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A (very short) introduction to buildings✩

Brent Everitt

Department of Mathematics, University of York, York YO10 5DD, United Kingdom.

Abstract

This is an informal elementary introduction to buildings – what they are and where they
come from.

This is an informal elementary introduction to buildings – written for, and by, a non-
expert. The aim is to get to the definition of a building and feel that it is an entirely natural
thing. To maintain the lecture style examples have replacedproofs. The notes at the end
indicate where these proofs can be found.

Most of what we say has its origins in the work of Jacques Tits,and our account borrows
heavily from the books of Abramenko and Brown [1] and Ronan [15]. Section 1 illustrates
all the essential features of a building in the context of an example, but without mentioning
any building terminology. In principle anyone could read this. Sections 2-4 firm-up and
generalize these specifics: Coxeter groups appear in§2, chambers systems in§3 and the
definition of a building in§4. Section 5 addresses where buildings come from by describing
the first important example: the spherical building of an algebraic group.

1. The flag complex of a vector space

Let V be a three dimensional vector space over a fieldk. Let ∆ be the graph with
vertices the non-trivial proper subspaces ofV, and an edge connecting the verticesVi and
V j wheneverVi is a subspace ofV j:

Vi V j ks +3 Vi ⊂ V j .

Figure 1 shows the graph∆whenk is the field of ordersq = 2 and 3. There are 1+q+q2 one
dimensional subspaces – illustrated by the white vertices –and 1+ q+ q2 two dimensional
subspaces, illustrated by the black vertices. Each one dimensional space is contained in 1+q
two dimensional spaces and each two dimensional space contains 1+ q one dimensional
spaces. The duality here might remind the reader of projective geometry. Call the edges
Vi ⊂ V j of ∆ chambers.

Some more structure can be wrung out of this picture: there isan “S3-valued metric”,
with S3 the symmetric group, that gives the shortest route(s) through∆ between any two
chambers. To see how, supposec, c′ are chambers and we want a shortest route of edges
connecting them:

c = V1 ⊂ V2
shortest route

///o/o/o/o/o/o/o c′ = V′1 ⊂ V′2.

Makec andc′ as different as possible by assuming thatV1 , V′1, V2 , V′2 andV2 ∩ V′2 is a
line different fromV1,V′1. Changing notation, letL1, L2, L3 be lines withL1 = V1, L3 = V′1
andL2 = V2 ∩ V′2. One then getsV2 = L1 + L2 andV′2 = L2 + L3.

✩Based on a short series of lectures given at the Université de Fribourg, Switzerland in June 2011. The author
is grateful for the department’s hospitality both then and over the years, and particularly to Ruth Kellerhals for her
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Figure 1: The flag complex∆ of the three dimensional vector space over the fields of order2 (left) and 3(right).

We get a small piece of∆, a local picture containingc, c′, as in Figure 2. The fieldk
wasn’t mentioned at all in the previous paragraph, so this isthe local picture for∆ over any
field. Theglobalpicture gets more complicated however as the fieldk gets bigger as Figure
1 illustrates.

Say that chambers arei-adjacentif any difference between them occurs only in thei-th
position, soV1 ⊂ V2 ⊃ V′1, (V1 , V′1) are a pair of 1-adjacent chambers andV2 ⊃ V1 ⊂

V′2, (V2 , V′2) a pair of 2-adjacent chambers (a chamber is alsoi-adjacent to itself for any
i). Place the labeli on a vertex of the local picture in Figure 2 if the two chambersmeeting
at the vertex arei-adjacent.

The shortest routes fromc to c′ in the local pictureare given by

c
s2s1s2

s1s2s1

// c′

where the routes1s2s1 means cross a 1-labeled vertex, then a 2-labeled vertex and then a
1-labeled vertex. Routes are read from left to right, although it obviously doesn’t matter
with the two above. These routes then take values in the symmetric groupS3 by letting
s1 = (1, 2) ands2 = (2, 3), so that boths1s2s1 ands2s1s2 give the permutation (1, 3) ∈ S3.
Our actions will always be on the left, so in particular permutations inS3 are composed
from right to left. Define theS3-distance betweenc, c′ to beδ(c, c′) = (1, 3).

