(g, f)}.

Thus, d(f, g) is an ultrametric distance with the desired properties.

We can calculate the distance d(f, g) easily using the following lemma.

Lemma 4.2 ([PR01],Lemma 4.2). Using the same notation as Proposition 4.1, write
f(x) = xn + fn−1x

n−1 + · · ·+ f0 and g(x) = xn + gn−1x
n−1 + · · ·+ g0, and set

w = min
0≤i≤n−1

{
vπ(gi − fi) +

i

n

}
.

Then d(f, g) = |π|w.
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Proof. Notice that

g(α) = g(α)− f(α) =
n∑
i=0

(gi − fi)αi,

and since α is a prime element vπ(α) = 1/n. All of the terms in this sum must then
have di�erent valuations, of which g(α) is the minimum.

4.2 Bounded Sets of Eisenstein Polynomials with Given Invariants

In this section, we will use the various restrictions to generating polynomials
provided by choices of invariants to construct �nite sets of Eisenstein polynomials.

Throughout this section, we will use the following notation to refer to elements
in local �eld K with π-adic coe�cients bounded above and below. Let l,m be two
integers with 1 ≤ l ≤ m, let Rl,m be a �xed set of representatives of the quotient
(π)l/(π)m, and let R×l,m be the subset of Rl,m whose elements have π-adic valuation
of exactly l.

4.2.1 Eisenstein Polynomials with a Given Discriminant

Using Lemma 3.2 as a lower bound for coe�cient valuations and a bound over
which the π-adic coe�cients of a generating polynomial are chosen to be 0, we con-
struct a �nite set of Eisenstein polynomials. Krasner's bound (Lemma 3.3) gives a
speci�c bound over which the π-adic coe�cients of a generating polynomial can be
chosen to be 0, while still generating the same extensions, but its proof will be shown
as a consequence of Theorem 4.9.

First we de�ne l(i), which gives the minimum valuation for the coe�cients of the
generating polynomials of extensions with given discriminant, and claim that poly-
nomials satisfying this have a given discriminant. These are e�ectively a restatement
of Lemma 3.2.

De�nition 4.3. Let J0 = a0n+ b0 satisfy Ore's conditions. For 1 ≤ i ≤ n− 1 Let

l(i) =

{
max{2 + a0 − vπ(i), 1} if i < b0,
max{1 + a0 − vπ(i), 1} if i ≥ b0.

Lemma 4.4. An Eisenstein polynomial ϕ ∈ OK [x] has discriminant (π)n+J0−1 where
J0 = a0n + b0 with 0 ≤ b0 < n ful�lls Ore's conditions if and only if vπ(ϕi) ≥ l(i)
and, if b0 6= 0, vπ(ϕb0) = l(b0).
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Next we construct our set of polynomials using l(i) as a lower bound.

De�nition 4.5. Let l,m be two integers with 1 ≤ l ≤ m, let Rl,m be a �xed set of
representatives of the quotient (π)l/(π)m, and let R×l,m be the subset whose elements
have π-adic valuation of exactly l. Let J0 = a0n + b0, c > 1 + 2a0 + 2b0

n
, and let

Ψn,J0(c) be the set of all polynomials ψ(x) = xn +
∑
ψix

i ∈ OK [x] with

ψi ∈


R×1,c if i = 0
R×l(i),c if i = b0 6= 0

Rl(i),c if 1 ≤ i ≤ n− 1 and i 6= b0

These polynomials satisfy Lemma 4.4 by construction.

Proposition 4.6. The polynomials in Ψn,J0(c) are Eisenstein polynomials of discrim-
inant (π)n+J0−1.

4.2.2 Eisenstein Polynomials with a Given Rami�cation Polygon

Now let us construct a similar set of Eisenstein polygons given a rami�cation
polygon. Similar to the case of discriminants, we have an analogous function LR(i) for
the lower bounds of the valuation of our coe�cients (De�nition 3.11). The following
is true as a consequence of Proposition 3.14.

Proposition 4.7. Let l,m be two integers with 1 ≤ l ≤ m, let Rl,m be a �xed
set of representatives of the quotient (π)l/(π)m, and let R×l,m be the subset whose
elements have π-adic valuation of exactly l. For a rami�cation polygon R with points
(p0, J0), (ps1 , J1), . . . , (ps` , J`), where Ji = ain+bi, let BR be the set of non-zero bi. Let
c > 1+2a0 + 2b0

n
, and let Ψn,J0,R(c) be the set of all polynomials ψ(x) = xn+

∑
ψix

i ∈
OK [x] with

ψi ∈


R×1,c if i = 0
R×LR(i),c if i ∈ BR
RLR(i),c if 1 ≤ i ≤ n− 1 and i /∈ BR

The polynomials in Ψn,J0,R(c) generate totally rami�ed extensions of K of degree n,
discriminant (π)n+J0−1, and rami�cation polygon R.

4.2.3 Eisenstein Polynomials with Given Residual Polynomials

Finally, we construct a set of Eisenstein generating polynomials for extensions
with given degree, discriminant, rami�cation polygon, and invariant A. This set
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Ψn,J0,R,A(c) is a subset of Ψn,J0,R(c), so its members have the desired discriminant
and rami�cation polygon, and setting certain residues will give us residual polynomials
(A1, . . . , A`) ∈ A by construction.

Proposition 4.8. Let l,m be two integers with 1 ≤ l ≤ m, let Rl,m be a �xed
set of representatives of the quotient (π)l/(π)m, and let R×l,m be the subset whose
elements have π-adic valuation of exactly l. For a rami�cation polygon R with points
(p0, J0), (ps1 , J1), . . . , (ps` , J`), where Ji = ain + bi, let BR be the set of non-zero
bi. Let c > 1 + 2a0 + 2b0

n
, and let Ψn,J0,R,A(c) be the set of all polynomials ψ(x) =

xn +
∑
ψix

i ∈ OK [x] with

ψi ∈


R×1,c if i = 0
R×LR(i),c if i ∈ BR
RLR(i),c if 1 ≤ i ≤ n− 1 and i /∈ BR

and where all ϕ
i,LR(i)

for i ∈ BR are set by the same choice of (A1, . . . , A`) ∈ A
according to Lemma 3.27. The polynomials in Ψn,J0,R,A(c) generate totally rami�ed
extensions of K of degree n, discriminant (π)n+J0−1, rami�cation polygon R, and
invariant A.

4.3 A Generalization of Krasner's Mass Formula

Now we extend Krasner's results to the cases where we have chosen additional in-
variants. In order to do this generically, letX be a set of invariants of a totally rami�ed
extension over K minimally containing a degree n and discriminant (π)n+J0−1.

Let KX denote the set of totally rami�ed extensions over K with invariants X
and EX denote the set of Eisenstein polynomials in K[x] generating extensions with
invariants X. The roots of the polynomials in EX generate all extensions in KX . Let
c > 1 + (2J0)/n and ΨX(c) be the set of all Eisenstein polynomials with coe�cients
in R1,c whose roots generate totally rami�ed extensions with invariants X.

Theorem 4.9 (Krasner). The set En,J0 of Eisenstein polynomials of degree n and
discriminant (π)n+J0−1 over K is the disjoint union of the closed discs DEn,J0

(ψ, r)
with centers ψ ∈ Ψn,J0(c) and radius r = |pc|.

Proof. In Proposition 4.6, we showed that polynomials ψ ∈ Ψn,J0(c) are, in fact,
elements of En,J0 . Let ψ =

∑n
i=0 ψix

i and ψ′ =
∑n

i=0 ψ
′
ix
i be distinct elements of

Ψn,J0(c), and i be such that ψi 6= ψ′i.

vπ(ψi − ψ′i) +
i

n
< c− 1 +

i

n
< c
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and by Lemma 4.2, d(ψ, ψ′) > r. Therefore, by the ultrametric property of d, we
have that the discs Dψ and Dψ′ are disjoint.

Next, let f ∈ En,J0 with f(x) = xn + fn−1x
n−1 + · · · + f0. Let J0 = a0n + b0. As

f is Eisenstein, vπ(f0) = 1 and there exists ψ0 ∈ R×1,c such that f0 ≡ ψ0 mod pc. If
b0 6= 0, then we have that vπ(fb0) = l(b0), so there is ψb0 ∈ R×l(b0),c such that fb0 ≡ ψb0
mod pc. For all 1 ≤ i ≤ n − 1 with i 6= b0, vπ(fi) ≥ l(i), so there is ψi ∈ Rl(i),c such
that fi ≡ ψi mod pc. We claim that f ∈ DEn,J0

(ψ, r) with ψ =
∑
ψix

i and r = |pc|.
By our choices of ψi, we have that vπ(fi− ψi) ≥ c for i = 0, . . . , n− 1. Therefore, for
all i,

vπ(fi − ψi) +
i

n
≥ c

which, by Lemma 4.2, proves our claim.

Krasner's bound (Lemma 3.3) is a direct consequence of the following corollary.

Corollary 4.10. Let f be an Eisenstein polynomial of degree n and discriminant
pn+J0−1 over K and write f(x) = xn+fn−1x

n−1 + · · ·+f0. Let g(x) = xn+gn−1x
n−1 +

· · ·+ g0 be a polynomial such that gi ≡ fi mod pc. Let α be a root of f and β a root
of g such that |β − α| is minimal. Then α ∈ K(β).

Proof. First we observe that vπ(gi) = vπ(fi) and so by Lemma 3.8, g is also an
Eisenstein polynomial with discriminant pn+J0−1.

Let α = α1, α2, . . . , αn denote the roots of f and let ∆f be the minimal distance
between α and any other root of f . Then, since the αi are prime elements,

|f ′(α)| =
n∏
i=2

|α− αi| ≤ ∆f · |p(n−2)/n|.

However, |f ′(α)| = |p(n+J0−1)/n|, and so ∆f ≥ |p(J0+1)/n|.
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Now, by Theorem 4.9, we have that d(f, g) ≤ r = |pc|. We claim that |β−α| < ∆f ,
as otherwise

d(f, g) =
n∏
i=1

max{|β − α|, |α− αi|} ≥
n∏
i=1

max{∆f, |α− αi|}

≥ ∆f
n∏
i=2

|α− αi| = ∆f |f ′(α)| ≥ |p(n+2J0)/n|,

which contradicts d(f, g) ≤ r = |pc|, by the particular choice of c. Thus, |β−α| < ∆f ,
and by Krasner's Lemma (Theorem 1.2) we have that α ∈ K(β).

The following is simply a result of the fact that EX ⊆ En,J0 and DEX (r) ⊆
DEn,J0

(r).

Corollary 4.11. The set EX is the disjoint union of the closed discs DEX (ψ, r) with
centers ψ ∈ ΨX(c) and radius r = |pc|.

Lemma 4.12. Let X be a set of invariants of a totally rami�ed extension over K
containing degree n and discriminant (π)n+J0−1. Let c > 1+2a0+ 2b0

n
and let #DEX (r)

denote the number of disjoint closed discs of radius r = |πc| in EX . Then the number
of elements in KX is

#KX = #DEX (r)
n

(q − 1)qnc−(n+J0−1)−2

Proof. Let ΠX denote the set of all prime elements of members of KX . ΠX can be
di�erently de�ned as the union of sets pL \ p2

L where pL is the prime ideal of some
member L of KX . Let χ be the map that sends a prime element in ΠX to its minimal
polynomial in EX .

Let t > J0 + 1 be an integer and let s = |π(n+j0−1+t)/n|. Let u = |πt|1/n, and let
α, β ∈ ΠX such that |α − β| ≤ u. By Krasner's Lemma, α and β generate the same
�eld. Let α = α1, α2, . . . , αn denote the roots of χ(α). Then

d(χ(α), χ(β)) =
n∏
i=1

max{|β − α|, |α− αi|}

≤ u

n∏
i=2

|α− αi| = u|(χ(α))′(α)| = u|π(n+j−1)/n| = s
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LetDΠ(α, u) denote the closed disc of center α and radius u in ΠX . As d(χ(α), χ(β)) ≤
s, we have χ(DΠ(α, u)) ⊂ DEX (χ(α), s). Conversely, let f, g ∈ EX such that
d(f, g) ≤ s. Let α be a root of f so f = χ(α) and β be the root of g such that
|β − α| is minimal. We claim that |β − α| < u, as otherwise

d(f, g) =
n∏
i=1

max{|β − α|, |α− αi|} ≥
n∏
i=1

max{u, |α− αi|}

≥ u

n∏
i=1

|α− αi| = u|f ′(α)| = u|π(n+j−1)/n| = s,

which contradicts the assumption that d(f, g) < s. As |β − α| < u, we have
DEX (χ(α), s) ⊂ χ(DΠ(α, u)). So, for all α ∈ ΠX ,

DEX (χ(α), s) = χ(DΠ(α, u)).

It is clear that the map χ is n-to-one and surjective. Now, the inverse image of χ(α) is
the set of conjugates of α over K. As t > j+1, the closed discs of radius u centered at
these conjugates are all disjoint. Thus, the inverse image of any closed disc of radius
s in EX is the disjoint union of n closed discs of radius u in ΠX . However, by the
earlier remark, any such disc is contained in pL \ p2

L for some L ∈ KX . Therefore, the
number of disjoint closed discs of radius u in ΠX is equal to #KX times the number
of disjoint closed discs in pL \ p2

L, which does not depend on L and is qt−1 − qt−2.
Thus,

#KX qt−2(q − 1) = n #DEX (s),

and choosing t = nc− (n+ J0 − 1) gives us our result.

