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A (very short) introduction to buildings

Brent Everitt
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Abstract

This is an informal elementary introduction to buildings hat/they are and where they
come from.

This is an informal elementary introduction to buildings #itten for, and by, a non-
expert. The aim is to get to the definition of a building and feat it is an entirely natural
thing. To maintain the lecture style examples have replacedfs. The notes at the end
indicate where these proofs can be found.

Most of what we say has its origins in the work of Jacques @its,our account borrows
heavily from the books of Abramenko and Brown [1] and Rondij.[Sectiori 1L illustrates
all the essential features of a building in the context of>amgple, but without mentioning
any building terminology. In principle anyone could reagthSection§1234 firm-up and
generalize these specifics: Coxeter groups appegd,ichambers systems 8 and the
definition of a building inf4l. Sectioll b addresses where buildings come from by desgribi
the first important example: the spherical building of arealgic group.

1. The flag complex of a vector space

Let V be a three dimensional vector space over a field_et A be the graph with
vertices the non-trivial proper subspaced/pfand an edge connecting the vertidgsand
Vj whenevew, is a subspace of:

Vi O .Vj Vi CVj.

Figure[l shows the graphwhenk is the field of orders) = 2 and 3. There aredg+g? one
dimensional subspaces — illustrated by the white verticasd-1+ g + g° two dimensional
subspaces, illustrated by the black vertices. Each onerdiimeal space is contained irg
two dimensional spaces and each two dimensional spaceim®iita g one dimensional
spaces. The duality here might remind the reader of proegiometry. Call the edges
V; c V;j of A chambers

Some more structure can be wrung out of this picture: these i%3-valued metric”,
with &3 the symmetric group, that gives the shortest route(s) tilrdubetween any two

chambers. To see how, suppase’ are chambers and we want a shortest route of edges

connecting them:
C=Vyc\, Shorestrove o Vi cVi.
Makec andc’ as different as possible by assuming tMatz V7, V> # Vj andVo NV, is a

line different fromVy, V;. Changing notation, ldt;, L, L3 be lines withL; = V1, L3 = V]
andL; = V2N V,. One thengety, = Ly + Lo andV} = L, + Ls.

UBased on a short series of lectures given at the Universiférithourg, Switzerland in June 2011. The author
is grateful for the department’s hospitality both then amerdhe years, and particularly to Ruth Kellerhals for her
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Figure 1: The flag complex of the three dimensional vector space over the fields of @dleft) and 3(right).

We get a small piece of, a local picture containing, ¢/, as in Figuré 2. The fiel&
wasn’'t mentioned at all in the previous paragraph, so thisgdocal picture for over any
field. Theglobalpicture gets more complicated however as the kejdts bigger as Figure
illustrates.

Say that chambers ar@djacentif any difference between them occurs only in tkt@
position, soVy ¢ V, D Vj, (V1 # V]) are a pair of 1-adjacent chambers and> V; c
V3, (V2 # V) a pair of 2-adjacent chambers (a chamber is astjacent to itself for any
i). Place the labelon a vertex of the local picture in Figure 2 if the two chambeesting
at the vertex are-adjacent.

The shortest routes fromto ¢’ in the local pictureare given by

291 o

S19S1
where the routes; s,S; means cross a 1-labeled vertex, then a 2-labeled vertexhandht
1-labeled vertex. Routes are read from left to right, alttoit obviously doesn’t matter
with the two above. These routes then take values in the syritngeoup G3 by letting
s = (1,2) ands; = (2, 3), so that botls; 5,5 ands;s; S, give the permutation (B) € &s.
Our actions will always be on the left, so in particular petations inG3 are composed
from right to left. Define th&S;-distance betweea ¢’ to bed(c, ¢) = (1, 3).

For an arbitrary pair of chambers defiie, ¢’) to be the element o&3 obtained by
situating the chambers ¢’ in some local picture and taking the shortest route(s) as in
Figure[2. The resulting map: A x A — &3 can be thought of as a metric @ntaking
values in&s.

We will see in§4 why this map is well defined and doesn’t depend on which local
picture we choose containirggc’, although an ad-hoc argument shows that an element of
&3 can be associated in a canonical fashion to any pair of chanbake thec, ¢’ above
and write

c=0c Licli+l,cV=VogcVicVoCV;

andc’ = V(| c --- c Vg similarly. For each the filtrationVo c Vi € V, € V3 of V induces
afiltration of the one dimensional quotievt/V/ ,:

M nVo)/V g c--c (V] nV3)/V 4 1)
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referees for a number of helpful suggestions and references
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Figure 2: Local picture oA containing the pair of chambersc’ and the shortest routes between thieft);
situating the paic, ¢’ in a local picture with the shortest routess;s; = 515 = (1, 3) (right).

(by (V/ nVp)/V/_,, etc, we mean the image °f NV under the quotient may — V/V/ ).
Any filtration of a one dimensional space must start with ausege of trivial subspaces
and end with a sequence\df/V; ,'s. At some point in the middle the filtration jumps from
being zero dimensional to one dimensional; for¢he above:

[ VIV filtration () “jump index” |
1 Ls 0c0cOclLs 3
2 (L2+L3)/L3 OCOC(L2+L3)/L3C(L2+L3)/L3 2
3 V/(L2 + L3) 0c V/(L2 + L3) C V/(L2 + L3) C V/(L2 + L3) 1

Definingx(i) = j givesr = (1, 3) € G3. Summarizing:

First rough definition of a buildingA building is a set ofchamberswith i-adjacency be-
tween them, thecoming from some se&d, together with a W-valued metric” folW some

group.

Returning to the running example, the symmetric gr@upis a reflection group, with
Figure[2 and the resulting metriccoming from the geometry of these reflections. To
see why suppose we have a three dimensional Euclidean sgaoeal-vector space with
an inner product. Levy,V,,v3 be an orthonormal basis and &g act on the space by
permuting coordinatest - vi = V) for 7 € &3 (and extend linearly). This action is not
essential as the vecter= v; + v, + vz is fixed by allr € G3. This can be gotten around by
passing to the perp space

vt = (X Avi| XA =0}

The picture to keep in mind is the following, where s translated off the origin to make
it easier to see:




The elemens; = (1,2) acts as on the left — as the reflection in the plane with éguat
X1 — X = 0. Similarly s, = (2,3) and (13) are reflections in the planes — x3 = 0 and
x1 — X3 = 0. These three planes chop the intersection"of %v with the positive quadrant
into a triangle with its boundary barycentrically subd®itd(or hexagon). So we start to
see the local picture of Figuré 2 coming from the geometrjese reflecting hyperplanes.
Putting v+ into the plane of the page decomposes the plane into six tefimédge-

shaped regions:

mtersect ~
/N with ST /\
Chambers\/ chamkirs/

In the theory of reflection group§Z) these regions are also called chambers. The chambers
of our local picture are gotten back by intersecting thegeres with the spherg?.