For an arbitrary pair of chambers defineδ(c, c′) to be the element ofS3 obtained by
situating the chambersc, c′ in some local picture and taking the shortest route(s) as in
Figure 2. The resulting mapδ : ∆ × ∆ → S3 can be thought of as a metric on∆ taking
values inS3.

We will see in§4 why this map is well defined and doesn’t depend on which local
picture we choose containingc, c′, although an ad-hoc argument shows that an element of
S3 can be associated in a canonical fashion to any pair of chambers. Take thec, c′ above
and write

c = 0 ⊂ L1 ⊂ L1 + L2 ⊂ V = V0 ⊂ V1 ⊂ V2 ⊂ V3

andc′ = V′0 ⊂ · · · ⊂ V′3 similarly. For eachi the filtrationV0 ⊂ V1 ⊂ V2 ⊂ V3 of V induces
a filtration of the one dimensional quotientV′i /V

′
i−1:

(V′i ∩ V0)/V′i−1 ⊂ · · · ⊂ (V′i ∩ V3)/V′i−1 (1)

many kindnesses. He also thanks Laura Chiobanu, Paul Turner, and was partially supported by Swiss National
Science Foundation grant 200021-131967 and Marie Curie Reintegration Grant 230889. He also thanks the
referees for a number of helpful suggestions and references.
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c c′
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c

c′

Figure 2: Local picture of∆ containing the pair of chambersc, c′ and the shortest routes between them(left);
situating the pairc, c′ in a local picture with the shortest routess1s2s1 = s2s1s2 = (1, 3) (right).

(by (V′i ∩V0)/V′i−1, etc, we mean the image ofV′i ∩V0 under the quotient mapV → V/V′i−1).
Any filtration of a one dimensional space must start with a sequence of trivial subspaces
and end with a sequence ofV′i /V

′
i−1’s. At some point in the middle the filtration jumps from

being zero dimensional to one dimensional; for thec, c′ above:

i V ′i /V
′
i−1 filtration (1) “jump index” j

1 L3 0 ⊂ 0 ⊂ 0 ⊂ L3 3
2 (L2 + L3)/L3 0 ⊂ 0 ⊂ (L2 + L3)/L3 ⊂ (L2 + L3)/L3 2
3 V/(L2 + L3) 0 ⊂ V/(L2 + L3) ⊂ V/(L2 + L3) ⊂ V/(L2 + L3) 1

Definingπ(i) = j givesπ = (1, 3) ∈ S3. Summarizing:

First rough definition of a buildingA building is a set ofchamberswith i-adjacency be-
tween them, thei coming from some setS, together with a “W-valued metric” forW some
group.

Returning to the running example, the symmetric groupS3 is a reflection group, with
Figure 2 and the resulting metricδ coming from the geometry of these reflections. To
see why suppose we have a three dimensional Euclidean space –a real vector space with
an inner product. Letv1, v2, v3 be an orthonormal basis and letS3 act on the space by
permuting coordinates:π · vi := vπ(i) for π ∈ S3 (and extend linearly). This action is not
essential as the vectorv = v1 + v2 + v3 is fixed by allπ ∈ S3. This can be gotten around by
passing to the perp space

v⊥ = {
∑

λivi |
∑

λi = 0}.

The picture to keep in mind is the following, wherev⊥ is translated off the origin to make
it easier to see:

v1

v2

v3

s1

s1

v⊥ + 1
3v

s1

s2
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The elements1 = (1, 2) acts as on the left – as the reflection in the plane with equation
x1 − x2 = 0. Similarly s2 = (2, 3) and (1, 3) are reflections in the planesx2 − x3 = 0 and
x1 − x3 = 0. These three planes chop the intersection ofv⊥ + 1

3v with the positive quadrant
into a triangle with its boundary barycentrically subdivided (or hexagon). So we start to
see the local picture of Figure 2 coming from the geometry of these reflecting hyperplanes.