4.4 Mass Formula Given a Discriminant (Krasner)

Proposition 4.13. Let Ψn,J0 be the set of polynomials over K with degree n and
discriminant (π)n+J0−1 whose coe�cients are in R1,c. The number of polynomials in
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Ψn,J0 is

#DEn,J0
(c) =

{
(q − 1) qc−2+(n−1)c−

∑n−1
i=1 l(i) for b = 0

(q − 1)2 qc−2+(n−1)c−
∑n−1
i=1 l(i)−1 for b > 0

Proposition 4.14. The number of distinct totally rami�ed extensions of K of degree
n and discriminant (π)n+J0−1 is

#Kn,J0 =

{
n qn+J0−1−

∑n−1
i=1 l(i) for b = 0

n (q − 1) qn+J0−1−
∑n−1
i=1 l(i)−1 for b > 0

Example 4.15. As an example, let us count all totally rami�ed extensions of Q3

with degree 9 and discriminant (3)9+7−1. From this discriminant, we have J0 = 7. We
�nd minima for the vπ(ϕi) if ϕ is to be an Eisenstein polynomial of this discriminant.
By Lemma 3.2,

l(i) = vπ(ϕi) ≥
{

2 for i ∈ {1, 2, 4, 5}
1 for i ∈ {3, 6, 7, 8}

So,
∑
l(i) = 12, and from the formula, we �nd that there are 9 · 2 · 39+7−1−12−1 = 162

degree 9 extensions of Q3 with discriminant (3)9+7−1.

4.5 Mass Formula Given a Rami�cation Polygon

Proposition 4.16. Let Ψn,J0,R(c) be the set of Eisenstein polynomials with degree
n, discriminant (π)n+J0−1, and rami�cation polygon R with coe�cients whose coe�-
cients above c are zero (see Lemma 3.3). Then

#Ψn,J0,R(c) = (q − 1)#BR+1 qc−2+(n−1)c−
∑n−1
i=1 L(i)−#BR

Proof. The number of elements in R∗1,c is (q−1) qc−2. For each i /∈ BR, the number of
elements in RLR(i),c is qc−L(i), and for i ∈ BR the number in R∗LR(i),c is (q−1)qc−L(i)−1.
The product of these is our result.
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Proposition 4.17. The number of distinct totally rami�ed extensions of K of degree
n, discriminant (π)n+J0−1, and rami�cation polygon R is

n(q − 1)#BR qn+J0−1−
∑n−1
i=1 L(i)−#BR

Proof.

n #DEn,J0,R
(c)

(q − 1)qnc−(n+J0−1)−2
= n(q − 1)#BR qn+J0−1−

∑n−1
i=0 L(i)−#BR

Example 4.18 (Example 4.15 continued). Now let us count all totally rami�ed ex-
tensions of Q3 with degree 9 and discriminant (3)9+7−1 where we make a choice of
rami�cation polygon. Again, we have J0 = 7 and

lR(i, 0) = l(i) =

{
2 for i ∈ {1, 2, 4, 5}
1 for i ∈ {3, 6, 7, 8}

There are two possible rami�cation polygons for this degree and discriminant:
R1 with vertices {(1, 7), (9, 0)} and R2 with vertices {(1, 7), (3, 3), (9, 0)}. We have
already considered the conditions on the polynomial dictated by the vertex (1, 7), so
it only remains to consider the e�ect of a vertex (or lack thereof) above 3.

For R1, no vertex above 3 means lR1(3, 1) = 2 and lR1(6, 1) = 1. For an Eisen-
stein polynomial to have rami�cation polynomial R1, the minimum valuations of the
coe�cients would have to be

LR1(i) = max
s
{lR1(i, s)} =

{
2 for i ∈ {1, 2, 3, 4, 5}
1 for i ∈ {6, 7, 8} .

So,
∑
LR1(i) = 13. Next we consider the set of �xed valuations of an Eisenstein

polynomial generating such an extension and �nd that

BR1 = {Ji mod n : 0 ≤ i ≤ s` and Ji mod n 6= 0} = {7}
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The number of �xed valuations is#BR1 = 1. Thus, by applying the formula, we �nd
that there are 9 · 21 · 39+7−1−13−1 = 54 degree 9 extensions of Q3 with rami�cation
polygon R1.

For R2, the vertex (3, 3) gives us that lR2(3, 1) = 1 and lR2(6, 1) = 1. For an
Eisenstein polynomial to have rami�cation polynomial R2, the minimum valuations
of the coe�cients would have to be

LR2(i) = max
s
{lR2(i, s)} =

{
2 for i ∈ {1, 2, 4, 5}
1 for i ∈ {3, 6, 7, 8} .

So,
∑
LR2(i) = 12. Next we consider the set of �xed valuations of an Eisenstein

polynomial generating such an extension and �nd that

BR2 = {Ji mod n : 0 ≤ i ≤ s` and Ji mod n 6= 0} = {3, 7}

The number of �xed valuations is #BR2 = 2. Thus, by applying the formula, we �nd
that there are 9 · 22 · 39+7−1−12−2 = 108 degree 9 extensions of Q3 with rami�cation
polygon R2.

Krasner's mass formula states that there are 162 totally rami�ed extensions of Q3

with degree 9, which we have partitioned by the two possible rami�cation polygons.

4.6 Mass Formula Given Residual Polynomials

Proposition 4.19. The number of Eisenstein polynomials of degree n, with given
discriminant (π)n+J0−1, rami�cation polygon R, and invariant A with coe�cients
whose coe�cients above c are zero (see Lemma 3.3) is

(#A) (q − 1) qc−2+(n−1)c−
∑n−1
i=1 LR(i)−#BR

Proof. The choice of A does not change the constant term, so for that coe�cient
we have the number of elements in R∗1,c, which is (q − 1) qc−2. For each i /∈ BR, we
have the number of elements in RLR(i),c, which is qc−L(i). For i ∈ BR, the choice of
(A1, . . . , A`) ∈ A, �xes the �rst non-zero coe�cient of our coe�cients. The number
of elements in R∗LR(i),c with a �xed �rst non-zero coe�cient is qc−L(i)−1. We have #A
ways to �x those coe�cients, and the product of these is our result.

56



Proposition 4.20. The number of distinct totally rami�ed extensions of K of degree
n, discriminant (π)n+J0−1, rami�cation polygon R, and invariant A is

n (#A) qn+J0−1−
∑n−1
i=1 LR(i)−#BR

Example 4.21 (Example 4.18 continued). As an example, let us count all totally
rami�ed extensions of Q3 with degree 9, discriminant (3)9+7−1, and rami�cation poly-
gon R2 = {(1, 7), (3, 3), (9, 0)}

As before, for an Eisenstein polynomial to have rami�cation polynomial R2, the
minimum valuations of the coe�cients would have to be

LR2(i) = max
s
{lR2(i, s)} =

{
2 for i ∈ {1, 2, 4, 5}
1 for i ∈ {3, 6, 7, 8} .

So,
∑
LR2(i) = 12 and the number of �xed valuations is #BR2 = 2.

There are four possible sets of residual polynomials of segments (A1, A2) for ex-
tensions with rami�cation polygon R2, belonging to two invariants A:

A1 = {(x2 + 1, x3 + 1), (2x2 + 2, x3 + 2)} and A2 = {(x2 + 2, x3 + 1), (2x2 + 1, x3 + 2)}.

Each of these invariants contain two polynomials, so by applying the formula, we �nd
that there are 9 · 2 · 39+7−1−12−2 = 54 degree 9 extensions of Q3 with rami�cation
polygon R2 and a choice of A. This partitions the 108 extensions of degree 9 with
R2.

4.7 Examples

In Table 2, we show the number of extensions of degree 9 over Q3 with given
invariants. For discriminants (3)9+J0−1 with J0 ≤ 12, we list all possible rami�cation
polygons, as generated by Algorithm 3.17, all residual polynomials, as generated by
Algorithm 3.31, and how many extensions exist with each set of invariants.

Additional examples for di�erent base �elds and degrees with all possible discrim-
inants can be found at

http://www.uncg.edu/mat/numbertheory/tables/local/counting/.
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J0 Rami�cation Polygon Representative of A #A Extensions
1 {(1, 1), (9, 0)} (z + 1) 2 18 18 18

2 {(1, 2), (9, 0)} (z2 + 1) 1 9
18 18

(z2 + 2) 1 9

4
{(1, 4), (9, 0)} (z4 + 1) 1 9

18
54

(z4 + 2) 1 9

{(1, 4), (3, 3), (9, 0)} (z4 + z + 1) 2 18
36

(z4 + z + 2) 2 18

5
{(1, 5), (9, 0)} (z + 1) 2 18 18

54{(1, 5), (3, 3), (9, 0)} (z2 + 1, z3 + 1) 2 18
36

(2z2 + 1, z3 + 2) 2 18

7
{(1, 7), (9, 0)} (z + 1) 2 54 54

162{(1, 7), (3, 3), (9, 0)} (z2 + 1, z3 + 1) 2 54
108

(2z2 + 1, z3 + 2) 2 54

8

{(1, 8), (9, 0)} (z8 + 1) 1 9
18

162

(z8 + 2) 1 9

{(1, 8), (3, 3), (9, 0)} (z + 1, z3 + 1) 2 54
108

(z + 2, z3 + 1) 2 54

{(1, 8), (3, 6), (9, 0)}

(z8 + z2 + 1) 1 9

36
(z8 + 2z2 + 1) 1 9
(z8 + z2 + 2) 1 9
(z8 + 2z2 + 2) 1 9

10

{(1, 10), (9, 0)} (z2 + 1) 1 27
54

486

(z2 + 2) 1 27

{(1, 10), (3, 3), (9, 0)} (z + 1, z3 + 1) 2 162
324

(z + 2, z3 + 1) 2 162

{(1, 10), (3, 6), (9, 0)}

(z2 + 1, z6 + 1) 1 27

108
(2z2 + 1, z6 + 2) 1 27
(z2 + 2, z6 + 1) 1 27
(2z2 + 2, z6 + 2) 1 27

11

{(1, 11), (9, 0)} (z + 1) 2 54 54

486
{(1, 11), (3, 3), (9, 0)} (z2 + 1, z3 + 1) 2 162

324
(2z2 + 1, z3 + 2) 2 162

{(1, 11), (3, 6), (9, 0)} (z + 1, z6 + 1) 2 54
108

(2z + 1, z6 + 2) 2 54

12 {(1, 12), (3, 3), (9, 0)} (2z + 1, z3 + 2) 1 243
486 486

(z + 2, z3 + 1) 1 243

Table 2. Number of extensions of degree 9 for all possible rami�cation polygons and
residual polynomials over Q3 with discriminant (3)9+J0−1 for J0 ≤ 12.
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CHAPTER V
ENUMERATING EXTENSIONS WITH GIVEN INVARIANTS

As we have seen, Krasner's method of counting extensions [Kra66] and our gener-
alization in Chapter IV construct a �nite set of Eisenstein polynomials which generate
all totally rami�ed extensions with given invariants. Pauli and Roblot [PR01] pre-
sented an algorithm that returned a set of generating polynomials for all extensions of
a given degree and discriminant, following Krasner's approach. They used the root-
�nding algorithm described by Panayi [Pan95] to obtain one generating polynomial for
each extension. A recent paper by Monge [Mon14] provides a new method for deter-
mining whether two polynomials generate the same extension and introduces reduced
polynomials that yield a canonical set of generators for totally rami�ed extensions
of K. Monge's methods considerably reduce the number of generating polynomials
that need to be considered when computing a set of polynomials de�ning all totally
rami�ed extensions of K.

In this chapter, we present an algorithm that for each extension with given in-
variants constructs a considerably smaller set of de�ning polynomials than the set
obtained with Krasner's bound. In many cases this eliminates the need to check
whether two polynomials generate the same extension. The polynomials constructed
are reduced in Monge's sense.

While our algorithm only generates totally rami�ed extensions, it can be used to
enumerate in the general case. As any �nite extension L/K can be uniquely split into
a tower L/Lur/K where L/Lur is totally rami�ed and Lur/K is unrami�ed, general
enumeration can be achieved by enumerating over suitable unrami�ed extensions.
More details can be found in [PR01, Section 2].

5.1 Residual Polynomials of Components

We now apply some results of Monge [Mon14] to reduce the number of polynomials
that we need to consider to generate all extensions with given invariants.

De�nition 5.1. Let N be a Newton polygon. For λ ∈ Q, the λ-component of N is

Nλ =
{

(k, w) ∈ N | λk + w = min{λl + u | (l, u) ∈ N}
}
.

Remark. If N has a segment with slope λ then Nλ contains that segment. Otherwise
Nλ consists of only one point.

To each component of integral slope of a rami�cation polygon we attach a residual
polynomial.
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De�nition 5.2. Let ϕ ∈ OK [x] be Eisenstein, α a root of ϕ, ρ the rami�cation
polynomial of ϕ, and R the rami�cation polygon of ϕ. For λ ∈ Z>0 the residual
polynomial of the (−λ)-component of R is

Sλ(x) = ρ(αλx)/ contα
(
ρ(αλx)

)
where contα

(
ρ(αλz)

)
denotes the highest power of α dividing all coe�cients of ρ(αλz).

The quantity contα(ρ(αmz)) only depends on the rami�cation polygon. Namely
if ρ(x) =

∑n
i=1 ρix

i we have ρ(αλx) =
∑n

i=0 ρi(α
λx)i =

∑n
i=0 ρi(α

λ)ixi and obtain

nφR(λ) = min
0≤i≤n

v(ρi) + iλ = contα
(
ρ(αλx)

)
for the Hasse-Herbrand function φR ofR (De�nition 3.15). Thus [Mon14, Proposition
1] yields

nφR(λ) = contα
(
ρ(αλx)

)
= nφL/K(λ).

To calculate nφR(λ), we only have to take the minimum of the v(ρi) + iλ for the
points (v(ρi), i) on the polygon. For ps < i < ps+1, we have vα(ρps) ≤ vα(ρi) (Lemma
3.6 (c)) and ps < i, which gives us that vα(ρps)+psλ < vα(ρi)+iλ. This demonstrates
the formula for φR from De�nition 3.15.

Lemma 5.3. Let R be the rami�cation polygon of ϕ.