(In the next dimension up we can still draw pictures of soméhete objects. Le¥
be four dimensional ovetr and A the two dimensional simplicial complex with vertices
the non-trivial subspaces &, edges (or 1-simplicies) the pais c V; and 2-simplicies
the triplesV; c V; c Vk. We can get the local picture by working backwards from a
symmetric group action like we did above. If we have a fourehisional Euclidean space
with orthonormal basis, 2, vs, V4, then the convex hull of the is a tetrahedron lying in
the hyperplang* + fllv wherev = vi +V, +Vv3+Vy. The six reflecting hyperplanes of tiga-
action have equationg — x; = 0 and slice the boundary of the tetrahedron barycentrically
Identifying the hyperplane with three dimensions and seeting the whole picture with
the spher&?, we end up with Figurgl3 (left). Flattening it out, we canospectively label
the simplicies by line&,, Ly, L3, Ly € V and the spaces they generate.)

Returning to the hexagon, tf@&;-action turns out to be regular on the chambers, i.e.
given chambers, ¢’ there is a unique € G3 with 7¢c = ¢’. This is most easily seen by brute
force: fix a “fundamental”’ chambe&g and show that the six elements®g send it to the
six chambers in the decomposition above. In particulartieea one-one correspondence
between the chambers and the elementSpfiven byr € &3 « chamberrc.

This correspondence gives the adjacency labelings of thagemal local picture of
Figurd2: choose the fixed chamlogio be one of the two regions bounded by the reflecting
lines fors; ands,. Starting with the edge of the hexagon containedyifiabel its vertices
by the corresponding reflections as below left:

S Co S Co
S ~ S .
C gives
T _—
=4

Now transfer this labeled edge to the other chambers use§tkaction as in the picture
above middle; the result is shown above right, wherd'thikeave becomsg’s. Vertices on
opposite ends of the same line have different labels bedhesantipodal mapg — —x s
not in the action of53 on the plane/*.
Finally, to get the metri@ observe that it is some chamber of the local picture in
Figure[2 andr € G3 sendsp toc, thenn = s, ... 5, wheres,, ..., s, are the labels (read
4
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Figure 3: The local picture for the flag complex of a four dirsienal space: the result of intersecting the hyper-

planesx; — x; = 0 with S?2 (left), flattened outmiddle) and the picture corresponding to the labelled hexagon of
Figure[2(right). The shaded 2-simplex corresponds to the triglec Ly + Lo c Ly + Lo + Ls.

from left to right) on the vertices crossed in a path in theagon fromcy to c. So for
chamberg;, ¢, we haves(cy, ¢;) = 7r117r2 wherec; = njcp. For our originak;, c; we have
T = 19, T2 = S, hences(cy, ¢2) = 5915 as shown in the picture above.

Second rough definition of building building is a set of chambers wiikadjacency, the
i coming from some se$, together with aV-valued metrics, for W a reflection group
generated by and¢ arising from the geometry oi.

In the next sections we will make precise and general thesiihethis rough definition, but
working in the reverse order: we start with reflection gro(f, then an abstract version
of chambers and adjacend§gj and finallyw-valued metrics§4).

2. Reflection Groups and Coxeter Groups

Reflection groups arise as the symmetries of familiar gedojects; Coxeter groups
are an abstraction of them. This section covers the basltgeetor spaces and linear maps
here are over the redls

A reflectionof a finite dimensional vector spavtis a linear mags: V — V for which
there is a decomposition

V=Hs®Ls 2)

whereHs is a hyperplane (a codimension one subspdcgyk one dimensional; the restric-
tion of sto Hs is the identity; and the restriction to; is the mapx — —x. Thus a reflection
fixes pointwise a mirroHs, the reflecting hyperplane af and acts as multiplication byl
in some direction (the reflecting line) not lying in the mirrdn particulars is invertible
and an involutiofh

A reflection group Wis a subgroup oG L(V) generated by finitely many reflections.

Example 2.1 (orthogonal reflections). The most familiar kind of reflections are the or-
thogonal ones for which we further assume tas a Euclidean space, i.e. is equipped
with an inner product. Thesis orthogonal if in the decompositionl (2) the lihg = HZ,

the orthogonal complement. In particulay, and hence the reflection, is determined by the

1we will have no need for them in these notes, but one can refleector space over an arbitrary fiedd
the definition is identical except that the restrictionsdb the reflecting line_s is the mapx — ¢x, where( is a
primititve root of unity ink. The only suchl in R is —1, hence the definition we have givenrefl reflections. By
contrast a complex reflection can have any finite order.
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reflecting hyperplane, unlike a general reflection wherd lo¢ hyperplane and the line
are needed. B

If sis orthogonal then for any vecterin Ls we haves : v — —v with v+ fixed pointwise.
Thus an orthogonal reflecti@tan be specified by just a non-zero vestaas the reflection
with Hg = v* andLg spanned by. We writes = s,, Hs = Hy, Ls = Ly, and by choosing a
sensible basis one gets that an orthogonal reflection isthagonal map of the Euclidean
space.

LetH = {H,...,Hy,} be hyperplanes in Euclidean andW the reflection group
generated by the orthogonal reflectiags. . ., s,,. As an exercise the reader can show that
if WH = H, i.e.gH, = Hy, forall g€ W and allv;, thenW is finite (hint: [W| < (2m)!). It
turns out (although this is harder) that then consists odll the reflecting hyperplanes of
W.

Example 2.2 (a finite reflection group).Let V be Euclidean with an orthonormal basis
Vi,...,Vne1 andH the hyperplaneBl; := (v —vj)* for 1 <i # j <n+ 1 (in other words,
Hij is the hyperplane with equatiog— x; = 0). The reflectiors, -, sends/ —v; tov; - v;,
thus swapping the vectovsandv;. Any other basis vector is orthogonal#o- vj, so lies

in Hij, and is fixed. Thus ifr = (i, j) € Gni1 thens,i_\,j Hike = Hrgo.x(0)-

Now let W be the group generated by the reflectieps,,. We have just shown that
WH = H, soW is a finite reflection group by the exercise above. Indé&ds the
symmetric grous,,1 acting by permuting coordinates agfii To make this identification
we have already seen that eagh,,, and so every element @, permutes the basis vectors
Vi,...,Vns1. This gives a homomorphisiW — &y,1. Injectivity of this homomorphism
follows as they; spanV and surjectivity as the transpositionsjj generatés 1.

The convex hull of they; is the standard-simplex, barycentrically subdivided by its
n(n — 1) hyperplanes of reflectional symmetry (t#8), each of which is a reflecting hy-
perplane ofW. This is the picture we had far = 2 andn = 3 in {1l Finite reflection
groups are often callesphericalas the geometrical realisation of their Coxeter complexes
(the boundary of the barycentrically dividagsimplex in this case; see Examplel3.3 for the
general definition) are spheres.