Puttingv⊥ into the plane of the page decomposes the plane into six infinite wedge-
shaped regions:

chambers

s1

s2

intersect

with S1
≈

chambers

In the theory of reflection groups (§2) these regions are also called chambers. The chambers
of our local picture are gotten back by intersecting these regions with the sphereS1.

(In the next dimension up we can still draw pictures of some ofthese objects. LetV
be four dimensional overk and∆ the two dimensional simplicial complex with vertices
the non-trivial subspaces ofV, edges (or 1-simplicies) the pairsVi ⊂ V j and 2-simplicies
the triplesVi ⊂ V j ⊂ Vk. We can get the local picture by working backwards from a
symmetric group action like we did above. If we have a four dimensional Euclidean space
with orthonormal basisv1, v2, v3, v4, then the convex hull of thevi is a tetrahedron lying in
the hyperplanev⊥+ 1

4v wherev = v1+v2+v3+v4. The six reflecting hyperplanes of theS4-
action have equationsxi − x j = 0 and slice the boundary of the tetrahedron barycentrically.
Identifying the hyperplane with three dimensions and intersecting the whole picture with
the sphereS2, we end up with Figure 3 (left). Flattening it out, we can retrospectively label
the simplicies by linesL1, L2, L3, L4 ∈ V and the spaces they generate.)

Returning to the hexagon, theS3-action turns out to be regular on the chambers, i.e.
given chambersc, c′ there is a uniqueπ ∈ S3 with πc = c′. This is most easily seen by brute
force: fix a “fundamental” chamberc0 and show that the six elements ofS3 send it to the
six chambers in the decomposition above. In particular there is a one-one correspondence
between the chambers and the elements ofS3 given byπ ∈ S3↔ chamberπc0.

This correspondence gives the adjacency labelings of the hexagonal local picture of
Figure 2: choose the fixed chamberc0 to be one of the two regions bounded by the reflecting
lines fors1 ands2. Starting with the edge of the hexagon contained inc0, label its vertices
by the corresponding reflections as below left:

c0s1

s2

c0s1

s2

π
gives

s1

s2

s1

s2

c1 c2

s1

s2

π1

π2

Now transfer this labeled edge to the other chambers using theS3-action as in the picture
above middle; the result is shown above right, where thei’s have becomesi ’s. Vertices on
opposite ends of the same line have different labels becausethe antipodal mapx 7→ −x is
not in the action ofS3 on the planev⊥.

Finally, to get the metricδ observe that ifc is some chamber of the local picture in
Figure 2 andπ ∈ S3 sendsc0 to c, thenπ = si1 . . . sik wheresik , . . . , si1 are the labels (read
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≈

L1

L2

L3

L4

L1 + L2

L2 + L3

L1 + L3

L1 + L2 + L3

Figure 3: The local picture for the flag complex of a four dimensional space: the result of intersecting the hyper-
planesxi − xj = 0 with S2 (left), flattened out(middle), and the picture corresponding to the labelled hexagon of
Figure 2(right). The shaded 2-simplex corresponds to the tripleL1 ⊂ L1 + L2 ⊂ L1 + L2 + L3.

from left to right) on the vertices crossed in a path in the hexagon fromc0 to c. So for
chambersc1, c2 we haveδ(c1, c2) = π−1

1 π2 whereci = πic0. For our originalc1, c2 we have
π1 = s1s2, π2 = s2, henceδ(c1, c2) = s2s1s2 as shown in the picture above.

Second rough definition of buildingA building is a set of chambers withi-adjacency, the
i coming from some setS, together with aW-valued metricδ, for W a reflection group
generated byS andδ arising from the geometry ofW.

In the next sections we will make precise and general the ideas in this rough definition, but
working in the reverse order: we start with reflection groups(§2), then an abstract version
of chambers and adjacency (§3) and finallyW-valued metrics (§4).