(a) If R has a segment S of integral slope −m ∈ Z, with left endpoint (k, w) and
residual polynomial A then Sm(x) = xkA(x).

(b) If R has no segment of slope −m ∈ Z then Sm(x) = xp
s
where 0 ≤ s ≤ vp(n)

such that v(ρps) + ps ·m = min0≤r≤vp(n) v(ρpr) + pr ·m.

(c) For all m ∈ Z>0 the residual polynomial Sm of R−m is an additive polynomial.

(d) Sm : K → K is Fp-linear.

Proof. (a) By Remark 5.1 the componentR(−m) contains S and by Remark 3.20((a))
Sm(x) = xkA(x).
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(b) As mentioned in Remark 5.1 N(−m) and R only have one point in common. By
Lemma 3.6 this point is of the form (ps, v(ρps)). It follows from Lemma 3.6 that
if the rami�cation polygon R of ϕ has no segment of slope −m then

v (contα(ρ(αmx))) = min
0≤i≤n

v(ρi) + i ·m = min
0≤r≤vp(n)

v(ρpr) + pr ·m

and Sm(x) = xp
s
where 0 ≤ s ≤ vp(n) such that v(ρps)+p

s·m = min0≤r≤vp(n) v(ρpr)+
pr ·m.

(c) By Lemma 3.6 the abscissa of each point on R is of the form ps. Thus the
residual polynomial of R(−m) is the sum of monomials of the form xp

s
which

implies that Sm is additive.

(d) Is a direct consequence of (c).

We now investigate the e�ect of changing the uniformizer α of K(α) on the coef-
�cients of its minimal polynomial (compare [Mon14, Lemma 3]).

Proposition 5.4. Let ϕ ∈ OK [x] be Eisenstein of degree n, let α be a root of ϕ and
let ρ be the rami�cation polynomial of ϕ. Let β = α + γαm+1 where γ ∈ L = K(α)
with v(γ) = 0 be another uniformizer of L and ψ ∈ OK [x] its minimal polynomial.

(a) If 0 ≤ j < n and j ≡ vα (ρ(γαm)) mod n then ϕj − ψj = αnρ(γαm)

(b) If 0 ≤ k < n and k ≡ vα(contα(ρ(αmx))) mod n then

(ϕk − ψk)/(αn−k contα(ρ(αmx))) = Sm(γ).

Proof. (a) By De�nition 3.5 we have

n−1∑
i=0

(ϕi − ψi)βi = ϕ(β)− ψ(β) = ϕ(β) = αnρ(β/α− 1) = αnρ(γαm). (5.1)

Since vπ(ϕi) ∈ Z and vπ(ψi) ∈ Z and vπ(βi) = i
n
we have

vπ

(
n−1∑
i=0

(ϕi − ψi)βi
)

= min
0≤i<n−1

vπ
(
(ϕi − ψi)βi

)
.
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Thus for 0 ≤ j < n and j ≡ vπ (ρ(γαm)) mod n we have ϕj − ψj = αnρ(γαm).

(b) Dividing Equation (5.1) by αn contα(ρ(αmx)) yields

(ϕ(β)− ψ(β)) / (αn contα(ρ(αmx))) = αnρ(γαm)/ (αn contα(ρ(αmx))) = Sm(γ).

For 0 ≤ k < n with k ≡ v(contα(ρ(αmx))) mod n we get

(ϕk − ψk)βk/(αn contα(ρ(αmx))) = Sm(γ).

With β ≡ α mod (α2) we obtain the result.

5.1.1 Generating Polynomials

Using the results from above we can reduce the set of generating polynomials
with given invariants considerably. We show how the coe�cients of a generating
polynomial can be changed by changing the uniformizer. The coe�cients that we can
change arbitrarily this way we set to 0, thus reducing the number of polynomials to
be considered.

Corollary 5.5. Let ϕ ∈ OK [x] be Eisenstein of degree n, let α be a root of ϕ,
let L = K(α), and let ρ be the rami�cation polynomial of ϕ. Let m ∈ Z>0, c =
vα(contα(ρ(αmx))), 0 ≤ k < n with k ≡ c mod n, and j = n−k+c

n
.

(a) If δ ∈ Sm(K) then for the minimal polynomial ψ ∈ OK [x] of β = α + γαm+1

where γ ∈ S−1
m ({δ}) we have ψ

k,j
= ϕ

k,j
− δ.

(b) If Sm : K → K is surjective we can set δ = ϕ
k,j

and obtain ψ
k,j

= 0.

(c) If Sm(γ) = 0 and d = vα(αnρ(γαm)), 0 ≤ l < n with l ≡ d mod n, and i = n−l+d
n

then ψ
l,i

= ϕ
l,i
− π−iαnρ(γαm).

The next Lemma follows directly from Corollary 5.5.

Lemma 5.6. Let ϕ ∈ OK [x] be Eisenstein of degree n, R its rami�cation polygon.
Assume there is m ∈ Z>0 such that k ≡ nφR(m) mod n and j = n+nφR(m)−k

n
and let

Sm be the residual polynomials of R(−m).

(a) If Sm is surjective then there is an Eisenstein polynomial ψ ∈ OK [x] with ψk,j =
0. such that K[x]/(ψ) ∼= K(α).
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(b) If ψ ∈ OK [x] has the same rami�cation polygon with the same residual polyno-
mials as ϕ and ϕk,j − ψk,j /∈ Sm(K) then K[x]/(ψ) 6∼= K[x]/(ϕ).

Example 5.7 (Example 3.30 continued). The rami�cation polygonR2 = {(1, 10), (3, 3), (9, 0)}
has no segments with integral slope. We get S1 = x3, S2 = x3, and S3 = x3, with
9φ(1) = 6, 9φ(2) = 9, and 9φ(3) = 12. Thus ϕ6,1 = 0, ϕ0,2 = 0, and ϕ3,2 = 0.
Furthermore Sm = x for with 9φ(m) = 10 + m for m ≥ 4. Thus by Lemma 5.6 we
can set ϕk,j = 0 for k + 9(j − 1) ≥ 14.

For the generating polynomials with A∗12,1 we get the template:

x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

34 {0} {0} {0} {0} {0} {0} {0} {0} {0} {0}
33 {0} {0} {0} {0} {0} {0} {0} {0} {0} {0}
32 {0} {0} {0} {0} {0} {0, 1, 2} {0} {0, 1, 2} {1} {0}
31 {0} {0} {0} {0} {0} {0} {2} {0} {0} {1}
30 {1} {0} {0} {0} {0} {0} {0} {0} {0} {0}

Since changing the uniformizer cannot change ϕ2,2 and ϕ4,2 independently from the
other coe�cients of ϕ we obtain a unique generating polynomial of each extension
with rami�cation polygon R2 and A∗12,1.

5.2 Enumerating Generating Polynomials

We use the results from the previous sections to formulate an algorithm that
returns generating polynomials of all extensions with given rami�cation polynomials
and residual polynomials. In certain cases this set will contain exactly one polynomial
for each extension.

Algorithm 5.8 (AllExtensionsSub).

Input: A π-adic �eld K, a convex polygon R with points (1, a0n+ b0), (ps1 , a1n+
b1),. . . ,(psu , aun+bu) = (psu , 0),. . . ,(n, 0) satisfying Proposition 3.13 where
0 ≤ bi < n for 1 ≤ i ≤ u = vp(n), S1, . . . ,S` the segments of R, a
representative δ0 of a class inK

×/(K×)n, and A1, . . . , A` ∈ K[x] satisfying
Proposition 3.23.

Output: A set that contains at least one Eisenstein polynomial for each totally ram-
i�ed extension of degree n, that can be generated by a polynomial ϕ with
rami�cation polygon R, ϕ

0,1
= δ0, and residual polynomials A1, . . . , A`.

(a) c←
⌈
1 + 2a0 + 2b0

n

⌉
− 1 [Lemma 3.3]

(b) Initialize template (τi,j)0≤i≤n−1,1≤j≤c with τi,j = {0} ⊂ K

(c) For 0 ≤ i ≤ n− 1 and LR(i) ≤ j ≤ c: [De�nition 3.11]
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• If there is no m ∈ Z>0 with i ≡ nφR(m) mod n and j = n−i+nφR(m)
n

:

◦ τi,j ← K.

(d) For 1 ≤ m ≤
⌊

(a1n+b1)−(a0n+b0)
ps1−1

⌋
:

• i← nφR(m) mod n, j ← n−i+nφR(m)
n

• τi,j ← R where R is a set of representatives of K/Sm(K). [Lemma 5.6]

(e) For 1 ≤ i ≤ u:

• Find a segment St of R such that (psi , ain+ bi) is on St.
• j ← ai + 1− vπ

(
bi
psi

)
• τbi,j ←

{
At,(psi−psk )/e(−δ0)ai+1

(
bi
psi

)−1
π
vπ( bipsi)

}
. [Lemma 3.27]

where (psk , akn+ bk) is the left end point of St and −h/e is the slope of St.
(f) τ0,1 ← {δ0} [Lemma 3.28]

(g) Return
{
xn +

∑n−1
i=0

(∑c
j=1 ϕi,jπ

j
)
xi ∈ OK [x] : ϕi,j ∈ RK such that ϕ

i,j
∈ τi,j

}
As is evident from the following example Algorithm 5.8 may return more than one

generating polynomial for some extensions.

Example 5.9. The polygon R3 = {(1, 10), (3, 6), (9, 0)} has segments with slopes
10−6
1−3

= −2 and 6−0
3−9

= −1. With the choice ϕ0 ≡ 3 mod 9 the possible pairs of
residual polynomials are A3,1 = {(2 + x2, 1 + x6)}, A3,2 = {(2 + 2x2, 2 + x6)}, A3,3 =
{(1 + 2x2, 2 + x6)}, and A3,4 = {(1 + x2, 1 + x6)}.

For A3,2 = {(2 + 2x2, 2 + x6)} we get ϕ1,2 = 2 and furthermore this choice also
gives S1 = (2 + x6)x3, S2 = (2x2 + 2)x = 2(x3 + x), and Sm = x for m ≥ 3 with
S1(F3) = {0}, S2(F3) = F3, and Sm(F3) = F3. As S2 is surjective we can set ϕ3,2 = 0.
As Sm for m ≥ 3 we can set ϕk,j = 0 for k + 9(j − 1) ≥ 14 where 0 ≤ k < 9. As the
image of S1 is {0} changing the uniformizer does not a�ect ϕ0,2. Thus Algorithm 5.8
generates the template:

x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

34 {0} {0} {0} {0} {0} {0} {0} {0} {0} {0}
33 {0} {0} {0} {0} {0} {0} {0} {0} {0} {0}
32 {0} {0} {0} {0} {0} {0} {0} {0, 1, 2} {2} {0,1,2}
31 {0} {0} {0} {2} {0} {0} {0} {0} {0} {1}
30 {1} {0} {0} {0} {0} {0} {0} {0} {0} {0}

Of the corresponding polynomials ϕc,d = x9 + 6x6 + 9c · x2 + 18x + 3 + 9d (c, d ∈
{1, 2}) more than one polynomial generates each extension. Let α be root of ϕc,d
and ρ its rami�cation polynomial . For γ ∈ {1, 2} we have vα(ρ(γα)) = 11. If

64



ψ(x) =
∑9

i=0 ψix
i denotes the minimal polynomial of α + γα2 then by Proposition

5.4 (a) we have ϕ2−ψ2 = α9ρ(γα). and hence ψ2,2 = ϕ2,2−ρ(γα)/α9 6≡ 0 mod α. As
γ + (α) 7→ ρ(γα)/α11 + (α) = 2γ + (α) is surjective, changing the uniformizer from α
to α + γα results in a change of ϕ2,2. Thus we can choose γ such that ϕ2,2 = 0 and
get that all extensions with rami�cation polygon R3 and residual polynomials A3,2

are generated by exactly one polynomial of the form ϕd = x9 + 6x6 + 18x + 3 + 9d
where (d ∈ {1, 2}).

Theorem 5.10. Let F be the set of polynomials returned by Algorithm 5.8 given K
and a rami�cation polygon R, δ0 ∈ K and polynomials A1, . . . , A` ∈ K[x].

(a) F contains at least one Eisenstein polynomial for each totally rami�ed extension
of degree n, that can be generated by a polynomial ϕ with rami�cation polygon
R, ϕ

0,1
= δ0, and residual polynomials A1, . . . , A`.

(b) If Sm : K → K is surjective for all segments with integral slope −m, then no
two polynomials in F generate isomorphic extensions.

(c) If there is exactly one Sm : K → K that is non-surjective, and for all integers
k > nφR(m), there is an m′ ∈ Z>0 such that nφR(m′) = k, then no two
polynomials in F generate isomorphic extensions.

Proof. (a) Let ϕ ∈ F . In Algorithm 5.8 step (c) we have ensured that vπ(ϕi) ≥
LR(i) and in step (e) we assign nonzero values to ϕbi,j so that vπ(ϕbi) = LR(bi)
for points (psi , ain+ bi) with bi 6= 0. So by Proposition 3.14, ϕ has rami�cation
polygon R. By Lemma 3.27, the values assigned in step (e) ensure that Rϕ

has residual polynomials (A1, . . . , A`). Thus each extension generated by a
polynomial with the input invariants is generated by a polynomial in F and all
polynomials in F have these invariants.

(b) If Sm : K → K is surjective for all segments with integral slope −m, then all
of the nonzero coe�cients in our template τ are either �xed by δ0 or A, or free
because they are not set by a choice of element in the image of some Sm. Any
deformation of the uniformizer that might result in two polynomials in F to
generate the same extension would have to change one of these free coe�cients,
but such a change cannot be made independently of the choices we made in
order to set coe�cients to zero by Lemma 5.6. So no two polynomials in F
generate isomorphic extensions.