Example 2.3 (an affine reflection group).Let V be 2-dimensional and consider reflec-
tions s, s1 where the reflecting hyperplanes and lines are shown belftwtiere is no
inner product this time). The reflecting hyperplanes artedéft but both have the same
reflecting line:Lg, = L = Lg,. If W is the group generated by, 5 thenW leaves in-
variant any affine line parallel tb as thes do. But if H = {Hg, Hs} thenWH + H
assHs, ¢ H. Indeed, we must exparl to the infinite set shown below right before it
becomedV-invariant:

o9 S S S5

o /M N\ | /S

invariant affine line




In fact, by identifying the invariant affine line with the teaW is isomorphic to the group
of “affine reflections” ofR in the integer<Z, i.e. to the group of transformations &f
generated by the mas : X — 2n—xfor n € Z. The elemeng; s acts on the affine line as
the translatiorx — x + 2 so has infinite order. In particul& is infinite. This also follows
from H being infinite as the reflections in the hyperplanegirare theW-conjugates of

3)’&

Example 2.4 (hyperbolic reflections).Let V be 3-dimensional and again there is no inner
product. Leta, b, c be real numbers such that + b?> > ¢, and consider the reflection
with reflecting hyperplanéls having the equatioax + by — cz= 0 and reflecting lind.g
spanned by the vectar = (a,b,c). Thenv lies on the outside of the pair of cones with
equationz? = x? + y* andHs passes through the interior of thisscone:

—

‘x2+y2—22=—1

Z=x+y?
One can check thatleaves invariant each sheet of the two sheeted hyperbolticegua-
tion x> + y> — 72 = —1. Either sheet is a model for the hyperbolic plane. Inteisgd
with the top sheet gives a hyperbola — a straight line of Hypkes geometry — and is the
“hyperbolic reflection” of the plane in this lifie

Returning to the finite orthogonal case, \ébe Euclidean?H = {H;}ict a finite set of
hyperplanes anWVv = (s)ict the group generated by the orthogonal reflections intthe
Suppose also th&t'H = H, soW is finite andH is the set of all reflecting hyperplanes of
W as above.

For each € T choose a linear functional € V* with H; = kera;. The choice oty is
unigue upto scalar multiple artd; consists of thosg € V with «;(v) = 0. The two sides
(or half-spaces) of the hyperplane consist ofihéth «;(v) > 0 or thev with «;(v) < 0.

Fix anT-tuplee = (&)iet, With & € {1}, and consider the set

c=c(e) = {ve V|egai(v) > 0 foralli}. 3)
So eachw;(v) is non-zero and;(v), & have the same sign for all If this set is non-empty
then call it achamberof W. A non-empty set of the form
a=a(e) = {ve Vl|aj(v) = 0 for somdy, andejai(v) > O for alli # ig} (4)

is called apanel Here is the example frodl:

—Val
0++

—++

—+O +O+

/\A —+- -t panels
a3 —0—
—

chamtﬁ/ 0-—

2Although there is no inner product in Examples] 2.3[and 2i4,possible to endow with a bilinear form so
that the reflections are “orthogonal” with respect to thisifo
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where there are three hyperplanegirand thex; are chosen so that(v) > 0 for thosev
on the side indicated by the arrow. The chambers are markdueliyT -tuples. There are
23 T-tuples but only 6 chambers because the tuples- and— — + give empty sets ir[{3).
Extend the notation to include pandl$ (4) by placing a O irigtth position. There are then
3.22 such tuples but only 6 give non-empty panels, with two lyingeach reflecting line.

There is an obvious notion of adjacency between chambegesteq by these pictures.
Say thata is a panel of the chamberif the corresponding -tuples are identical except
in one position where the tuple farhas a 0. It turns out that this can also be defined
topologically:a is a panel ot exactly whera c c, the closures of these sets with respect
to the usual topology ow.

Chamberg; andc; are theradjacentif they share a common panel. In the Example
from {1, chambers are adjacent when they share a common edge.

The adjacency relation can be refined by bringing the refiearoupW into the pic-
ture. In gl we saw thatSs acts regularly as a reflection group on the chambers. This
turns out to be true in general for thg-action on the chambers: given chambers’
there is a uniqug € W with gc = ¢’. Fix one of the chambersy. Then the regu-
lar action gives the chambers are in one-one correspondétitéhe elements oV via
g € W & chambegc.

Now letS = {si,..., Sy} be those reflections it/ whose hyperplaned,,...,H, are
spanned by a panel of the fixed chambgr ThusS = {s;, &} for thecy in the example
from {1I:

Sl S

C A% S Co

C1 Co

Supposes, c; are a pair of adjacent chambers as above right. Then therg &\W with
¢; = 0. Translating the picture back @ we haveg'c; = ¢, andg'c, are adjacent
chambers, and the common panelogfc, is sent byg™ to a common panel of, and
g1c, (these are most easily seen using the topological versiadjatency). Ifs € S is
the reflection in the hyperplane spanned by the common pdrelandg'c,, then the
chambegc; is the same as the chamlsa.

Thusc; = goy, ¢ = (g9co, and we have the following more refined description of
adjancey:

the chambers adjacent to the chamipgrare the ¢9)co for s€ S. (5)

WhensS = {s,..., s} we say that chambeggy andgscoy arei-adjacent. In our running
example, the chambers adjacentjtg aregsi co andgs:co, and these are the two that were
1- and 2-adjacent tgc in 1.

Coxeter groupsWe motivate the definition of Coxeter group by quoting twasastaying
with the assumptions above whék&is generated by orthogonal reflections in finitely many
hyperplanes+ with WH = H:

Fact 1. The groupW is generated by the reflectiosss S in those hyperplanes spanned
by a panel of the fixed chambey.



In our running example we can see a how a proof might work usidgction on the
“distance” of a chamber fromy. If g is an element ofV then there is a chamber adjacent
to the chambegg, that is closer ta, thangg is. If this closer chamber ig'cy say, then
by (B) we havey = g'sfor somes € S. Repeat the process urgicompletely decomposes
asawordinthese S.

Fact 2. With respect to the generatddshe group/V admits a presentation
(seS|(ss)™ =1) (6)

where them; € Z>! and are such thatj = m;, andm; = 1 if and only ifi = j (so in
particular,s’ = 1).

If s ands; are reflections inW finite, then the elemerds; has finite ordem; > 2.
So the relations in the presentati@h (6) certainly hold. @twetent of Fact 2 is that these
relations suffice. Geometricallgs; is a rotation “about” the intersectidr; N H; of the
corresponding hyperplanes.

In Exampld 2.2 we hav8 = {s,,..., s} wheres = s,_y,,. Thess,1 have order 3
and all otherss; have order 2. MoreoveW is isomorphic toS,1 via the map induced by
(i,i + 1) = s. Our running example of the action &f; on 3-dimensionaV is then = 2
case of this.

Here is the promised abstraction of reflection group: a ghMis called aCoxeter
groupif it admits a presentatiofl(6) with respect to some figitevhere them; € Z=!U{co}
satisfy the rules followind(6). Sometimes the dependemaye relations is emphasized
and W\, S) is called a Coxetesystem

We want the new concept to cover all the examples we have sefan i this section,
including the affine group in Examgdle 2.3 where the elensesthad infinite order. This is
why in the definition of Coxeter group the conditions on theare relaxed to allow them
to be infinite. A relation$s;)™ = 1 is omitted from the presentation whet) = co.

There is a standard shorthand for a Coxeter presentalimaé)l the Coxeter symbol.
This is a graph with nodes the € S, and where nodes ands; are joined by an edge
labeledm; if m; > 4, an unlabeled edgeiifi; = 3 and no edge whemj = 2:

m.
o o o—o oo
mj=2 m]'=3 mj24

The examples frorfdl and ExamplE2]3 are then:

- AN\ /S

Remark 2.1. What is the relationship between the concrete reflectionggdefined at the
beginning of this section and the abstract Coxeter groufisatkat the end? The answer
is that the Coxeter groups adéscretereflection groups: for a Coxeter systekv, §) one
can construct a faithful representatidl §) — GL(V) for some vector spacé, where the
se S actonV as reflections, and the image ®¥(S) is a discrete subgroup &L(V).
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3. Chamber Systems and Coxeter Complexes

We have seen several examples of sets of chambers withettiffeinds of adjacency
between them. This section introduces the formalizaticthisfidea: chamber systems.