2. Reflection Groups and Coxeter Groups

Reflection groups arise as the symmetries of familiar geometric objects; Coxeter groups
are an abstraction of them. This section covers the basics. All vector spaces and linear maps
here are over the realsR.

A reflectionof a finite dimensional vector spaceV is a linear maps : V → V for which
there is a decomposition

V = Hs ⊕ Ls (2)

whereHs is a hyperplane (a codimension one subspace);Ls is one dimensional; the restric-
tion of s to Hs is the identity; and the restriction toLs is the mapx 7→ −x. Thus a reflection
fixes pointwise a mirrorHs, the reflecting hyperplane ofs, and acts as multiplication by−1
in some direction (the reflecting line) not lying in the mirror. In particulars is invertible
and an involution1.

A reflection group Wis a subgroup ofGL(V) generated by finitely many reflections.

Example 2.1 (orthogonal reflections).The most familiar kind of reflections are the or-
thogonal ones for which we further assume thatV is a Euclidean space, i.e. is equipped
with an inner product. Thens is orthogonal if in the decomposition (2) the lineLs = H⊥s ,
the orthogonal complement. In particularLs, and hence the reflection, is determined by the

1We will have no need for them in these notes, but one can reflecta vector space over an arbitrary fieldk:
the definition is identical except that the restriction ofs to the reflecting lineLs is the mapx 7→ ζx, whereζ is a
primititve root of unity ink. The only suchζ in R is−1, hence the definition we have given ofreal reflections. By
contrast a complex reflection can have any finite order.

5



reflecting hyperplane, unlike a general reflection where both the hyperplane and the line
are needed.

v

−v

Lv

Hvsv

If s is orthogonal then for any vectorv in Ls we haves : v 7→ −v with v⊥ fixed pointwise.
Thus an orthogonal reflectionscan be specified by just a non-zero vectorv, as the reflection
with Hs = v⊥ andLs spanned byv. We writes= sv, Hs = Hv, Ls = Lv, and by choosing a
sensible basis one gets that an orthogonal reflection is an orthogonal map of the Euclidean
space.

Let H = {Hv1, . . . ,Hvm} be hyperplanes in EuclideanV and W the reflection group
generated by the orthogonal reflectionssv1 , . . . , svm. As an exercise the reader can show that
if WH = H , i.e. gHvi = Hv j for all g ∈W and allvi , thenW is finite (hint: |W| ≤ (2m)!). It
turns out (although this is harder) thatH then consists ofall the reflecting hyperplanes of
W.

Example 2.2 (a finite reflection group).Let V be Euclidean with an orthonormal basis
v1, . . . , vn+1 andH the hyperplanesHi j := (vi − v j)⊥ for 1 ≤ i , j ≤ n+ 1 (in other words,
Hi j is the hyperplane with equationxi − x j = 0). The reflectionsvi−v j sendsvi − v j to v j − vi,
thus swapping the vectorsvi andv j . Any other basis vector is orthogonal tovi − v j , so lies
in Hi j , and is fixed. Thus ifπ = (i, j) ∈ Sn+1 thensvi−v j Hkℓ = Hπ(k),π(ℓ).

Now let W be the group generated by the reflectionssvi−v j . We have just shown that
WH = H , so W is a finite reflection group by the exercise above. Indeed,W is the
symmetric groupSn+1 acting by permuting coordinates as in§1. To make this identification
we have already seen that eachsvi−v j , and so every element ofW, permutes the basis vectors
v1, . . . , vn+1. This gives a homomorphismW → Sn+1. Injectivity of this homomorphism
follows as thevi spanV and surjectivity as the transpositions (i, j) generateSn+1.

The convex hull of thevi is the standardn-simplex, barycentrically subdivided by its
n(n − 1) hyperplanes of reflectional symmetry (theH), each of which is a reflecting hy-
perplane ofW. This is the picture we had forn = 2 andn = 3 in §1. Finite reflection
groups are often calledsphericalas the geometrical realisation of their Coxeter complexes
(the boundary of the barycentrically dividedn-simplex in this case; see Example 3.3 for the
general definition) are spheres.