(c) Suppose there is exactly one Sm : K → K that is non-surjective, and for
all integers k > nφR(m), there is an m′ ∈ Z>0 such that nφR(m′) = k. As
Sm : K → K is non-surjective, there will be more than one choice for ϕi,j where
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jn+ i = nφR(m). By Proposition 5.4, the corresponding change of uniformizer
(from α to α+γαm+1) can change ϕi′,j′ where j′n+i′ > jn+i. Since there exists
m′ ∈ Z>0 such that nφR(m′) = j′n + i′, then Algorithm 5.8 will assign ϕi′,j′
based on Sm′ . Given that m 6= m′, Sm′ is surjective, ϕi′,j′ can be set to zero by
Lemma 5.6. As all coe�cients ϕi′,j′ with j′n + i′ ≥ jn + i are assigned by the
residual polynomials of components, no two polynomials generate isomorphic
extensions.

As in general the algorithm returns more than one polynomial generating each
extension with the given invariants, the output needs to be �ltered by comparing the
generated extensions by

(a) computing all reduced generating polynomials using [Mon14, Algorithm 3] and
comparing these or

(b) using a root �nding algorithm (compare [PR01]).

The product
∏∞

m=0 # kerSm is an upper bound for the number of automorphisms of
L/K. This together with the number of reduced polynomials of ϕ gives the number of
automorphisms of L/K ([Mon14, Theorem 1]). Alternatively the number extensions
generated by each polynomial can be computed using root �nding.

5.2.1 Enumerating Extensions of Given Rami�cation Polygon and Invariant A
Now we present an algorithm to enumerate all extensions with a given invariants.

It may require multiple calls to Algorithm 5.8 AllExtensionsSub depending the
structure of A and the number of tame subextensions.

Algorithm 5.11 (AllExtensions).

Input: A π-adic �eld K, a rami�cation polygon R, and invariant A
Output: A set F that contains one generating Eisenstein polynomial for each totally

rami�ed extension of K with rami�cation polygon R and invariant A

(a) S0 ← a set of representatives of K×/(K×)n.

(b) For δ ∈ S0 do

(i) Partition A into disjoint sets A∗1, . . . ,A∗k by Equation (3.4).

(ii) For A∗ ∈ {A∗1, . . . ,A∗k} do
• Let A be a representative of A∗.
• F ′ ← AllExtensionsSub(K,R, A, δ). [Alg. 5.8]

• Unless avoidable by Theorem 5.10, �lter F ′ so that no two polynomials
generate the same extension using method of choice.
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• F ← F ∪ F ′.
(c) Return F .

Theorem 5.12. Let F be the set of polynomials returned by Algorithm 5.11. For
each extension L/K with rami�cation polygon R and invariant A, the set F contains
exactly one generating polynomial.

Proof. Let L/K be a totally rami�ed extension with rami�cation polygon R and in-
variant A. Let ψ ∈ OK [x] be an Eisenstein polynomial generating L with ψ0,1 ∈ S0.
Let A(ψ) be the residual polynomials of segments of R given ψ. As ψ generates L with
invariant A, A(ψ) belongs to some A∗ in our partition of A. If A is our choice of repre-
sentative of A∗, then by Lemma 3.29, there is a ϕ ∈ OK [x] with residual polynomials
A such that K[x]/(ψ) ∼= K[x]/(ϕ). Thus, L/K can be generated by an Eisenstein
polynomial ϕ with residual polynomials A, and ϕ0,1 = ψ0,1, and by Theorem 5.10,
there is at least one ϕ ∈ F ′ with F ′ returned by AllExtensionsSub(K,Rψ, A, ψ0,1)
generating L/K. The output F contains one generator for every extension that can
be generated by any polynomial in any F ′ produced, and so there is a polynomial in
F generating L/K.

To show that no two polynomials in F generate the same extension, it su�ces
to show that no polynomials produced by di�erent calls to Algorithm 5.8 generate
the same extension. Let ϕ and ψ be in two such polynomials. By Lemma 3.28, if
ϕ0,1 6= ψ0,1, then as ϕ0,1, ψ0,1 ∈ K×/(K×)n, K[x]/(ψ) � K[x]/(ϕ). Now suppose
ϕ0,1 = ψ0,1. By Remark 3.4.2, if the residual polynomials of ϕ and ψ are not in
the same A∗ then K[x]/(ψ) � K[x]/(ϕ). Thus, if two polynomials are generated by
Algorithm 5.8 with di�erent inputs of δ or residual polynomials returned by Algorithm
5.11, they cannot generate the same extension.

5.2.2 Enumerating Extensions of Given Degree and Discriminant

We generalize our enumeration process with an algorithm to enumerate all exten-
sions with a given degree and discriminant, which calls all of our previous enumeration
algorithms.

Algorithm 5.13 (AllExtensionsDisc).

Input: A π-adic �eld K, a degree n = e0p
r, and J0 satisfying Ore's Conditions

Output: A set F that contains one generating Eisenstein polynomial for each totally
rami�ed extension ofK of degree n and discriminant of valuation n+J0−1.

(a) S0 ← a set of representatives of K×/(K×)n.

(b) F ← {}
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(c) P ← {(1, J0), (n, 0), (pr, 0)} ∪ {(i, 0) | pr < i < n and vp
(
n
i

)
= 0}.

(d) V (i)← l(i, 0) for 1 ≤ i ≤ n.

(e) For R in AllRamificationPolygons(K,P , r − 1, V (i)) do [Alg. 3.17]

• For δ ∈ S0 do

(i) P ← AllResidualPolynomials(K,R, δ). [Alg. 3.31]

(ii) Partition P into disjoint sets A∗1, . . . ,A∗k by Equation (3.4).

(iii) For A∗ ∈ {A∗1, . . . ,A∗k} do
◦ Let A be a representative of A∗.
◦ F ′ ← AllExtensionsSub(K,R, A, δ). [Alg. 5.8]

◦ Unless avoidable by Theorem 5.10, �lter F ′ so that no two polynomials
generate the same extension using method of choice.

◦ F ← F ∪ F ′.
(f) Return F .

Theorem 5.14. Let K be a π-adic �eld, n = e0p
r ∈ Z>0 and J0 satisfying Ore's

Conditions. Let F be the set of polynomials returned by Algorithm 5.13. For each
extension L/K of discriminant (π)n+J0−1 the set F contains exactly one generating
polynomial.

Proof. Let L/K be a totally rami�ed extension of degree n = e0p
r ∈ Z>0 and dis-

criminant (π)n+J0−1. Let ψ ∈ OK [x] be an Eisenstein polynomial generating L with
ψ0,1 ∈ S0. We know such a polynomial exists by Lemma 3.28. The rami�cation
polygon of L/K must satisfy the conditions of Proposition 3.13, so Rψ is generated
by Algorithm 3.17. Let A(ψ) be the residual polynomials of segments of Rψ. As A(ψ)

satis�es the conditions of Proposition 3.23, it must be generated by Algorithm 3.31.
A(ψ) belongs to some A∗ in our partition of P . If A is our choice of representative of
A∗, then by Lemma 3.29, there is a ϕ ∈ OK [x] with residual polynomials A such that
K[x]/(ψ) ∼= K[x]/(ϕ). Thus, L/K can be generated by an Eisenstein polynomial ϕ
with Rψ, residual polynomials A, and ϕ0,1 = ψ0,1, and by Theorem 5.10, there is at
least one ϕ ∈ F ′ with F ′ returned by AllExtensionsSub(K,Rψ, A, ψ0,1) generating
L/K. The output F contains one generator for every extension that can be generated
by any polynomial in any F ′ produced, and so there is a polynomial in F generating
L/K.

To show that no two polynomials in F generate the same extension, it su�ces
to show that no polynomials produced by di�erent calls to Algorithm 5.8 generate
the same extension. Let ϕ and ψ be in two such polynomials. If Rϕ 6= Rψ, then
they cannot generate the same extension. So suppose Rϕ = Rψ. By Lemma 3.28,
if ϕ0,1 6= ψ0,1, then as ϕ0,1, ψ0,1 ∈ K×/(K×)n, K[x]/(ψ) � K[x]/(ϕ). Now suppose
ϕ0,1 = ψ0,1 and that K[x]/(ψ) and K[x]/(ϕ) have the same invariant A. By Remark
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3.4.2, if the residual polynomials of ϕ and ψ are not in the same A∗ then K[x]/(ψ) �
K[x]/(ϕ). Thus, if two polynomials are generated by Algorithm 5.8 with di�erent
input of rami�cation polygon, δ, or residual polynomials in the process of Algorithm
5.13, they cannot generate the same extension.

5.3 Examples

In Figure 4 we compare the implementation of the algorithm from [PR01] in
Magma [BCP97] (AllExtensions) and Pari [PG14] (padicfields) with our imple-
mentation of Algorithm 5.13 in Magma using root �nding to �lter the set of polynomi-
als to obtain a minimal set. In the implementation of the method from [PR01] Magma
we replaced the deterministic enumeration of polynomials by random choices, which
yields a considerable performance improvement. In our implementation of Algorithm
5.13 the �ltering out of redundant polynomials can accelerated by using reduction
[Mon14] instead of root �nding.

K n v(disc ) #F Magma [PR01] Pari [PR01] Magma (Alg. 5.13)
Q3 9 9 2 10 ms 37 ms 10 ms
Q3 9 22 96 67 s 11 s 30 ms + 5.77 s†
Q3 9 26 81 16.61 s 3.64 s 0.05 s
Q3 27 27 2 30 ms 56 h 10 ms
Q3 27 107 1,594,323 > 5 days � 17 min

Figure 4. Time needed to compute a minimal set F of generating polynomials of all
extensions of K of degree n with discriminant exponent v(disc ). All timings were
obtained on a computer with a Intel Core 2 Quad CPU at 2.83GHz and 8Gb RAM
running Ubuntu Linux 14.04 LTS. († time required to �lter output of Alg. 5.8)

We now present generating polynomials for totally rami�ed extensions of degree
15 over Q5 (Example 5.15), totally rami�ed extensions of degree 8 over an unrami�ed
extension of degree 2 over Q2 (Example 5.16), totally rami�ed extensions of degree 9
over a rami�ed extension of Q3 of degree 3 (Example 5.17), and an example over Q3

that shows that in general not all extensions with the same rami�cation polygon and
invariant A have the same mass (Example 5.18).

Example 5.15. We �nd generating polynomials for all totally rami�ed extensions L
ofQ5 of degree 15 with v5(disc (L)) = 29, the highest possible valuation by Proposition
3.1. There is only one possible rami�cation polygonR = {(1, 15), (5, 0), (10, 0), (15, 0)}
and only one possible set of residual polynomials A = {(3z + 2, z10 + 3z5 + 3)} for
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such extensions. Denote by ϕ(x) =
∑15

i=0 ϕix
i an Eisenstein polynomial generating

such a �eld L.
By Lemma 3.28 all extensions of Q5 with rami�cation polygon R can be generated

by polynomials ϕ ∈ Z5[x] with ϕ0 ≡ 5 mod 25. As bt = 0 for all points (pst , atn+bt) ∈
R, Proposition 3.14 only gives us restrictions on ϕ based on LR and no coe�cients
are set by Lemma 3.27. This provides the following template for ϕ:

x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

52 {0} RF5 RF5 RF5 RF5 RF5 RF5 RF5 RF5 RF5 RF5 RF5 RF5 RF5 RF5 RF5

51 {0} {0} {0} {0} {0} RF5
{0} {0} {0} {0} RF5

{0} {0} {0} {0} {1}
50 {1} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0}

The rami�cation polygon R2 has no segments with non-zero integral slope. We
get S1 = x15, S2 = x15, and S3 = x15, with 15φ(1) = 5, 15φ(2) = 10, and 15φ(3) =
15. Thus ϕ5,1 = 0, ϕ10,1 = 0, and ϕ0,2 = 0. Further, for m ≥ 4, Sm = x. As
15φ(m) = 15 +m for m ≥ 4, by Lemma 5.6, we can set ϕk,j = 0 for k+ 9(j−1) ≥ 19.
Therefore, the generating polynomials ϕ of the �elds over Q5 with invariants R and
A follow this template:

x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

52 {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} RF5
RF5

RF5
{0}

51 {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {1}
50 {1} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0}

As all of the Sm are surjective, by Theorem 5.10 (b), no two of these 125 polynomials
generate isomorphic extensions of Q5.

Example 5.16. Let K be the unrami�ed extension of Q2 generated by y2 + y + 1 ∈
Q2[y]. Let γ be a root of y2 + y + 1, so K = F2(γ). We want to �nd generating
polynomials for all totally rami�ed extensions L of K of degree 8 with v2(disc (L)) =
16, rami�cation polygon with points R = {(1, 9), (2, 6), (8, 0)}, and A containing
(γz + γ, z6 + γ). Denote by ϕ =

∑8
i=0 ϕix

i an Eisenstein polynomial generating such
a �eld L.