A chamber systeraver a finite set is a setA equipped with equivalence relatiorg
one for eachi € I. Thec € A are thechambersand two chambers aiieadjacentwhen
c~jC.

The generic picture to keep in mind is below where chambeg$-adjacent if they
share a commonlabeled edge. Thusy ~; ¢, Cp ~2 Cy, €tc.

A galleryin a chamber syster is a sequence of chambers
Co ~i; C1 ~ip * -+ ~ix Gk (7)

with ¢j_; andc; ij-adjacent and;_; # c;. The last condition is a technicality to help with
the accounting. We say that the galldry (7) has type . . ik, and writecp —¢ cx where
f =i1iz...ik If J € | then al-galleryis a gallery of typéi,. .. ik with thei; € J.

A subsetA’ C A of chambers isl-connectedvhen any twac, ¢ € A’ can be joined by
a J-gallery that is contained in’. The J-residuesof A are theJ-connected components
and they haveank |J|. Thus the chambers themselves are the rank 0 residues. filhé ra
residues are the equivalence classes of the equivaleati®nsk; asi runs through. Call
these rank 1 residues tpanelsof A. The chamber system itself has rahk

A morphisma : A —» A’ of chamber systems (both over the samel $é& a map of
the chambers of to the chambers o’ that preservesadjacence for all: if ¢ ~; ¢’ in A
thena(c) ~i a(c’) in A’. An isomorphisnis a bijective morphism whose inverse is also a
morphism.

Example 3.1. The local picture fron§fdl (below left) is a chamber system ovet {1, 2},
with chambers the edges, and two chambadjacent when they share a comnidabeled
vertex. Thef{i}-residues, or panels, are the pairs of edges haviitpheled vertex in
common; in particular each panel contains exactly two chamband there is a one-one
correspondence between the panels and the vertices:

2
re5|due or panel j 'K j i

W VAN
(VAR

The example above right has chambers the 2-simplities {1, 2, 3}, and two chambers
i-adjacent when they share a comnidabeled edge. The six highlighted 2-simplicies are
a{2, 3}-residue and the pair of 2-simplicie$B-residue or panel (so again, each panel con-
tains two chambers). The six chambers in the rank 2 residvedaingle common vertex
at their center, and there is a one-one correspondencedretive rank 2 residues and the
vertices; similarly there is a one-one correspondencedmiihe panels and the edges. So
the chambers are the maximal dimensional simplicies andetsidues correspond to the
lower dimensional ones. We will return to this point below.
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Example 3.2 (flag complexes)Generalizing the example @i, letV be ann-dimensional
vector space over a fiekl A flagis a sequence of subspadgs c --- c V; with V;, a
proper subspace of;, ,. Let A be the chamber system over= {1,...,n - 1} whose
chambers are thmaximalflagsV; c - -- ¢ V-1 with dimV; = i, and where

Mc--cVa)~ (Vic---c V)

whenV;j = V] for j # i, i.e. any difference between the maximal flags occurs only in
thei-th position. The chambers in the panel (grresidue) containiny; c --- C Vpa
correspond to the 1-dimensional subspaces of the 2-diwmaistpace/;,;/Vi_1. If Kis
finite of orderqg then each panel thus contaigs- 1 chambers; ik is infinite then each
panel contains infinitely many chambers.

Example 3.3 (Coxeter complexes)in §2 we defined chambers, panels d@rabjacence
for a finite reflection groupV acting on a Euclidean space: the chambers were in one-one
correspondence with the elementddiag « g (¢ a fixed fundamental chamber), and
gc andg’co werei-adjacent whey' = gs.

Now let W, S) be a Coxeter system with = {s}i;. TheCoxeter complexdyy is the
chamber system ovémwith chambers the elements\af and

g~igifandonlyifg = gsinW. (8)

Thusg ~; g§ and alsays ~i gss = g. The{i}-panel containing is thus{g, gs}, so each
panel contains exactly two chambers (which can be thougd® tfing on either side of the
panel). This is the picture the geometry was giving unA gallery inAy has the form

g~i, 98, ~i, 98,8, ~ - ~ik 98,5, - .- S+

If f=1ijip...ikandss = 5,5, ...S,, then there is a gallery —¢ g’ in Aw exactly when
g =9gs inW.

If s, s; € S then starting at the chambgrve can set off in the two directions given by
the galleries:

g~igs~j0ssj~i9sss---  and  g~jgs ~i 9SS ~j 9S;SS; -
If the order ofss; is finite, then &s;)™ = 1 is equivalent to the relation
SSjS"' = Sjssj"' s

where there aren; symbols on both sides, so the two galleries above, despiting out
in opposite directions, nevertheless end up at the same:pthe chambegss;s --- =
gsissj - - -. Thus thefi, j}-residues imM are circuits containingrj chambers whess;
has finite order. If the order is not finite then the residuanigéinitely long line of cham-
bers stretching in “both directions” from The two Coxeter groups from the end §
have Coxeter complexes illustrating both these phenomena:

S 1
_____ _.505150.5031. So ° 1 ° S1 .3150
%S S 1 0 1 0 1 0 1
o0
o—O
S Sil

S8 = 5 S5 9 O
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Aside. In all our pictures of chamber systems, the chambers, pandlfower dimensional
cells have been simplicies. It turns out that chamber syst@m particularly nice exam-
ples of simplicial complexes where the chambers are themmbdimensional simplicies.
Moreover in all the chamber systems arising in these lesttlrere is a correspondence
between the lower dimensional simplicies and the residues.

To see why, recall that an abstract simplicial compexith vertex seV is a collection
of subsets o¥ such that

(@).0 € Xandr c o = 7€ Xand (b).{v} € Xforallve V.

A o = {V,...,W} is ak-simplex of the simplicial compleX. The empty sety is by
convention the unique simplex of dimensieh.

Now let A be a chamber system ovieand letV be the set of residues of rafik— 1
(recall that there is only one residue of raik namelyA itself). Then letX, be the
simplicial complex with vertex séf and such that iRy, ..., R¢ are rankll| — 1 residues
then

o ={Ry,...,R} is ak-simplex of X, & ﬂ R # 2.

In other words X, is thenerveof the covering ofA by rank|l|— 1 residues. Take the empty
intersection to be the unidpy R, and observe that the maximum dimension a simplex can
have igl| — 1.

If A is the flag complex chamber system of Exaniplé 3.2 with chasniher maximal
flags, then th&-simplicies ofX, correspond to the flagg, c --- c V;, containingk + 1
subspaces.

We illustrate with the Coxeter compley of the Coxeter systenW, S) with the sym-
bol shown below left. Some elementswfhave been written down in a suggestive pattern,
grouped into three rank 2 residues. The simplicial complgxacquires a 2-simplex from
these residues as any two intersect in a residue of rank 1llathdes intersect in a residue
of rank 0. In factXy is the infinite tiling of the plane from Examgle8.1:

{2, 3}-residue {1, 3}-residue
Xa

{1, 2}-residue

It would seem from this example thatR, . . ., R are ranKl| — 1 residues ovedy, .. ., J
with "R # @, thenN R is a residue ovef) J;. In fact this is always true for a Coxeter
complex and indeed any building, although not for an arbitchamber system. AS) J;
has|l| — (k + 1) elements, there is a one-one correspondence betweemihleeies of X,
and the residues df:

m
codimensiort simplicieso = {Ry, ..., Rn} © residuesﬂ R, of rank¢,
i=0

wherem = |I| — (¢ + 1). So for buildings the chambers of a chamber systeane the top
dimensional simplicies aX,, with the lower dimensional simplicies given by the resilue

12



Returning to the general discussion, we now have all thegst@s of chamber systems
that we need. We finish the section by defining/avalued metric on a Coxeter complex
Aw.