Example 2.3 (an affine reflection group).Let V be 2-dimensional and consider reflec-
tions s0, s1 where the reflecting hyperplanes and lines are shown below left (there is no
inner product this time). The reflecting hyperplanes are different but both have the same
reflecting line: Ls0 = L = Ls1. If W is the group generated bys0, s1 thenW leaves in-
variant any affine line parallel toL as thesi do. But ifH = {Hs0,Hs1} thenWH , H
ass0Hs1 < H . Indeed, we must expandH to the infinite set shown below right before it
becomesW-invariant:

Hs0 Hs1

Ls0 = Ls1

W = 〈s0, s1〉

s0 s1s0s1s0 s1s0s1. . . . . .

invariant affine lineL

6



In fact, by identifying the invariant affine line with the reals, W is isomorphic to the group
of “affine reflections” ofR in the integersZ, i.e. to the group of transformations ofR
generated by the mapssn : x 7→ 2n− x for n ∈ Z. The elements1s0 acts on the affine line as
the translationx 7→ x+ 2 so has infinite order. In particularW is infinite. This also follows
fromH being infinite as the reflections in the hyperplanes inH are theW-conjugates of
s0, s1.

Example 2.4 (hyperbolic reflections).Let V be 3-dimensional and again there is no inner
product. Leta, b, c be real numbers such thata2

+ b2 > c2, and consider the reflections
with reflecting hyperplaneHs having the equationax+ by− cz= 0 and reflecting lineLs

spanned by the vectorv = (a, b, c). Thenv lies on the outside of the pair of cones with
equationz2

= x2
+ y2 andHs passes through the interior of this cone:

z2
= x2

+ y2

Hs

v

s

x2
+ y2 − z2

= −1

One can check thats leaves invariant each sheet of the two sheeted hyperboloid with equa-
tion x2

+ y2 − z2
= −1. Either sheet is a model for the hyperbolic plane. Intersecting Hs

with the top sheet gives a hyperbola – a straight line of hyperbolic geometry – ands is the
“hyperbolic reflection” of the plane in this line2.

Returning to the finite orthogonal case, letV be Euclidean,H = {Hi}i∈T a finite set of
hyperplanes andW = 〈si〉i∈T the group generated by the orthogonal reflections in theHi .
Suppose also thatWH = H , soW is finite andH is the set of all reflecting hyperplanes of
W as above.

For eachi ∈ T choose a linear functionalαi ∈ V∗ with Hi = kerαi . The choice ofαi is
unique upto scalar multiple andHi consists of thosev ∈ V with αi(v) = 0. The two sides
(or half-spaces) of the hyperplane consist of thev with αi(v) > 0 or thev with αi(v) < 0.

Fix anT-tupleε = (εi)i∈T , with εi ∈ {±1}, and consider the set

c = c(ε) = {v ∈ V | εiαi(v) > 0 for all i}. (3)

So eachαi(v) is non-zero andαi(v), εi have the same sign for alli. If this set is non-empty
then call it achamberof W. A non-empty set of the form

a = a(ε) = {v ∈ V |αi0(v) = 0 for somei0, andεiαi(v) > 0 for all i , i0} (4)

is called apanel. Here is the example from§1:

chambers

+++

+−+

+−−

−++

−+−

−−−

α1
α2

α3

0− −

0+ +

−0− + − 0

− + 0 +0+

panels

2Although there is no inner product in Examples 2.3 and 2.4, itis possible to endowV with a bilinear form so
that the reflections are “orthogonal” with respect to this form.
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where there are three hyperplanes inH and theαi are chosen so thatαi(v) > 0 for thosev
on the side indicated by the arrow. The chambers are marked bytheir T-tuples. There are
23 T-tuples but only 6 chambers because the tuples++− and−−+ give empty sets in (3).
Extend the notation to include panels (4) by placing a 0 in thei0-th position. There are then
3.22 such tuples but only 6 give non-empty panels, with two lying on each reflecting line.