By Proposition 3.14, we have v(ϕ1) = 2 and v(ϕ6) = 1, and that v(ϕi) ≥ 2 for
i ∈ {2, 3, 4, 5, 7}. By Lemma 3.27, the point (1, 9) = (20, 1 · 8 + 1) on R gives us that
ϕ1,2 = γ and the point (2, 6) = (21, 0 · 8 + 6) on R gives us that ϕ6,1 = γ. We set
ϕ0,1 = 1 by Lemma 3.28 and the template for the polynomials ϕ is:

x8 x7 x6 x5 x4 x3 x2 x1 x0

23 {0} RK RK RK RK RK RK RK RK
22 {0} RK RK RK RK RK RK {γ} RK
21 {0} {0} {γ} {0} {0} {0} {0} {0} {1}
20 {1} {0} {0} {0} {0} {0} {0} {0} {0}
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It remains to consider the Sm. Our rami�cation polygon R has two segments of
integral slope, −3 and −1, respectively. So by Lemma 5.3, S1(z) = z2A2 = z2(z6 +γ)
and S3(z) = zA1 = z(γz+γ). As S1 is surjective and nφ(1) = 8, we may set ϕ0,2 = 0.
As R has no segment of slope −2, S2 is surjective, so with nφ(2) = 10, we may set
ϕ2,2 = 0. On the other hand, S3 is not surjective and has image {0, γ}. By Lemma
5.6 and as nφ(3) = 12, ϕ4,2 ∈ RK/{0, γ} = {0, 1}. For m ≥ 4, nφ(m) = 9 + m, and
so we can set ϕk,j = 0 for k + 8(j − 1) ≥ 13. This gives us the following template for
polynomials ϕ:

x8 x7 x6 x5 x4 x3 x2 x1 x0

23 {0} {0} {0} {0} {0} {0} {0} {0} {0}
22 {0} {0} {0} {0} {0, 1} RK {0} {γ} {0}
21 {0} {0} {γ} {0} {0} {0} {0} {0} {1}
20 {1} {0} {0} {0} {0} {0} {0} {0} {0}

As S3 is the only non-surjective Sm, and for all integers k greater than nφ(3) = 12,
nφ(k − 9) = k, we have by Theorem 5.10 (c) that no two of these 8 polynomials
generate the same extension.

Example 5.17. Let K = Q3[x]/(x2 − 3) and let π be a uniformizer of the valuation
ring of K. As in Example 3.16, there are three possible rami�cation polygons for
extensions L of K of degree 9 with v3(disc (L)) = 18, namely R1 = {(1, 10), (9, 0)},
R2 = {(1, 10), (3, 3), (9, 0)}, and R3 = {(1, 10), (3, 6), (9, 0)} (compare Figure 2).

Let us again choose to investigate R2. By Lemma 3.8 we have vπ(ϕ3) = 1 and by
Lemma 3.28 we can set ϕ0,1 = 1. As K = Q3, we have the same four choices for the
invariantA: A2,1 = {(1+2x, 2+x3)}, A2,2 = {(2+x, 1+2x3)}, A2,3 = {(1+x, 1+x3)},
and A2,4 = {(2 + 2x, 2 + x3)}.

Let us choose A2,1. By Lemma 3.27 we get from the point (1, 10) = (30, 1 · 9 + 1)
on R2 that ϕ1,2 = 1 and from the point (3, 3) = (31, 0 · 9 + 3) on R2 that ϕ3,1 = 2.

The rami�cation polygonR2 has no segments with integral slope. We get S1 = x3,
S2 = x3, and S3 = x3, with 9φ(1) = 6, 9φ(2) = 9, and 9φ(3) = 12. Thus ϕ6,1 = 0,
ϕ0,2 = 0, and ϕ3,2 = 0. Furthermore Sm = x for with 9φ(m) = 10 + m for m ≥ 4.
Thus by Lemma 5.6 we can set ϕk,j = 0 for k + 9(j − 1) ≥ 14.

Proceeding as in Examples 3.16, 3.30, and 5.7 we obtain a familiar template for
the polynomials generating �elds over K with rami�cation polygon R2 and invariant
A2,1:

x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

π4 {0} {0} {0} {0} {0} {0} {0} {0} {0} {0}
π3 {0} {0} {0} {0} {0} {0} {0} {0} {0} {0}
π2 {0} {0} {0} {0} {0} {0, 1, 2} {0} {0, 1, 2} {1} {0}
π1 {0} {0} {0} {0} {0} {0} {2} {0} {0} {1}
π0 {1} {0} {0} {0} {0} {0} {0} {0} {0} {0}
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As all of the Sm are surjective, we obtain a unique generating polynomial of each
degree 9 extension ofK with v3(disc (L)) = 18, rami�cation polygonR2, and invariant
A2,1.

While our choice of residual polynomials relate to the size of the automorphism
group of the extensions generated by our polynomials, the polynomials generated
by Algorithm 5.13 (and in general, those generating extensions of the same degree,
discriminant, rami�cation polygon, and A) do not generate extensions with the same
automorphism group size.

Example 5.18. Over Q3[x], let ϕ(x) = x9 + 6x6 + 18x5 + 3 and ψ(x) = x9 + 18x8 +
9x7 + 6x6 + 18x5 + 3. Both are Eisenstein polynomials generating degree 9 extensions
over Q3 with rami�cation polygon R = {(1, 14), (3, 6), (9, 0)} and having residual
polynomials A1 = 2z2 + 1 and A2 = z6 + 2. Using root-�nding, we see that over
Q3[x]/(ϕ), ϕ has 3 roots, while over Q3[x]/(ψ), ψ has 9 roots. Thus ψ generates a
normal extension, while ϕ generates three extensions with automorphism groups of
size 3 which shows that not all extension with the same rami�cation polygon and
residual polynomials have the same mass.
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CHAPTER VI
OM ALGORITHMS

An OM1 algorithm is an algorithm that computes the Okutsu invariants of a
polynomial Φ over a local �eld. The Okutsu invariants include, among other data,
the rami�cation index and inertia degree of the irreducible factors of Φ. The data
returned by an OM algorithm can be used to obtain a factorization of Φ, to �nd local
and global integral bases, and the decomposition of ideals in global �elds. Examples of
OM-algorithms are the Montes algorithm [Mon99,GMN12] and its variations [Pau10]
and the Round Four algorithm [For87,FL94,FPR02] and its variations [CG00,Pau01].

We give an OM algorithm and related results with emphasis on a complete and
comprehensive presentation that can serve as a guide for implementing the algorithm.
In part our presentation follows the approach of [Pau10] which combines the Montes
algorithm with techniques from more recent versions of the Round Four algorithm
[FPR02,Pau01]. In the theoretical considerations we view the process of approximat-
ing the factors of a polynomials as a process of partitioning the set of its roots (section
6.1). This is followed by detailed, constructive descriptions of the �rst (section 6.2)
and general (section 6.3) iterations and a presentation of algorithm 6.4 as a variation
of the Montes [Mon99] algorithm.

In the description, we will frequently make use of a particular representation of
polynomials similar to the π-adic expansion of an element.

De�nition 6.1. Let Φ ∈ OK [x] of degree N and ϕ ∈ OK [x] of degree n be monic
polynomials. We call

Φ =

dN/ne∑
i=0

aiϕ
i

with deg(ai) < n the ϕ-expansion of Φ.

Also, by convention, fractions denoted h/e or hi/ei are always taken to be in
lowest terms.

6.1 Partitions of Zeros and Types

Let Φ(x) = xN +
∑N−1

i=0 cix
i ∈ OK [x] be squarefree and let Θ0 = {θ1, . . . , θN} be

the set of zeros of Φ in K. The process of approximating the irreducible factors of Φ
can be regarded as a process of partitioning the set of its zeros. We obtain a tree with

1By convention OM stands for the regular expression (Ore+Okutsu)(MacLane+Montes) [BNS13].

73



root node Θ0 whose leafs are the sets of zeros of the irreducible factors of Φ. In our
description of the algorithm, we focus on one path from the root node Θ0 to a leaf.
We indicate where branching would be needed to investigate all irreducible factors,
thus describing the construction of all root paths in the tree. The nodes of such a
root path are subsets of Θ0, with each non-root node being a subset of its parent.

As part of this process, we will need to be able to construct polynomials of bounded
degree with a particular valuation when evaluated at a root.

Lemma 6.2. Let θ ∈ K, (ϕi)1≤i≤u with ϕi ∈ OK [x] and ϕi(θ) = hi
ei

in lowest terms.
Let Ei = lcm(e1, . . . , ei) = lcm(Ei−1, ei) and e+

i = Ei/Ei−1. Assume degϕi ≥
e+
i−1 degϕi−1. If a ∈ Z and b ∈ Z>0 with b | Eu, then there exists ψ ∈ K[x] with

degψ < e+
u degϕu and v (ψ(θ)) = a/b.

Proof. We prove the Lemma by induction on u.

• u = 1: If b = 1 then ψ = πsπ with sπ = a has the property v(ψ(θ)) = a = a
b
.

Otherwise let 1 ≤ s1 < e+
1 such that s1h1 ≡ a

b
e+

1 mod e+
1 such that

a

b
− v (ϕs11 (θ)) =

a

b
− s1

h1

e+
1

=
a

b
− a

be+
1

e+
1 +Be+

1 = Be+
1 ∈ Z

for some B ∈ Z>0. Let sπ = Be+
1 ∈ Z and ψ = πsπϕs11 . Now v(ψ(θ)) = a

b
and

degψ = s1 degϕ1 < e+
1 degϕ1.

• u > 1: Assume for a′ ∈ Z and b′ ∈ Z>0\{0} with b′ | Eu−1 we can �nd ψ′ ∈ K[x]
with v(ψ′(θ)) = b′

a′
and degψ′ < e+

u−1 degϕu−1.

If b | Eu−1 then we can �nd ψ by our assumption.

Otherwise we �nd su ∈ Z, 0 ≤ su < e+
u such that suhu Eueu ≡

a
b
Eu mod e+

u . Now
suhu

Eu
eu

= a
b
Eu +Be+

u for some B ∈ Z and thus su hueu = a
b

+ B
Eu−1

. We get

a

b
− v (ϕsuu (θ)) =

a

b
− su

hu
eu

=
a

b
− a

b
+

B

Eu−1

=
B

Eu−1

∈ 1

Eu−1

Z.
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By our assumption there exists ψ′ ∈ K[x] with v(ψ′(θ)) = B
Eu−1

and degψ′ <

e+
u−1 degϕu−1. Thus for ψ = ϕsuu ψ

′ we have v (ψ(θ)) = a
b
and

degψ = su degϕu + degψ′ < su degϕu + e+
u−1 degϕu−1

≤ su degϕu + degϕu ≤ e+
u degϕu.

We start the �rst iteration with a linear monic polynomial ϕ1 = x + β ∈ OK [x].
The negatives of the slopes of the segments of the Newton polygon of Φ(x − β) are
the valuations of the roots of Φ. So the set

L1 = {v(ϕ1(θ)) | θ ∈ Θ0}

contains the negatives of the slopes of the segments of the Newton polygon of Φ(x−β),
which yields a partition of Θ0 into the sets {θ ∈ Θ0 | v(θ) = λ} for λ ∈ L1. By
Corollary 2.27 each of these sets corresponds to a proper factor of Φ. For some
λ1 ∈ L1 we set

Θ∗1 = {θ ∈ Θ0 | v(ϕ1(θ)) = λ1}. (6.1)

Without computing Θ∗1 explicitly we investigate the factor
∏

θ∈Θ∗1
(x− θ) of Φ further.

Let λ1 = h1/e1 in lowest terms. Then v(ϕe11 (θ)/πh1) = 0 for all θ ∈ Θ∗1. We set

R1 =
{
ρ ∈ K[z]

∣∣ ρ irreducible and ρ(ϕe1(θ)/πh1) = 0 for some θ ∈ Θ∗1

}
.

If R1 contains more than one polynomial then χ
ϕ
e1
1 (θ)/πh1

∈ K[z] (see De�nition 2.24)

has at least two coprime factors and Proposition 2.25 yields a proper factor of Φ for

each ρ ∈ R1. We obtain a parition of Θ∗1 into the sets
{
θ ∈ Θ∗1

∣∣∣ ρ
1

(
ϕe11 (θ)/πh1

)
= 0
}
.

For some ρ
1
∈ R1 we set

Θ1 =
{
θ ∈ Θ∗1

∣∣∣ ρ
1

(
θe1/πh1

)
= 0
}
. (6.2)

Without computing Θ1 explicitly, we investigate the factor
∏

θ∈Θ1
(x−θ) of Φ further.
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All information obtained in the considerations above can be derived from the tuple

(ϕ1, λ1, ψ1, ρ1
) = (x, λ1, π

h1 , ρ
1
) ∈ OK [x]×Q×K[x]×K[z] ( in fact ψ1 = πh1 ∈ K),

which is the base for the recursive construction of a sequence of consecutively better
approximations to an irreducible factor of Φ. Given (ϕ1, λ1, ρ1

) equations (6.1) and
(6.2) yield the subsets of roots Θ∗1 and Θ1.

For all θ ∈ Θ1, E1 = e+
1 = e1 is a divisor of the rami�cation index and F1 = deg ρ1

is a divisor of the inertia degree of K(θ). Thus [K(θ) : K] is divisible by E1F1 and
the degrees of the irreducible factors of Φ with roots in Θ1 are each divisible by E1F1.

The next step is the construction of a monic polynomial ϕ2 ∈ OK [x] of degree
E1 · F1 with v(ϕ2(θ)) > v(ϕ1(θ)) for all θ ∈ Θ1, which is described in section 6.2.3
below. Assuming we have found such a ϕ2 we let L2 = {v(ϕ2(θ)) | θ ∈ Θ1}. Again
each of the slope corresponds to a proper factor of Φ (compare Corollary 2.27). We
examine one of these factors further. Let λ2 = h2/e2 ∈ L2 and set Θ∗2 = {θ ∈
Θ1 | v(ϕ2) = λ2}. For each θ ∈ Θ∗2 the rami�cation index of K(θ) is divisible by
E2 = lcm{e1, e2}. By Lemma 6.2, there exists ψ2 ∈ K[x] with degψ2 < degϕ2 and
v(ψ(θ)) = −e+

2 λ2 ∈ 1
E1
Z with e+

2 = E2/E1. Now

R2 =
{
ρ ∈ K

∣∣ ρ irreducible and ρ(ϕe+22 /ψ2

)
= 0 for some θ ∈ Θ∗2

}
is the set of irreducible factors of χ

θe1ψ
∈ K[y], each of which corresponds to a proper

factor of Φ. For some ρ
2
∈ R2 we set

Θ2 =
{
θ ∈ Θ∗2

∣∣∣ ρ
2

(
ϕ
e+2
2 /ψ2

)
= 0
}
.

Again the sets Θ∗2 and Θ2 can be recovered from the information contained in

(ϕ2, λ2, ψ2, ρ2
) ∈ OK [x]×Q×K[x]×K1[z].