If (W S) is a Coxeter system anfd = iji»...ix with s¢ = §;5,...5,, then we have
seen that there is a gallegy—+ g’ in Ay exactly wheny = gs; in W. Call such a gallery
minimalif there is no gallery imy from g to g’ that passes through fewer chambers. Call
an expressiors; = s,5S,...S, reducedif there is no expression iV for st involving
fewers's (counted with multiplicity). Thus a gallery —; g’ is minimal if and only if the
expressiors; is reduced.

Definesw : Aw x Aw — W by éw(g,9") = g~*g’. Then

ow(g9,9) = st © g =gs © thereisagallerg —¢ g'. (9)
Moreover,éw(g, d') is reduced if and only if the gallery —; g’ is minimal. A slight

relaxation will define the metric on an arbitrary buildingetd are two examples, one of
which is our running one:

S S3
/\ x
S S X 7 X 7%
3 2 1 3/
g
g&U_SQ ” g 3 l

2
3 2 1 3
\/ \_/

ow(9.9) = £5% (= $1%281) ow(9,9) = 29991 (= 892915351 = etc)

Another way to draw chamber system&.chamber system ovércan be drawn as a graph
whose edges are “coloured” By The vertices of the graph are the chambers, and two
vertices are joined by an edge labeled | iff the corresponding chambers dradjacent.
These graphs are essentially the 1-skeletons of the dualsrafimplicial complexes. If
Aw is the Coxeter complex of the Coxeter syste $) then this graph is the Cayley
graph of W with respect to the generating s&t Figure[4 (left) shows the graph for the
local picture of the flag complex of a four dimensional spatEigure[3 (or the Coxeter
complex of O——0O——o0 ) and (right) the graph for the Coxeter complex of the group
of symmetries of the dodecahedron (with Coxeter symbel—0—2—0 ).

4. Buildings and Apartments

Let (W S) be a Coxeter system with = {s}ic;. A building of typeg(W. S) is a chamber
systemA overl such that:

(B1). every panel ofA contains at least two chambers;

(B2). A has aw-valued metrics : A x A — W such that ifs; = s, ...s, is areduced
expression iV then

6(c,c’) = s; © thereisagallerg —; ¢’ in A.

Example 4.1 (Coxeter complexes)There is at least one building for every Coxeter sys-
tem W, S), namely the Coxeter complexy with 6 = 6y in (), hence (B2). For (B1) we
observed in Example_3.3 that the panelaip have the formg, gg forg e Wandse S.
Such a building, where each panel has the minimum possilldauof chambers, is said
to bethin. It turns out that the thin buildings are precisely the Cexebmplexes.

13



Figure 4. Chamber systems as edge coloured graphs. Theplotak for the flag complex of a four dimensional
space(left) and the Coxeter complex of the group of symmetries of a ddaetran(right). Both are chamber
systems ovel = {1,2, 3}.

Example 4.2 (a spherical building of type O——0O—------ —0——™0). For (W, S) hav-
ing this symbol ( — 1 vertices) we put &/-valued metric on the flag complex of Example
[B2. First identify W, S) with &, as in§2, withs +— (i,i + 1) for1<i<n-1. Let

c=(Vic---cVyppandd =(V;c---c V) ,)

be chambers and writé, = V) = 0, V,, = V], = V. We can definé(c, ¢’) € &, using the
filtration of \V//V/_; of §1lin the obvious way. Alternatively, for& i < n, let

a(i)y =min{j| V] cV[_; +Vj}

and defines(c, ¢’) = . We show that we have a building (when ditm= 3) at the end of
this section.

Example 4.3 (an affine building of type 0—=—0 ). An affine building has typeW,S)
an affine reflection group as in Example]2.3. Taking this exampith S = {s, 5} and
Coxeter symbolO——0 , let A be the chamber system ovier= {0, 1} shown below —
an infinite 3-valent tree. The edges are the chambers, andhambers are 0-adjacent
when they share a common black vertex and 1-adjacent whgrslttaee a common white
vertex. Each panel thus contains three chambers, henceTB&)Coxeter comple&yy is

in Exampld3.B (also a tree).

e = O-adjacent
o = l-adjacent

14



To define the-metric onA recall that in a tree there is a unique path between chambers
without “backtracking”: a backtrack is a path that crosse®dge and then immediately
comes back across the edge again. For chantbers A, match this unique path between

¢ andc’ with the same path starting at 1 in the Coxeter complgx

unique path
A
C c
—O @ O @ O @ Oo— Aw

and defines(c, ¢’) to be the resulting. To see (B2), let(c,c’) = g € W and suppose that
g=Ssj,...Sj. Thenby[®) thereis a gallery iy from 1 togoftypej; ... j,. ASAw is also

a tree this gallery differs from the unique minimal one onyyldacktracks. First transfer
this minimal gallery toA to get the minimal gallery frone to ¢/, and then transfer the
backtracks to obtain a gallery of tyge. .. j, from cto c’. Conversely if there is a gallery
fromctoc of typeji... j, with sj, ...sj, reduced then in particular no two consecutive
ss are the same and so the gallery has no backtracks. Thukéusique minimal gallery
fromcto ¢’ givingd(c,c’) = s;, ... sj, by definition.

In a Coxeter complex we hawgy(c,c’) = s, ... s, if and only if there is a gallery of
typeis ...ix from c to ¢/, but in an arbitrary building there is the extra conditioattthe
word s, ... s, be reduced. We can see why in the example above: if there ilemygaf
typeis...ix from c to ¢’ with s, ... s, not reduced, theA(c, c’) need not necessarily be
S, ... S,. For example, if we have three adjacent chambers:

then there is a gallery of type 1 fromto ¢’ with s; reduced, hencé(c,c’) = s. The
non-reduced gallerg —11 ¢’ does not givéS(c,¢’) = s151, assis1 = 1 # S1.

Example$ 4]2-4]3 are our first dfick buildings: one where every panel contains at
least three chambers. “Thick” is generally taken to be syrmayus with interesting.

It turns out that there are quite naturally arising Coxeteugs for which there are
no thick buildings. One such example is the group of reflectisgamnmetries of a regular
dodecahedron having symb 2 .

In §1] (as well as Example4.3) we defined Wemetrics by situating a pair of chambers
¢, ¢ inside a copy of the Coxeter complay and transferring the metrigy defined in[(9).
We need to see that this process is well defined — althouglistbisvious in Example413
— and that the resulting satisfies (B2). This leads to an alternative definition ofding
(Theoreni 4.P below) based on this idea of definingcally.