There is an obvious notion of adjacency between chambers suggested by these pictures.
Say thata is a panel of the chamberc if the correspondingT-tuples are identical except
in one position where the tuple fora has a 0. It turns out that this can also be defined
topologically:a is a panel ofc exactly when ¯a ⊂ c̄, the closures of these sets with respect
to the usual topology onV.

Chambersc1 andc2 are thenadjacentif they share a common panel. In the Example
from §1, chambers are adjacent when they share a common edge.

The adjacency relation can be refined by bringing the reflection groupW into the pic-
ture. In §1 we saw thatS3 acts regularly as a reflection group on the chambers. This
turns out to be true in general for theW-action on the chambers: given chambersc, c′

there is a uniqueg ∈ W with gc = c′. Fix one of the chambersc0. Then the regu-
lar action gives the chambers are in one-one correspondencewith the elements ofW via
g ∈W↔ chambergc0.

Now let S = {s1, . . . , sn} be those reflections inW whose hyperplanesH1, . . . ,Hn are
spanned by a panel of the fixed chamberc0. ThusS = {s1, s2} for thec0 in the example
from §1:

c0

s1

s2 c0sc0

c1 c2

s

g

Supposec1, c2 are a pair of adjacent chambers as above right. Then there is ag ∈ W with
c1 = gc0. Translating the picture back toc0 we haveg−1c1 = c0 andg−1c2 are adjacent
chambers, and the common panel ofc1, c2 is sent byg−1 to a common panel ofc0 and
g−1c2 (these are most easily seen using the topological version ofadjacency). Ifs ∈ S is
the reflection in the hyperplane spanned by the common panel of c0 andg−1c2, then the
chamberg−1c2 is the same as the chambersc0.

Thusc1 = gc0, c2 = (gs)c0, and we have the following more refined description of
adjancey:

the chambers adjacent to the chambergc0 are the (gs)c0 for s ∈ S. (5)

WhenS = {s1, . . . , sn} we say that chambersgc0 andgsic0 arei-adjacent. In our running
example, the chambers adjacent togc0 aregs1c0 andgs2c0, and these are the two that were
1- and 2-adjacent togc0 in §1.

Coxeter groupsWe motivate the definition of Coxeter group by quoting two facts, staying
with the assumptions above whereW is generated by orthogonal reflections in finitely many
hyperplanesH with WH = H :

Fact 1. The groupW is generated by the reflectionss ∈ S in those hyperplanes spanned
by a panel of the fixed chamberc0.

8



In our running example we can see a how a proof might work usinginduction on the
“distance” of a chamber fromc0. If g is an element ofW then there is a chamber adjacent
to the chambergc0 that is closer toc0 thangc0 is. If this closer chamber isg′c0 say, then
by (5) we haveg = g′s for somes ∈ S. Repeat the process untilg completely decomposes
as a word in thes ∈ S.

Fact 2. With respect to the generatorsS the groupW admits a presentation

〈s ∈ S | (si sj)
mi j = 1〉 (6)

where themi j ∈ Z≥1 and are such thatmi j = mji , andmi j = 1 if and only if i = j (so in
particular,s2

i = 1).

If si and sj are reflections inW finite, then the elementsi sj has finite ordermi j ≥ 2.
So the relations in the presentation (6) certainly hold. Thecontent of Fact 2 is that these
relations suffice. Geometrically,si sj is a rotation “about” the intersectionHi ∩ H j of the
corresponding hyperplanes.

In Example 2.2 we haveS = {s1, . . . , sn} wheresi = svi−vi+1. The si si+1 have order 3
and all othersi sj have order 2. MoreoverW is isomorphic toSn+1 via the map induced by
(i, i + 1) 7→ si . Our running example of the action ofS3 on 3-dimensionalV is then = 2
case of this.