We continue this process inductively and keep track of the information computed
in a sequence of such tuples.

De�nition 6.3. Let Φ ∈ OK [x]. Let t = (ϕi, λi, ψi, ρi)1≤i≤u where
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(a) ϕi ∈ OK [x] is monic with ϕ1 ∈ OK [x] linear,

(b) λi = hi/ei ∈ Q,

(c) ψi ∈ K[x] with degψi < degϕi, and

(d) ρ
i
∈ Ki irreducible with Ki = Ki−1[z]/(ρ

i
) with K0 = K.

We call t an extended type of Φ if for all θ in some subset Θ of the set of roots of Φ
we have:

(e) v(ϕi(θ)) = λi

(f) v(ψi(θ)) = e+
i λi with e

+
i = lcm(e1, . . . , ei)/lcm(e1, . . . , ei−1),

(g) ρ
i
(ϕ

e+i
i (θ)/ψi(θ)) = 0, and

(h) v(ϕi(θ)) > v(ϕi−1(θ)) and degϕi = e+
i · deg ρ

i−1
· degϕi−1 for 2 ≤ i ≤ u.

The sequence (ϕi, λi, ρi)1≤i≤u is called a type of Φ of order u (see [GMN11, De�nitions
1.21, 1.22 and section 2.1]).

A type t describes a root path in a tree of partitions of Θ0. If t = (ϕi, λi, ψi, ρi)1≤i≤u
is an extended type with a corresponding subset of roots Θu, then Eu = lcm(e1, . . . , eu)
divides the rami�cation index of K(θ) for θ ∈ Θ and Fu = deg ρ1 · · · deg ρu divides
the inertia degree of K(θ) for θ ∈ Θ. As the degree of the irreducible factors of Φ
are minimal polynomials of some θ ∈ Θ is divisible by EuFu, we construct ϕu+1 of
degree EuFu. In the following sections we give methods for constructing ϕu+1, �nding
v(ϕu+1(θ)) for all θ ∈ Θu, ψu+1, and ρu+1. We will see that the sets Θ0 ⊃ Θ1 ⊃ · · · ⊃
Θu help in understanding the algorithm, but are not needed in actual computations.

If #Θu = EuFu, then ϕu is an approximation to an irreducible factor of Φ of
degree EuFu. Using the information in the type t this approximation can be lifted to
give an approximation of any desired precision (see [GNP12]).

De�nition 6.4. Let t = (ϕi, λi, ρi)1≤i≤u be a type, write λu = hu/eu in lowest terms
and set eu = lcm(e1, . . . , eu)/lcm(e1, . . . , eu−1). Let Θ∗u = {θ ∈ Θ0 | v(θ) = λu} and

Θu =

{
θ ∈ Θ∗u

∣∣∣ ρ
u

(
ϕeu

ψ
(θ)

)
= 0

}

where ψ ∈ K[x] with degψ < degϕu and v(ψ(θ)) = ehu/eu for θ ∈ Θ∗u. The type t is
called complete if EuFu = #Θu.
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If EiFi = 1 then no new partition of the sets of roots has been found in this step.
A type with all these elements omitted is an optimal type:

De�nition 6.5. Let t = (ϕi, λi, ρi)1≤i≤u be a type, write λi = hi/ei in lowest terms
and set Eu = lcm(e1, . . . , eu) and Fu = deg ρ

1
· · · · · ρ

u
. The type t is called optimal if

EiFi > 1 for 1 ≤ i ≤ u.

In section 6.6 we will see that if t = (ϕi, λi, ρi)1≤i≤u is complete and optimal,
then the sequence of negated slopes (λi)1≤i≤u and the sequence (Fi)1≤i≤u, where Fi =
deg ρ

1
· · · · · ρ

i
, are invariants of Φ.

6.2 The First Iteration

We start our description of an OM algorithm with the �rst iteration. We have
already gone through these steps in a more conceptual manner in the previous section.
As before let ϕ1 ∈ OK [x] be linear and monic, say ϕ1(x) = x+ β, and let Θ0 denote
the set of zeros of Φ in K. Although we use the zeros in Θ0 in our exposition, they
are not needed in any of the computations.

6.2.1 Newton Polygon I

The Newton polygon of Φ(y − β) yields the valuations of the zeros θ1, . . . , θN of
Φ. We obtain the same polynomial and polygon using the ϕ1-expansion of Φ (see
De�nition 6.1). If Φ =

∑
aiϕ

i
1 is the ϕ1-expansion of Φ, then

χ1(y) =

dN/ degϕ1e∑
i=0

aiy
i = Φ(y − β) (6.3)

has the zeros ϕ1(θ) where θ ∈ Θ0. The negatives of the slopes of the segments of the
Newton polygon of χ1 are the valuations of ϕ1(θ) for θ ∈ Θ0. We obtain a partition
of Θ0 into the sets

{θ ∈ Θ | v(ϕ1(θ)) = λ}

where λ is the negative of the slope of a segment of the Newton polygon of χ1. To �nd
the splitting �eld one continues the algorithm for each of the sets in this partition.

6.2.2 Residual Polynomial I

Residual (or associated) polynomials were �rst introduced by Ore [Ore28,MN92].
They yield information about the unrami�ed part of the extension generated by the
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zeros of Φ. Let S be a segment of the Newton Polygon of χ1(y) =
∑N

i=1 aiy
i (see

(6.3)), let m1 be the (horizontal) length of S, (k, v(ak)) and (k + m1, v(ak+m1)) its
endpoints, and λ1 = v(ak)−v(ak+n)

m1
= h1

e1
the negative of its slope. If

Θ∗1 = {θ ∈ Θ0 | v(ϕ1(θ)) = λ1},

then |Θ∗1| = m1. We evaluate χ1 at ϕ1(θ)y and obtain a polynomial whose Newton
polygon has a horizontal segment of length m1. For θ ∈ Θ∗1 we consider χ1(ϕ1(θ)y).
Using the equivalence relation from De�nition 2.12 we obtain

χ1(ϕ1(θ)y) =
N∑
i=0

ai(ϕ1(θ)y)i ∼
k+m1∑
i=k

aiϕ
i
1(θ)yi ∼

m1/e1∑
j=0

aje1+kϕ
je1+k
1 (θ)yje1+k

The last equivalence holds, because the x-coordinates of the points on the segment
of the Newton polygon are of the form k + je1 with 0 ≤ j ≤ m1/e1. Furthermore
for 0 ≤ j ≤ m1/e1 we have v(aje1+kϕ

je1+k
1 (θ)) ≥ v(akϕ

k
1(θ)) and the polynomial

is divisible by yk. Dividing χ1(ϕ1(θ)y) by πv(ak)ϕk1(θ)yk we obtain a polynomial of
degreem1/e1 that is equivalent to a polynomial whose leading coe�cient and constant
coe�cient have valuation zero:

χ1(ϕ1(θ)y)

πv(ak)ϕk1(θ)yk
≡

m1/e1∑
j=0

aje1+kϕ
je1
1 (θ)yje1

πv(ak)
mod (π).

For ε = ϕe11 /π
h1 we have v(ε(θ)) = v(ϕe11 (θ)/πh1) = 0. Substitution of επh1 for ϕe11

yields

χ1(ϕ1(θ)y)

πv(ak)ϕk1(θ)yk
≡

m1/e1∑
j=0

aje1+kπ
jh1εjyje1

πv(ak)
mod (π).
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Replacing εye1 by z and considering the resulting polynomial overK yields the residual
polynomial of S:

A1(z) :=

m1/e1∑
j=0

aje1+kπ
jh1−v(ak)zj ∈ K[z].

For θ ∈ Θ∗1 we have that ϕ
e1
1 (θ)/πh1 ∈ K is a zero of A1.

6.2.3 The Next Approximation I

Let ρ
1
be one of the irreducible factors of A1, let Θ1 = {θ ∈ Θ∗1 | ρ1

(
θe1/πh1

)
= 0},

and denote by ρ1 ∈ OK [x] a monic lift of ρ
1
.

We now know that for all θ ∈ Θ1 the rami�cation index of K(θ) is divisible by
E1 = e1 and that F1 = deg ρ1 is a divisor of its inertia degree. We set

ϕ2 = πf1h1ρ1(ϕe11 /π
h1).

The polynomial ϕ2 ∈ OK [x] is monic and has degree e1 · f1.

Lemma 6.6. ϕ2 ∈ OK [x] is irreducible.

Proof. For θ ∈ Θ1 we have

v(ϕ2(θ)) = v(πf1h1ρ1(ϕe11 (θ)/πh1)) > f1h1 ≥ v(θ) =
h1

e1

.

The Newton polygon of ϕ2 consists of one segment of slope −λ1 = −h1
e1

and for each

root α of ϕ2 we have ρ
1

(
αe1

πh1
(α)
)

= 0. So K(α) ∼= K[x]/(ϕ2) is an extension with

inertia degree f1 and rami�cation index e1. Thus, as degϕ2 = e1f1, the polynomial
ϕ2 is irreducible.

6.2.4 Valuations I

Let a ∈ K[x] with deg a < degϕ2 = E1F1. We show how the data computed in the
�rst iteration can be used to �nd v(a(θ)). Let a =

∑E1F1−1
j=0 ajϕ

j
1 be the ϕ1-expansion
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of a. (Note that since degϕ1 = 1, each aj lies in K.) Because the values

v(ϕ1(θ)) =
h1

E1

, . . . , v(ϕE1−1
1 (θ)) =

(E1 − 1)h1

E1

are distinct and

1,
ϕ1(θ)E1

πh1
, . . . ,

(
ϕ1(θ)E1

πh1

)F1−1

are linearly independent over K, we have

v(a(θ)) = min
0≤j≤E1F1−1

v(ajϕ
j
1) = min

0≤j≤E1F1−1
v(aj) + j(h1/E1).

Furthermore, if we omit all terms with valuation greater than v(a(θ)) we obtain a
polynomial b that at θ is equivalent to a. That is, for J = {j | v(aj) + j(h1/e1) =
v(a(θ))} and b =

∑
j∈J ajϕ

j
1, we have a(θ) ∼ b(θ) for θ ∈ Θ1.

6.2.5 Arithmetic I

We consider the arithmetic of polynomials of degree less than E1F1. Clearly
addition and subtraction of two such polynomials again yield polynomials of degree
less than E1F1.

Let a(x) =
∑E1F1−1

i=0 aix
i and τ(x) = xs1πsπ with s1, sπ ∈ Z. Multiplication

gives a(x)τ(x) =
∑

i=0E1F1 − 1aiπ
sπxi−s1 which in general is a rational function or

a polynomial of degree greater than E1F1 − 1. We have v(ρ1(θE1/πh1)) = 0. Let
τ(x) = ρ1(x)− xF1 this gives the relation

θE1F1 ∼ πe1F1τ(θ).

So by repeatedly substituting ϕE1F1
1 by πh1F1τ we obtain a polynomial b ∈ K[x] with

deg b < E1F1 such that b(θ) ∼ a(θ)ψ(θ).
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6.2.6 Representatives I

Let Γ ∈ K[x] with v(Γ(θ)) = 0 be reduced as described in the end of 6.2.4. As
v(Γ(θ)) = 0 it must be of the form Γ =

∑F1

i=0 gix
iE1 with v(gi) = ih1. So Γ(θ) ∼∑F1

i=0 gi/π
ih1γ

1
.

Each b ∈ K1 can be written as b =
∑F1−1

i=0 biγ
i
1
with bi ∈ K Let bi be a represen-

tative of bi in OK . Clearly for a(x) =
∑F1−1

i=0 bi
xiE1

πh1
we have a(θ) = b.

6.3 The u-th Iteration

We describe a general iteration of the algorithm. Let t = (ϕi, λi, ψi, ρi)1≤i≤u−1 be
an extended type of Φ that is not complete. We write λi = hi/ei with gcd(hi, ei) = 1
and set Ei = lcm{e1, . . . , ei} and e+

i = Ei/Ei−1. Assume we have found the next
approximation ϕu ∈ OK [x] to an irreducible factor of Φ with degϕu = Eu−1Fu−1 and
v(ϕu(θ)) > v(ϕu−1(θ)) for all θ ∈ Θu−1.

We assume we have the following methods, which rely on the data computed in
the previous steps. For each method the base case is described in section 6.2 and the
general case in this section. Because of the recursive nature of the algorithm we use
forward references in our representation.

Valuation given a ∈ K[x] with deg a < degϕ = Eu−1, �nds v(a(θ)) for θ ∈ Θu−1

(see sections 6.2.4, 6.3.4 and Algorithm 6.9).

PolynomialWithValuation given a ∈ Z and b ∈ Z>0 with b | Eu, �nds ψ ∈ Ku[x]
with degψ < degϕu = Eu−1 such that v(ψ(θ)) = a

b
for all θ ∈ Θu−1 (see Lemma

6.2).

Furthermore we assume we have methods for arithmetic and reduction of polynomials
of degree less than Eu in their representations as sums of power products (see sections
6.2.5, 6.3.5 and Algorithm 6.12 (reduce).

In the u-th iteration of the algorithm we investigate the properties of ϕu and
construct the next approximation ϕu+1 to an irreducible factor of Φ.

6.3.1 Newton Polygon II

We use the ϕu-expansion of Φ to �nd the valuations v(ϕu(θ)) for θ ∈ Θu−1. Let
lu = dN/ degϕue and Φ =

∑lu
i=0 aiϕ

i
u be the ϕu-expansion of Φ. For each root

θ ∈ Θu−1 we have

Φ(θ) =
lu∑
i=0

ai(θ)ϕ
i
u(θ) = 0.
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Hence

χu =
lu∑
i=0

ai(θ)y
i ∈ K[y]

has the zeros ϕu(θ) for θ ∈ Θu−1.
The method Valuation returns the valuations of the coe�cients ai(θ) of χu and

with these the Newton polygon of χu yields the valuations of ϕu(θ) for θ ∈ Θu−1.
We obtain a partition of Θu−1 into the subsets {θ ∈ Θu−1 | v(ϕ(θ)) = λ} where λ is
the negative of the slope of a segment of the Newton polygon of χu. By Corollary
2.27 each segment of the Newton polygon of χu, and thus each set in the partition,
corresponds to a factor of Φ.