Let (A, 6) and (', 8") be buildings of type\\, S) andX c (A, 6), Y c (A’, &) be subsets.
A morphismea : X — Y is anisometrywhen it preserves theé/-metrics: for all chambers
¢, ¢ in X we haves’(a(c), a(c)) = é(c,c’). A simple example is ifjp € W, theng — gog
is an isometnAy — Aw.

The following result guarantees the existence of copiehefQoxeter complex in a
building:
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Theorem 4.1. Let A be a building of typdW. S) and X a subset of the Coxeter complex
Aw. Then any isometry X A extends to an isometiyy — A.

An apartmentn a buildingA of type W, S) is an isometric image of the Coxeter com-
plex Ay, i.e. a subset of the form(Aw) for @ : Aw — A some isometry. Apartments are
precisely the local pictures we saw{il.

We are particularly interested in the following two conseqees of Theorem4.1:

Any two chambers, ¢’ lie in some apartmera. (10)

(If 6(c,c’) =g e W, thenX = (1,9) c Aw — (c,C’) C Ais an isometry. It extends by
Theoren{ 4l to an isometidy, — A and hence an apartment containjg’.) So the
W-metric onA can be recovered from the metric on the Coxeter complex; overgthe
metrics on overlapping Coxeter complexes agree on theaper!

If chambers, ¢’ € Aandc, ¢’ € A’ then there is an isometd — A’ fixing AN A", (11)

(We leave this to the reader with the following hints: usedpartments to get an isometry
A — A fixing a chambecy € An A’; then show that every chamber in the intersection is
fixed by showing that in an apartment there is a unique chamberenW-distance from
Co.)

It turns out that any chamber system covered by sufficienipyrCoxeter complexes
in a sufficiently nice way so thdf(1L0) arild {11) hold can be miattea building by patching
together the local metrics on the Coxeter complextes[1.

To formulate this properly we need to replace isometries Agsmot involving metrics.
Let A, A’ be chamber systems over the samel s&t/e leave it as an exercise to show that
(). a: (A, 6) — (A, 8) is anisometry of buildings if and only if : A — A’ is an injective
morphism of chamber systems, and (ii)is a surjective isometry of buildings if and only
if @ an isomorphism of chamber systems.

Theorem 4.2. Let (W, S) be a Coxeter system with S {s}icy andA a chamber system
over |. Supposa@ contains a collectionA,} of sub-chamber systems over I, called apart-
ments, with each subsystem isomorphic (as a chamber syistéine) Coxeter compleXyy.
Suppose also that

(BY’). any two chambers,¢’ of A are contained in some apartment A, and

(B2'). if chambers ¢cc’ € A, ande Ag, then there is an isomorphism,A— Ag fixing
Ay N A

Defines : A x A - W byés(c, ') = dw(a(c), a(c’)) wherea : Ay — A is an isomorphism
with ¢, ¢’ € A. Then(A, 6) is a building of typgW, S).

Example 4.4 (the flag complex off1l revisited). The chamber system structure on the flag
complexA of {1l was given there (and in Examle3.2, where we saw Ahiatthick). If
L1, Lo, L3 are lines inV spanned by independent vectors, then we get a hexagonaeonfi
ration as ind1l. Let the apartments be all the hexagons obtained in this Mvay= V1 c V,
andc’ = V] c V; are chambers, then they can be situated in an apartment &ycixg
Vi, Vi to asell s, Ly, L3 ofindependentlines. Ny # V], Vo # V] andV, NV} is a line dif-
ferent fromVy, V] as for thec, ¢’ of {11, then this extension is unique, ea’ lie in a unique
apartment. Otherwise (e.g.\b NV is one ofV; or V) there is some choice. In any case,
if L1, Lo, Lz andL/, L, L} are two such extensions corresponding to apartnenté; con-
tainingc, ¢, then anyg € GL(V) with g(L;) = L induces an isomorphis#, — Az that
fixesA, N Ag.
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(e, €3)

(e (e2)
Co
(€1, &) (2, €3)
(e2)

Figure 5: Apartmenf

5. Spherical Buildings

So far our supply ofhick buildings is a little disappointing: only the flag complex of
g1 and the affine building of Example_4.3. In this section wesiderably increase the
library by extracting a building from the structure of a retive algebraic group. These
guys really are the motivating examples of buildings.

Call a building of type V. S) sphericalwhen the Coxeter syste{ S) is spherical (i.e.
finite). It turns out that there is a uniform construction daege class of thick spherical
buildings. To motivate this we reconstruct the flag complaeitding A of {1l inside the
general linear grou® = GL(V) = GL3(K).

First, letP c G be the subgroup of permutation matrices — those matricésexactly
one 1 in each row and column and all other entries O; alterglgtithea, = 3'; & j, where
7 € Gz ande; is the 3x 3 matrix with a 1 in thdj-th position and 0's elsewhere. The map
7 8, is an isomorphisn®s — P with

010 1 00
$=(L2)»|1 0 O0|ands,=(2,3)»| 0 0 1. (12)
0 01 010

For the rest of this section we will blur the distinction beem the symmetric grou@s,
the group of permutation matricd® and the Coxeter systenW(S) with the symbol
o—oO0.

Assume for the moment that:

(G1). The action ofG on the flag complexA given bya : Vi c V, — aV; c aV; for
a € G, is by chamber system isomorphisms (hence via isometrigsebgomments
immediately prior to Theorefn 4.2).

(G2). Fix g € (WS) and letX(g) = {(c,c’) € A x A|dé(c,c’) = g}. Then for anyg
the diagonal actiom : (c,c’) — (ac ac) of G on X(g) is transitive (thusG acts
transitively on the ordered pairs of chambers a fivédlistance apart).

(G3). Let Ay c A be the apartment given by the lines= (g) with {e1, &, e3} the usual
basis forV, andcq the chambete;) c (e, &) — see Figurél5. TheR acts onAy.
Moreover, the isometniw — Ag, g — g is equivariant with respect to th@y S)-

actiong 3 0og on the Coxeter complexy, and theP-action on the apartmenrit,
(thus, the YV, S)-action onAyy is the same as th@-action onAy).

These three allow us to reconstruct the chambers, adjaeenisys-metric of A insideG:

Reconstructing the chambers &fin G. Fora € G we haveac, = ¢y with ¢ = (e1) C

(e1, &), exactly when
[ )
aeB:= e |Gy,
[ )

OO e
o e e
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the subgroup of upper triangular matrices. It is easy to stiaw (G2) is equivalent to
(G2a): theG-action onA is transitive on the chambers, and (G2b): for any (W, S) the
action of the subgroup is transitive on the chambecsuch tha®(co, ¢) = g.

Combining (G2a) with the fact that the chamloghas stabilizeB, we geta 1-1 corre-
spondence between the chambera aind the left coset&/B:

chambersicy € A <. cosetsaBe G/B.