De�nition 6.7. The Newton polygon of χu is called the Newton polygon of Φ with
respect to ϕu. It is also called a Newton polygon of higher order [Mon99,GMN12].

6.3.2 Residual Polynomial II

Let S be a segment of the Newton Polygon of χu of length mu with endpoints
(k, v(ak(θ))) and (k +mu, v(ak+mu(θ))) for θ ∈ Θu−1. Let

λu =
v(ak(θ))− v(ak+mu(θ))

mu

=
hu
eu
,

where gcd(hu, eu) = 1 and let Θ∗u = {θ ∈ Θu−1 | v(ϕu(θ)) = λu}. We have |Θ∗u| =
mu degϕu. Set Eu = lcm{e1, . . . , eu} and e+

u = Eu/Eu−1.
The method PolynomialWithValuation gives ψu ∈ Ku−1[x] with

v(ψu(θ)) = v
(
ϕe

+
u
u

)
= e+

u λu =
hu

eu/e+
u

for θ ∈ Θ∗u. We have

χu(ϕu(θ)) ∼
k+mu∑
i=k

ai(θ)ϕ
i
u(θ)x

i ∼
mu/(e

+
u )∑

j=0

aje+u+k(θ)ϕ
je+u+k
u (θ)xje

+
u+k
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The last equivalence holds, because the x-coordinates of the points on the segment
of the Newton polygon are of the form k + je+

u (0 ≤ j ≤ m/(e+
u )). Division by ϕkuy

k

yields

χu(ϕu(θ))

ϕku(θ)y
k
∼

mu/(e
+
u )∑

j=0

aje+u+k(θ)ϕ
je+u
u (θ)yje

+
u .

For γ = ϕu(θ)
e+u /ψu(θ) we have v(γ) = v(ϕe

+
u
u (θ)/ψu(θ)) = 0. By substituting γψu(θ)

for ϕe
+
u
u (θ) we get

χ(ϕu(θ)y)

ϕku(θ)y
k
∼

mu/(e
+
u )∑

j=0

aje+u+k(θ)(γψ
j
u(θ))y

je+u

The method PolynomialWithValuation gives a polynomial τ ∈ Ku−1[x] with v(τ(θ)) =

v(ak(θ)) for θ ∈ Θu−1. Replacing γye
+
u by y and division by τ(θ) yields

A(y) =

mu/(e
+
u )∑

j=0

aje+u+k(θ)ψ
j
u(θ)

τ(θ)
yj.

By construction, v

(
aje+u+k(θ)ψ

j
u(θ)

τ(θ)

)
≥ 0, and in particular,

v

(
ak(θ)ψu(θ)

τ(θ)

)
= 0 and v

(
ak+mu(θ)ψ

mu/(e
+
u )

u (θ)

τ(θ)

)
= 0.

So the polynomial A(z) ∈ Ku−1[z], called the residual polynomial of S, has degree
mu/(e

+
u ).
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6.3.3 The Next Approximation II

We construct ϕu+1 ∈ OK [x] with

v(ϕu+1(θ)) > v(ϕu(θ)) and degϕu+1 = EuFu.

Let ρ(z) =
∑fu

i=0 riy
i ∈ Ku−1 be one of the irreducible factors of Au(z). We set

Rfu = 1 and using methods from 6.3.6 and 6.2.6 we obtain polynomials Ri ∈ K[x]
with Ri(θ) = ri for 0 ≤ i < fu. Now for

ϕ∗u+1 = ψfuρ

(
ϕeuu
ψ

)
=

fu∑
i=0

Riψ
fu−iϕieuu

by construction

ϕ∗u+1(θ) = ψfu(θ)ρ

(
ϕe

+
u
u

ψ
(θ)

)
> fue

+
u λu ≥ λu = ϕu(θ).

As, in general, degϕ∗u+1 > EuFu we reduce the degree of this polynomial. It is
su�cient to �nd polynomials bi ∈ K[x] with deg b < EuFu (0 ≤ i < fu) such that
bi(θ) ∼ Ri(θ)ψ

fu−i(θ). We obtain the bi by using the methods from 6.3.5 and 6.2.5
for degree reduction and set

ϕu+1 = ϕeufuu +
Fu−1∑
i=0

biϕ
ieu
u .

6.3.4 Valuations II

For b ∈ Ku−1[x] with deg b < Eu−1Fu−1 the method Valuation yields v(a(θ)) for
θ ∈ Θu ⊂ Θu−1.
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Let a ∈ Ku[x] with deg a < EuFu and m = ddeg a/ degϕue. Let a =
∑m

j=0 ajϕ
j
u

with deg aj < degϕu = Eu−1 be the ϕu-expansion of a. As the valuations

v(ϕu(θ)) =
h1

eu
, . . . , v(ϕe

+
u−1
u (θ)) =

(e+
u − 1)hu
eu

are distinct (and not in 1
Eu−1

Z) and

1,
ϕe

+
u
u (θ)

πhu
, . . . ,

(
ϕe

+
u
u (θ)

πhu

)fu−1

are linearly independent over Ku, for θ ∈ Θu we have

v(a(θ)) = min
0≤j≤m

v
(
aj(θ)ϕ

j
u(θ)

)
= min

0≤j≤m
v(aj(θ) + j(h1/E1).

If we only consider the terms with valuation v(a(θ)) we obtain a polynomial that at θ
is equivalent to a, that is, for J = {j | v(aj)+jhu/eu = v(a(θ))} and b =

∑
j∈J ajϕ

j
u we

have a(θ) ∼ b(θ) for θ ∈ Θu. This also shows we only need the type ((ϕi, λi, ρi))1≤i≤n
to compute the valuation v(a(θ)) but not θ.

6.3.5 Arithmetic II

We consider the arithmetic of polynomials of degree less than EuFu. Clearly
addition and subtraction of two such polynomials again yield polynomials of degree
less than EuFu. We assume methods for handling polynomials of degree less than
Eu−1Fu−1 are available. That is, given a ∈ Ku−1[x] and b ∈ Ku−1[x] we can �nd
a polynomial c ∈ Ku−1[x] with deg c < Eu−1Fu−1 such that c(θ) ∼ a(θ)b(θ) for
θ ∈ Θu ⊆ Θu−1.

Let a =
∑E1F1−1

i=0 aiϕ
i
u and b = ϕsuu b

′ with su ∈ Z and ψ ∈ K[x] of degree less than
Eu−1Fu−1. Multiplication gives ab =

∑
i=0E1F1 − 1aib

′ϕi−su which in general is a
rational function or a polynomial of degree greater than EuFu−1. By our assumption
we can �nd polynomials ci ∈ K[x] with deg ci < Eu−1Fu−1 such that ci(θ) ∼ ai(θ)b

′(θ)
for θ ∈ Θu ⊆ Θu−1. We have v(ρu(ϕ

eu
u (θ)/ψ(θ))) = 0. Let τ = ρ1 − xF1 this gives the
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relation

θE1F1 ∼ πh1F1τ(θ).

So by repeatedly substituting ϕeufuu by ψfuu τ(ϕu/ψu) we obtain a polynomial b ∈ K[x]
with deg b < eufu such that b(θ) ∼ a(θ)ψ(θ).

Proposition 6.8. Let t = ((ϕi, λi, ρi))1≤i≤u be a type of Φ and Θu the corresponding
subset of zeros. Let a, b ∈ K[x] with deg a < degϕu and deg b < degϕu then there
exists c ∈ K[x] with deg c < degϕu such that c(θ) ∼ a(θ)b(θ).

6.3.6 Representatives II

Let Γ ∈ K[x] with v(Γ(θ)) = 0 be reduced as described in the end of 6.3.4. As
v(Γ(θ)) = 0 it must be of the form Γ =

∑F1

i=0 gix
iE1 with v(gi) = ih1. So Γ(θ) ∼∑F1

i=0 gi/π
ih1γ

1
.

Each b ∈ Ku−1 can be written as b =
∑F1−1

i=0 biγ
i
1
with bi ∈ K Let bi be a

representative of bi in OK . Clearly for

a =

F1−1∑
i=0

bi
xiE1

πh1

we have a(θ) = b.

6.4 The Algorithm

Let t = ((ϕi, λi, ρi))1≤i≤u be a type of Φ and let Θu be the corresponding subset
of the roots of Φ.

First we have to compute the ϕu-expansion of Φ and (recursively) the ϕi-expansions
of the coe�cients (see 6.3.1). The following step, that is, the computation of the
residual polynomial (6.2.2 and 6.3.2), can be conducted in the representation of the
polynomials as nested ϕi-expansions, as computed in the �rst step. This includes the
computation of ψ and τ , which only need to be represented as a sequence of expo-
nents. We need to return to a presentation as polynomials only when constructing
the next approximation (6.2.3 and 6.3.3).

In an implementation of the algorithm the methods described below operate on
representations of polynomials as nested ϕi-expansions. To avoid having to write
down these somewhat involved data structures, we use polynomials to formulate the
input and the output of the methods.
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Sections 6.2.5 and 6.3.5 yield these methods:

div(t, a, b) given a ∈ K[x] of degree less than EuFu and b = ϕsuu . . . ϕs11 π
sπ , where

si < eifi, we �nd C ∈ K[x] with deg c < degϕu such that a(θ)/b(θ) ∼ c(θ) for
all θ ∈ Θu;

mult(t, a, b) given a, b ∈ K[x] of degree less than EuFu, we �nd c ∈ K[x] with deg c <
degϕu such that a(θ)b(θ) ∼ c(θ) for all θ ∈ Θu;

pow(t, a, n) given a ∈ K[x] of degree less than EuFu, we �nd c ∈ K[x] with deg c <
degϕu such that a(θ)n ∼ c(θ) for all θ ∈ Θu.

Sections 6.2.6 and 6.3.6 yield the methods:

residue(t, a) given a ∈ K[x] with deg a < EuFu and v(a(θ)) = 0 we �nd γ ∈ Ku

such that a(θ) = γ;

representative(t, γ) given γ ∈ Ku, we �nd with a ∈ K[x] with deg a < EuFu such
that a(θ) = γ;

We give auxiliary algorithms for the computation of vt(a) = v(a(θ)) for θ ∈
Θu, the Newton polygon of Φ with respect to ϕ, polynomials with given valuations,
the reduction of elements represented as power products of polynomials, and the
computation of residues and residual polynomials.

We use Algorithm 6.9 (Valuation) to compute vL(a(θ)) for θ ∈ Θu. It follows
from the discussions in sections 6.2.4 and 6.3.4 that to �nd vL(a(θ)) for θ ∈ Θu

we only need the type t = ((ϕi, λi, ρi))1≤i≤u and not θ. We thus obtain one of the
valuations of polynomial rings as classi�ed by MacLane in [ML36a]. We write vt(a)
for the valuation computed by the algorithm and have vt(a) = vKu(a(θ))

Algorithm 6.9 (Valuation).

Input: A local �eld L, type ((ϕi, λi, ρi))1≤i≤u over L, and a(x) ∈ L[x].

Output: Valuation vt(a).

• If a ∈ L: Return vL(a).

• Find the ϕu−1-expansion of a(x) =
∑ddeg a/degϕue

j=0 aj(x)ϕju(x).

• Return min
{
Valuation

(
L, ((ϕi, λi, ρi))1≤i≤u−1, aj

)
+ jλu−1

∣∣ 1 ≤ i ≤ d deg a
degϕu−1

e
}
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Given a type t and c
d
∈ Q with d|Eu, Algorithm 6.10 (PolynomialWithValuation)

returns a polynomial ψ such that vt(ψ) = c
d
as described in the proof of Lemma 6.2

(also see [Pau10, Algorithm 14] or [GNP12, Section 4]).

Algorithm 6.10 (PolynomialWithValuation).

Input: A type ((ϕi, λi, ρi))1≤i≤u and c
d
∈ Q with d|Eu.

Output: ψ(x) ∈ K[x] with degψ < degϕu and vt(ψ(θ)) = c
d
.

• If d = 1: Return πc.

• If d|Eu−1: Return PolynomialWithValuation
(

((ϕi, λi, ρi))1≤i≤u−1,
c
d

)
.

• Find 0 ≤ s < e+
u such that shu ≡ c

d
Eu mod e+

u .

• If u = 1: Return π
c
d
−sλ1ϕs1(x)

• Return ϕsu(x) · PolynomialWithValuation
(

((ϕi, λi, ρi))1≤i≤u−1,
c
d
− sλu

)
.

Algorithm 6.11 (NewtonPolygonSegments) returns the set of segments of the New-
ton polygon of Φ with respect to ϕ as described in section 6.2.1 and 6.3.1.

Algorithm 6.11 (NewtonPolygonSegments).

Input: A local �eld L, Φ ∈ L[x], a type t = ((ϕi, λi, ρi))1≤i≤u over L, and ϕ ∈
OL[x]

Output: Set of Segments S of the Newton polygon of Φ with respect to ϕ.

• Find the ϕ-expansion Φ =
∑m

i=0 aiϕ
i where m = ddeg Φ/ degϕe.

• Find vi = Valuation (L, t, ai) for 0 ≤ i ≤ m.

• Construct the lower convex hull of the set of points {(i, vi) | 1 ≤ i ≤ m}.
• Return the set S of segments of this broken line.