Reconstructing the i-adjacencyLet ¢, ¢; € A be 1-adjacent chambers; = V; c V, and
C; = V] C V,, and lefc; = a;cp with thea; € G. Thena{laz stabilizes the subspace,, &),

hence
[ ] [ ] [ ]
a[laz € e o o
0O O o

The reader can show that fsy the permutation matrix if(12), the subgroup of matrices in
(@13) is the disjoint unioB(s;)B := BU Bs B, whereBaB = {baly | b,b’ € B} is a double
coset. Thus, if we are to replace the chamlugrs;, by the cosetsy B, a;B, then we need
to replacec; ~1 ¢ by aj'a, € B(s1)B. Similarly
[ ) [ ] [ ]
O o o ]eG}: B(s,)B.
[ ] [ ]

€ G} . (23)

0

€1 ~2 Cp exactly when the; = a;cp with a{lag € {

Reconstructing th&s-metrics. Letcy, ¢, € A be chambers witls; = a;¢o. Suppose that
6(c1,C2) = g€ (WS). As G is acting by isometries (G1), we hawéco, azlazco) =g In
the Coxeter compleAyw we have by[(B) thagw(1, g) = g, so that by (G3)¢(co, gc) = ¢
also. Thus by (G2b) there istae B with (bco, bgg) = (Co, a;taxco), so in particular,
bgg = a;'aco. As the elements dB sendingc, to bgg are precisely the cosegB, we
geta;'a, € bgBc BgB

Conversely, ifa;'a, € BgBthen

d(cy, C2) = 6(auCo, A2Co) = 8(Co, ;" a2Co) = d(Co, bglico) = 5(Co, by),
for someb € B, and so
6(Co. bgy) = 6(bco, bge) = 6(Co. 9co) = dw(1.g) = g
(the first asB stabilizescy, the second by (G1) and the third by (G3)). We conclude that
6(c1,C2) = g € (W, S) if and only if a;*a, € BgB

Summarizing, let the left cose@/B be a chamber system over= {1, 2} with ad-
jacency defined by B ~; a,B iff aj'a, € B(s)B and G3-metric 6(a1B, a,B) = g iff
allag € BgB. ThenG/Biis a building of type O——0, isomorphic to the flag complex of

q1.

We leave it to the reader to show that the assumptions (G2)4@ld hint: for (G2)
with 6(cy, ¢2) = 6(c), C,), situatecy, c; in a hexagon as if1l andc}, ¢, similarly. Then use
the fact thatGL(V) acts transitively on ordered bases\Wf

We are feeling our way towards a class of groups in which wengemic this recon-
struction of the flag complex. It turns out to be convenieribtonulate the class abstractly
first, and then bring in the natural examples later.

A Tits systenor BN-pair for a groupG is a pair of subgroupB andN of G satisfying
the following axioms:

(BNO). B andN generatés;
18



(BN1). the subgrou@ = Bn N is normal inN, and the quotien/T is a Coxeter system
(WS) for someS = {s}iei;

(BN2). foreveryg € Wands € S the product of double cosBtBsB BgBc BgB|J BsgB
(BN3). for everys e S we havesBs# B.

The groupW is called theweyl groupof G, and is in general not finite.

Example 5.1. G = GLy(k); B = the upper triangular matrices &; N = the monomial
matrices inG (those having exactly one non-zero entry in each row anchwoju

T ={diagts,...,tn) It1...th £ 0},

andW = the permutation matrices with

= O
o P

fori € {1,...,n - 1}, where the number of 1's on the diagonal before the2block is

i — 1. Lete be then-column vector (0...,1,...,0)" with the 1 in thei-th position and

Li = {te |t € k}. ThenN permutes the set of lind&,, ..., Ly} andW is isomorphic to the
symmetric group on this set (henze&S,). This example is misleadingly special in that the
extension 1- T —- N —» W — 1 splits, so that the Weyl grolyy can be realised, via the
permutation matrices, as a subgrou=ofin general this doesn’t happen.

Theorem 5.1. Let G be a group with a BN-pair and létbe a chamber system over | with
chambers the cosets/8 and adjacency defined byB ~; a,B iff afaz € B(s)B. Define
a W-metric bys(a;B, a;B) = g € W iff a;'a, € BgB. Ther(A, §) is a thick building of type
(WS).

Example 5.2. G = the symplectic grou pn(K) = {g € GLon(k) | g"Jg = J} where

[ 0 Iy
(4 8)
with 1, the n x n identity matrix; B = the upper triangular matrices Bipn(k); N = the
monomial matrices its pn(k), and

T = (diagts, ..., tn, t7 ..., 1Y) [t 2 O}

Let {e1,...,€n81,...,8) be M-column vectors (Q..,1,...,0)" with the 1 in thei-th
position_fore. and the (+ n)-th position forg. LetL; = {tg |t € k} andL; = {t& |t € k],

writing L = L. ThenN permutes the sét.y, ..., Ln, L1,. .., Lo} andW is isomorphic to the
“signed” permutation®.., = {7 € &z, | 7(L;) = w(Li)).

A g e Wis not an element d& but a cose§T for some representative fie N forg. AsT ¢ B, if ;T = G, T
thenBg; B = Bg, B, so we can unambiguously wriggBto meanBgB.
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Figure 6: The spherical building of the symplectic graam(F2) and apartmenfy.

This can be reformulated geometrically as follows. Webe a Z-dimensional space
overk and (1, v) a symplectic form o — a non-degenerate alternating bilinear frinet
O(V) be those linear maps preserving the form, i&V) = {g € GL(V)|(g(u), g(v)) =
(u,v) for all u,v € V}. The form can be defined on abas, ..., ey, €,...,&} by

(e,e) =0=(&,€)and @,8&) = 5 = —(§,e),

so thatO(V) = Spn(k). Call a subspacd c V totally isotropic if u,v) = Oforallu,ve U.
It turns out that the maximal totally isotropic subspacesradimensional. A (maximal)
flag inV is a sequence of totally isotropic subspades - - - c V, with dimV; = i. LetA
be the chamber system with chambers these flags and adjeseneil = {1,...,n}asin
the flag complex of Example3.2V{ c --- c V) ~i (V] € --- c V) whenV; = \ for
j #1. Letcy be the chamber

€1y C (e, &) C---C(e,€,...,6n)

andAo the set of images af under the signed permutatio@sn = {r € &zn|7(8) = (&)}
(writing & = €). Finally, let{A,} be the set of images @ underSpn(k). Then this set of
apartmentg gives a building isomorphic to the spherical buildingSy, (k) arising from

Theoreni 511 and Examgdleb.2.

We finish where we started by drawing a picture. Mebe four dimensional over
the field of order 2 and equipped with symplectic form\). Let A be the graph with
vertices the proper non-trivial totally isotropic subspaofV, with an edge connecting
the (white) one dimensional vertéx to the (black) two dimensional verté) whenever

4Alternating meansu( u) = 0 for all u, and non-degenerate that = {0}.
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V; is a subspace df;. Any one dimensional subspace (of which there are 15) idlyota
isotropic, and is contained in 3 two dimensional totallytiepic subspaces, each of which
in turn contains 3 one dimensional subspaces. There ard $hweo dimensional vertices.

The local pictures/apartments are octagons (or barycaiiyrisubdivided diamonds). The
apartmentd, above has white vertices,, L,, L1, L, using the notation of Example .2,
and black verticess + Lo, L1 + Ly, Ly + Ly andLy + L. See Figurgl6.

Remark 5.1. Example$5J1 ard 5.2 are of classical groups of matrices. ddm be gener-
alized. Letk = k be algebraically closed ar® a connected algebraic group defined over
k. Suppose also th& is reductive, i.e. that its unipotent radical is trivial.tlEzbe a Borel
subgroup (a maximal closed connected soluble subgroup] and a maximal torus — a
subgroup isomorphic td{)™ for somem. Finally, letW = N/T be the Weyl group o6,
whereN is the normalizer irG of T. This is isomorphic to dinite Coxeter group\\/ S)
with S = {s}ic;. The result is @N-pair forG. For a general non-algebraically cloded
BN-pair can still be extracted fro®, but one has to tread more carefully.

Notes and References

As mentioned in the Introduction, most of what we have saisl iteorigins in the
work of Tits, and we start by listing his (many) original cibutions. Coxeter groups as a
notion first appeared in his 1961 mimeographed ndisupes et §onetries de Coxeter
These were reproduced In [7, pages 740—-754]. The name is ageoim|[3]. The Bourbaki
volume [2] dealing with Coxeter groups was produced aftenierous conversations” with
Tits. Buildings as simplicial complexes go back to the veegibnings of the subject, but
the first complete account can be foundLin [20]. Buildingslasneber systems with \&/-
metric have their origins in_[23]. The earliest referenc®t¢-pairs that we could find in
Tits's work is in [18]; they start to prove an essential tao]19].

Sectiorf1L. This is mostly folklore. The reader is to be minded of prdjecgeometry as
A is the incidence graph of the standard projective plane kveFhe ad-hoc argument
(essentially the Jordan-Holder Theorem) for associdtiegpermutation (13) to the pair
of chambers is from [1§4.3].

Sectior P. Standard references on reflection groups and Coxeter gaveg] (still the
only place you can find some things), [12] ahd [13]. The de€inibf reflection in[(2) is
from [2, V.2.2]. ThatH consists of all the reflecting hyperplanesffis [12, Proposition
1.14]. The general theory of finite reflection groups, inahgdtheir classification, can be
found in Chapters 1 and 2 of [12]. Examplel2.3, althoughyatandard, is taken from
[1, §2.2.2]. The general theory of affine groups islin[12, Chagieior the hyperboloid
or Minkowski model of hyperbolic space, hyperbolic linet;, eseel[14, Chapter 3]. The
standard reference on hyperbolic reflection groups is [Z#}e treatment of chambers,
panels and adjacency is taken fram §1,1.4]. ThatW acts regularly on the chambers is
[12, Theorem 1.12]. Fact 1 is [12, Theorem 1.5] and Fact 24s Theorem 1.9]. For the
general theory of Coxeter groups see [12, Chapter 5]. Theseptation\(\ S) — GL(V)
described in Remaik32.1 is called the geometric or refleationTits representation, and
is one of the crucial results of|[7]. See [185.3] for its definition; faithfulness is [12,
Corollary 5.4] or [1, Theorem 2.59] (where it is also showattthe image ifGL(V) of
(W, S) is discrete).

Sectior B. Apart from the aside, this section is based mainly on Chayite? of [15]; the
initial chamber system notions and Examipld 3.2 are dirdiatiy [15, §1.1]. Chapter 2 of
this book is entirely devoted to Coxeter complexes. A thgioexploration of the general
connections between chambers systems and simplicial exewpis given in |1, Appendix
A]. The building specific set-up is ini[£5.6]. The construction of the simplicial complex
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Xa as the nerve of the covering by rapik— 1 residues is [1, Exercise 5.98]. The statement
about the intersection of residues being a residue is [1;dise5.32]. The edge coloured
graph way of viewing chamber systems is a point of view adbirt¢25].

Sectio 4. This section is based on Chapter 3lof [15] from which the ddimiof building

is taken. That the Coxeter complexes comprise the thin imgjfdis from [15,5§3.2]. The
alternative definition of the permutation associated toiaqgfa&hambers of a flag complex
in Exampld4.R is taken from [25, Example 7.4]. The infiniteaBent tree of Example 4.3
is an example of a building that does not have much structsiiee @mbinatorial object.
Nevertheless it can be constructed in an interesting way fiorector space over a field
with a discrete valuation (and as such is an important spease of the Bruhat-Tits theory
[6]) in the following way. LetK be a non-archimedean local field with residue fielshd
valuation ringA (for exampleK is thep-adicsQp with k = Z/pZ andAthe p-adic integers).

If Vis a 2-dimensional vector space o¥erthen a latticd. c V is a freeA-module of rank

2. Consider the equivalence clasgesf lattices under the relatioh ~ Lx for x € K*,
and letA be the graph with vertices these classes and an edge joWingiff there are
Le A L” € AwithL’ c LandL/L’ = k. ThenA is a tree, and Example 4.3 is the case
wherek has two elements( = Q, for example). See [17, 11.1.1] for details. In general
there is a construction that extract8&al-pair, and an affine building, from an algebraic
group defined over suchlg, and Exampl€4]3 is such an affine building 8ibQ,. For
affine buildings in general see [26]. The fact that the affingding for SL,Q, is a tree
was used by Serre to reprove a theorem of Ihara that a torsierdttice inSLQ,, is a free
group. A theorem of Walter Feit and Graham Higman [10] hasseqnence that a finite
thick building has typeW{. S) a finite reflection group where each irreducible component
of W is of type An, Bn/Ch, Dn, Ee, E7, Eg, F4, G2 or 15(8) (seel[l, Theorem 6.94]; see [12,
Chapter 2] for a description of these types of finite refleciooup). Hence there can be
no finite thick buildings of type the symmetry group of the dodhedron, for whichi/ S)
has typeHs. That there are nimfinite thick buildings of typeHs is shown in|[22]. Theorem
[4.dis [15, Theorem 3.6] and Theoréml4.2.is [15, Theorem 3R1idr to [23] axioms (BY)
and (B2) of Theoreni 4.R provided the standard definition of building

Sectiorb. This section is based onh |15, Chapter 5]. Properties (GB)-@se the spe-
cialization toGLj of a strongly transitive group action [1§5.1]. The argument that re-
constructs th&V-metric is taken from the proof of [15, Theorem 5.2]. The ax#ofor a
BN-pair are from|[15,85.1]. A proof that Exampl€ 5l 1 is BN-pair using nothing but
row and column operations can be found.in {&,5]. Theoreni 5]1 is [15, Theorem 5.3].
The flag complex of a symplectic space is from|[15, ChapterRifjure[6 has several
names: in graph theory circles it is called Tutte’s eiglgesaand is the unique smallest
cubic graph with girth 8 (where these minimal 8-circuits,afecourse, the apartments). It
is a pleasantly mindless exercise to label the verticesalFthure with the totally isotropic
subspacedint: start with the 8-circuit at the top as the apartm&g)t There is also a very
simple construction that goes back to Sylvester (1844)s{tnd much else) is engagingly
described inl[9]. There are 30 odd permutations of order@¢gn15 transpositions — like
(1,2) — and 15 products of three disjoint transpositions, IkeJ(3, 4)(5, 6). Let these be
the vertices of the eight-cage, and join a vergein one of these two groups to the three
71, T2, T3 in the other group for whicl- = 717,73. That theB (Borel subgroup) andN
(normalizer of a maximal torus) extracted from a reductiveup G in RemarK 5. are a
BN-pair forG is shown in[[11§29.1].

Further reading. Surely the shortest introduction to buildings lis [5]; [416] and [21]
are slightly longer. The book][1] is a greatly expanded wersf [3], while [15] is an
updated version of the 1988 original. A nice introductiospherical buildings, including
an account of Tits’s classification_[20] of the thick sphalibuildings of type (\, S) for
IS| > 3, is [25]; the sequel [26] treats affine buildings.
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