In sections 6.2.5 and 6.3.5 we have described how a product
∏u

i=1 φ
si
i (x) can be

reduced such that si < e+
i for 1 ≤ i ≤ u. Algorithm 6.12 (reduce) conducts this

reduction recursively. Because, for 1 ≤ i ≤ u the valuations of φsii with si < e+
i

are linearly independent, there is only one reduced representation of each class of
some a ∈ L[x] with respect to the equivalence relation from De�nition 2.12. Thus if
vt(a) = 0 then reduce(a) ∈ L. In the course of our algorithm, we �nd γu be such
that ϕe

+
u
u ∼ γuψu.
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Algorithm 6.12 (reduce).

Input: An extended type ((ϕi, λi, ψi, ρi))1≤i≤u and a(x) = ϕruu ·
∏u−1

i=1 ϕ
ri
i · δ ∈ L[x]

with δ ∈ K.
Output: b(x) = ϕsuu c(x) ∈ L[x] with deg c < degϕu, 0 ≤ su < e+

u , and a(θ) ∼ b(θ)
for θ ∈ Θu.

• If a ∈ L: Return a.
• s, d← divmod(ru, e

+
u )

• γu ← representation(t, γ) where γ is a root of ρ
u
.

• Return ϕsu · reduce
(

((ϕi, λi, ψi, ρi))1≤i≤u−1, γ
d
u · ψdu ·

∏u−1
i=1 ϕ

ri
i · δ

)
.

The residual polynomial of a segment of a Newton polygon of higher order is
computed in Algorithm 6.13 (ResidualPolynomial).

Algorithm 6.13 (ResidualPolynomial).

Input: A type ((ϕi, λi, ρi))1≤i≤u, a segment S of the Newton polygon of Φ with
respect to ϕ, and ψ with vt(ψ) = e+vt(ϕ) where e+ = lcm{Eu, e}/Eu and
−h/e is the slope of S.

Output: The residual polynomial A of S.

• Let Φ =
∑dN/ degϕue

i=0
aiϕ

i be the ϕ-expansion of Φ(x).

• Let m be the length of S.

• τ ← PolynomialWithValuation(t, ν) where ν is the y-coordinate of the �rst
point of S.

• A(z)←
m/e+∑
j=0

residue(t, mult(t, ak+je+(x), div(t, pow(t, ψ(x), j), τ(x))))zj.

• Return A.

We use Algorithm 6.14 (NextApproximation) to construct the next approximation
to an irreducible factor of Φ, following the logic of sections 6.2.3 and 6.3.3. Because
we have de�ned the methods mult and pow so that they return polynomials that have
been reduced to appropriately bounded degrees, we do not directly call reduce.
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Algorithm 6.14 (NextApproximation).

Input: An extended type t = ((ϕi, λi, ψi, ρi))1≤i≤u, where ρu =
∑fu

i=0 riz
i

Output: ϕ ∈ OK [x] with v(ϕ(θ)) > v(ϕu(θ)) and degϕ = EuFu

• bi ← mult (t, representative(t, ri), pow(t, ψu, fu − i)) for 0 ≤ i < fu.

• Return ϕeufuu +
∑Fu−1

i=0 biϕ
ieu
u .

6.4.1 OM Tree

The main algorithm computes a complete and optimal type for every irreducible
factor of Φ. In our algorithm we use the empty type t0, which is the sequence of
length zero, as the root of the tree of approximations. In the pseudocode below t0
is the empty type, which corresponds to the set Θ of all roots of Φ, L is the list of
complete, optimal types, and T is the stack of types to process.

Algorithm 6.15 (OMTree).

Input: Φ ∈ OK [x] monic and square-free.

Output: Set of all complete optimal types L of Φ.

• Initialize L← { } and T ← {t0}
• While T is non-empty:

◦ Choose t from T and remove t from T .
◦ ϕ← NextApproximation (t)

◦ For S ∈ NewtonPolygonSegments (Φ, t, ϕ)):
◦ Let λ = −h/e be the slope of S.
◦ e+ ← lcm{Eu, e}/Eu.
◦ ψ ← PolynomialWithValuation(t, e+vt(ϕ)).
◦ For each factor ρ(z) of ResidualPolynomial (t, S, ψ):
• If the length of S is one: [t is complete and optimal]
◦ Insert t into L.
• Else if eufu = 1: [this is an improvement step]
◦ Insert t with its last member replaced by (ϕ, λ, ψ, ρ(z)) into T .
• Else: [this is a Montes step]
◦ Insert t with (ϕ, λ, ψ, ρ(z)) appended into T .

• Return L.
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The termination of the algorithm is assured by the following theorem.

Theorem 6.16 ([Pau01, Proposition 4.1]). Let Φ ∈ OK [x] be square-free and let Θ0

be the set of zeros of Φ in K. Let ϕ ∈ K[x] such that the degree of any irreducible
factor of Φ is greater than or equal to degϕ. If (deg Φ) · v(ϕ(θ)) > 2v(disc Φ) for all
θ ∈ Θ0 then degϕ = deg Φ and Φ is irreducible over K.

By Theorem 6.16 the polynomial Φ is irreducible if we �nd a monic ϕ ∈ OK [x]
such that (deg Φ)v(ϕu) > 2v(disc Φ) for some u ∈ Z>0. In every iteration of the
algorithm the increase from v(ϕu) to v(ϕu+1) is at least 1/(deg Φ). Thus the algorithm
terminates after at most v(disc Φ) iterations.

6.5 Polynomial Factorization Example

We have implemented an OM algorithm for polynomial factorization as described
in [Pau10] along with the single factor lifting method from [GNP12] in the computer
algebra system Sage [S+14]. We now describe in the �ow of Algorithm 6.15 the process
of factoring Φ = x6 + 3x4 + 6x3 + 9x+ 9 ∈ Z3[x].

We begin with an empty type. Our �rst approximation is ϕ1 = x. The ϕ1-
expansion of Φ is Φ =

∑6
i=0 aix

i. The valuations of the coe�cients are v(a0) =
2, v(a1) = 2, v(a3) = 1, v(a4) = 1, v(a5) =∞, and v(a6) = 0. This gives us a Newton
polygon with one segment of slope −1

3
(see Figure 5). We now have that e+

1 = 3 and
vt(ϕ1) = λ1 = 1

3
. Next, we �nd a polynomial ψ1 with valuation e+

1 vt(ϕ1) = 1. So
ψ1 = 3. The residual polynomial of our one segment is z2 + 2z + 1 = (z + 1)2, so
ρ

1
= z + 1. We proceed with one extended type in our set (x, 1

3
, 3, z + 1).

The next approximation we �nd is ϕ2 = x3 − 6. The ϕ2-expansion of Φ is Φ =
ϕ2

2 + (3x+ 18)ϕ2 + (27x+ 81). The valuations of the coe�cients are v(a0) = min{3 +
1
3
, 4} = 10

3
, v(a1) = min{1 + 1

3
, 2} = 4

3
, and v(a2) = 0. This gives us a higher order

Newton polygon with two segments (Figure 5), one of slope −2 and one of slope −4
3
.

1 2 3 4 5 6

1

2

3

−1
3

1 2

1

2

3
−2

−4
3

Figure 5. Newton Polygons of Φ(x) = x6 + 3x4 + 6x3 + 9x+ 9 ∈ Z3[x].

92



Let S be the segment of slope −2. We set λ2 = 2. As the denominator of the
slope is 1 and E1 = 3, we get e+

2 = 1. We �nd ψ2 with valuation e+
2 vt(ϕ2) = 2, which

gives us ψ1 = 32. The residual polynomial is just z + 1, so ρ
2

= z + 1. This segment
has length 1, so we add (x3 − 6, 2, 32, z + 1) to our list of complete extended types to
return.

Let S be the segment of slope −4
3
. We set λ2 = 4

3
. As the denominator of the

slope is 3 and E1 = 3, we get e+
2 = 1. We �nd ψ2 with valuation e+

2 vt(ϕ2) = 4
3
, which

gives us ψ1 = 3ϕ1 = 3x. The residual polynomial is just z + 1, so ρ
2

= z + 1. This
segment has length 1, so we add (x3− 6, 4

3
, 3x, z+ 1) to our list of complete extended

types to return.
To create a factorization, we call NextApproximation on each of the returned

types, and lift those to factors [GNP12]. The next approximations of our type where
λ2 = 2 is x3− 24, which lifts to x3 + 3, For the type with λ2 = 4

3
, we get x3− 6x− 6,

which lifts to x3 + 3x+ 3. So, Φ = (x3 + 3)(x3 + 3x+ 3).

6.6 Okutsu Invariants

We now describe the polynomial invariants of Okutsu [Oku82] and how they relate
to the values found in an OM algorithm. The connection between the algorithm and
these invariants was �rst explored in [GMN10b] and in many papers since.

De�nition 6.17 ([Oku82, II, De�nitions 1 and 2]). Let Φ ∈ OK [x] be irreducible
and θ be a root of Φ. We recursively de�ne

m0 = deg Φ, (6.4)

µu = max{v(θ − β) | β ∈ K such that [K(β) : K] < mu−1}, (6.5)

mu = min{[K(α) : K] | α ∈ K such that v(θ − α) = µu.} (6.6)

The minimal polynomial χu ∈ OK [x] of α with v(θ − α) = µu is called an u-th
primitive divisor polynomial of Φ.

These divisor polynomials are not invariant, but properties of the extensions they
generate are. We state a reformulation of Corollary 2.8 from [GMN10b].

Theorem 6.18. Let (ϕ1, . . . , ϕr) be a sequence of primitive divisor polynomials of a
monic, irreducible, and separable Φ ∈ OK [x]. Let θ be a root of Φ, L = K(θ), and
Ki = K(αi) where αi is a root of ϕi. Then Ei = e(Ki/K), Fi = f(Ki/K), and λi =
v(ϕi(θ)) do not depend on the choice of frame. Furthermore, Er | · · · | E1 | e(L/K)
and Fr | · · · | F1 | f(L/K).
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De�nition 6.19. An Okutsu invariant of Φ is any rational number that depends
only on E1, . . . , Er and F1, . . . , Fr and λ1, . . . , λr. An OM algorithm is an algorithm
that computes the Okutsu invariants of a polynomial.

There are several useful examples of Okutsu invariants. As we have shown, the
rami�cation index and residual degree of L = K[x]/(Φ) are given by these values.
Additionally, the index [GNP12, Proposition 3.5], the exponent [GMN13, Theorem
5.2], and the the conductor [Nar14, Corollary 1.9] of Φ are all Okutsu invariants.
Although the di�erent and discriminant are not Okutsu invariants, the di�erent ideal
and thus the valuation of the discriminant can be computing using OM methods
[Nar14].

In [GMN10b], Guardia, Montes, and Nart show that a sequence of primitive divisor
polynomials and a sequence of polynomials (ϕi)i from a type are equivalent. In
their formulation, they de�ne an Okutsu frame which reorganizes the sequence into
increasing degree order to agree with the progression of approximations in a type.

Proposition 6.20. Let t = ((ϕi, λi, ρi))1≤i≤u be a Φ-complete and optimal type, as
returned by Algorithm 6.15, then ϕi is a (u− i)-th primitive divisor polynomial of Φ.

6.7 Polynomials with Given Okutsu Invariants

An OM algorithm typically computes the Okutsu invariants of a polynomial, but
here we present an algorithm that computes a polynomial given a sequence of Okutsu
invariants. Our algorithm uses the same methods previously used to describe an OM
algorithm. We need one result, originally shown as a consequence of the construction
presented in [GMN13].

Theorem 6.21. Let t = ((ϕi, λi, ρi))1≤i≤u be an optimal type of Φ and Θu the cor-
responding subset of the roots of Φ and ϕu+1 = NextApproximation(t) the next ap-
proximation to an irreducible factor of Φ. Then t is a complete optimal type of ϕu+1.

One consequence of this theorem is that each ϕi in a type ((ϕi, λi, ρi))1≤i≤u is
irreducible. Another is that if we have valid data for the other information in a type,
we can construct polynomials having that type. With this in mind, our algorithm
takes as input a sequence of valuations for approximations (λi)1≤i≤u and a sequence
of irreducible polynomials (ρ

i
)1≤i≤u over K, which encode the Okutsu invariants,

constructs a type ((ϕi, λi, ρi))1≤i≤u having these values, and concludes by generating
ϕu+1.
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Algorithm 6.22 (PolynomialWithInvariants).

Input: A sequence of rational numbers (λi)1≤i≤u, where λi = hi/ei and a sequence
of irreducible polynomials (ρ

i
)1≤i≤u in K[x] where fi = deg ρ

i
. Addition-

ally, we require λi ≥ eifiλi−1.

Output: A polynomial Φ having the given Okutsu invariants Ei = lcm{e1, . . . , ei},
Fi = deg ρ

1
· · · ρ

i
, and λi for 1 ≤ i ≤ u.

• t← (x, λ1, ρ1
).

• Make t an extended type by including ψ1 = πh1 .

• For 2 ≤ i ≤ u:

◦ Append (NextApproximation(t), λi, ρi) to t.

◦ e+ ← lcm{e1, . . . , ei}/lcm{e1, . . . , ei−1}.
◦ ψi ← PolynomialWithValuation(t, e+λi).

◦ Make t an extended type by including ψi.

• Return NextApproximation(t).

Example 6.23. Let us �nd a polynomial Φ ∈ Z3[x] having (λi) = (1
4
, 5

4
, 27

8
) and

(ρ
i
) = (x + 1, x2 + 1, x + 1). We begin with ϕ1 = x and ψ1 = 31 and start the main

loop.

• i = 2

◦ NextApproximation gives us ϕ2 = x4 − 6.

◦ e+ = 4.

◦ ψ2 = 31x1.

• i = 3

◦ NextApproximation gives us ϕ3 = x8 − 12x4 + 9x2 + 36.

◦ e+ = 1.

◦ ψ3 = 36x3.

Finally, Φ(x) = x16−24x12 +18x10 +216x8−216x6−783x4 +729x3 +658x2 +1296.
This polynomial has the given Okutsu invariants and generates an extension over Q3

with inertia degree 2 and rami�cation index 8.
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