Here is the promised abstraction of reflection group: a groupW is called aCoxeter
groupif it admits a presentation (6) with respect to some finiteS, where themi j ∈ Z

≥1∪{∞}

satisfy the rules following (6). Sometimes the dependency on the relationsS is emphasized
and (W,S) is called a Coxetersystem.

We want the new concept to cover all the examples we have seen so far in this section,
including the affine group in Example 2.3 where the elements1s0 had infinite order. This is
why in the definition of Coxeter group the conditions on themi j are relaxed to allow them
to be infinite. A relation (si sj)mi j = 1 is omitted from the presentation whenmi j = ∞.

There is a standard shorthand for a Coxeter presentation (6)called the Coxeter symbol.
This is a graph with nodes thesi ∈ S, and where nodessi and sj are joined by an edge
labeledmi j if mi j ≥ 4, an unlabeled edge ifmi j = 3 and no edge whenmi j = 2:

mi j = 2 mi j = 3

mi j

mi j ≥ 4

The examples from§1 and Example 2.3 are then:

s1

s2

s1 s2

s0 s1

∞

s0 s1

Remark 2.1. What is the relationship between the concrete reflection groups defined at the
beginning of this section and the abstract Coxeter groups defined at the end? The answer
is that the Coxeter groups arediscretereflection groups: for a Coxeter system (W,S) one
can construct a faithful representation (W,S)→ GL(V) for some vector spaceV, where the
s ∈ S act onV as reflections, and the image of (W,S) is a discrete subgroup ofGL(V).
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3. Chamber Systems and Coxeter Complexes

We have seen several examples of sets of chambers with different kinds of adjacency
between them. This section introduces the formalization ofthis idea: chamber systems.

A chamber systemover a finite setI is a set∆ equipped with equivalence relations∼i ,
one for eachi ∈ I . Thec ∈ ∆ are thechambersand two chambers arei-adjacentwhen
c ∼i c′.

The generic picture to keep in mind is below where chambers are i-adjacent if they
share a commoni-labeled edge. Thus,c0 ∼1 c1, c0 ∼2 c2, etc.

12

3

c0

c1c2

c3

A gallery in a chamber system∆ is a sequence of chambers

c0 ∼i1 c1 ∼i2 · · · ∼ik ck (7)

with c j−1 andc j i j-adjacent andc j−1 , c j . The last condition is a technicality to help with
the accounting. We say that the gallery (7) has typei1i2 . . . ik, and writec0 → f ck where
f = i1i2 . . . ik. If J ⊆ I then aJ-gallery is a gallery of typei1i2 . . . ik with the i j ∈ J.

A subset∆′ ⊆ ∆ of chambers isJ-connectedwhen any twoc, c′ ∈ ∆′ can be joined by
a J-gallery that is contained in∆′. The J-residuesof ∆ are theJ-connected components
and they haverank |J|. Thus the chambers themselves are the rank 0 residues. The rank 1
residues are the equivalence classes of the equivalence relations∼i asi runs throughI . Call
these rank 1 residues thepanelsof ∆. The chamber system itself has rank|I |.

A morphismα : ∆ → ∆′ of chamber systems (both over the same setI ) is a map of
the chambers of∆ to the chambers of∆′ that preservesi-adjacence for alli: if c ∼i c′ in ∆
thenα(c) ∼i α(c′) in ∆′. An isomorphismis a bijective morphism whose inverse is also a
morphism.

Example 3.1. The local picture from§1 (below left) is a chamber system overI = {1, 2},
with chambers the edges, and two chambersi-adjacent when they share a commoni-labeled
vertex. The{i}-residues, or panels, are the pairs of edges having ai-labeled vertex in
common; in particular each panel contains exactly two chambers and there is a one-one
correspondence between the panels and the vertices:

{2}-residue or panel1

2

1

2

1

2

2

2

2

1

3

1

1

123

23

1

11

23

23

The example above right has chambers the 2-simplicies,I = {1, 2, 3}, and two chambers
i-adjacent when they share a commoni-labeled edge. The six highlighted 2-simplicies are
a {2, 3}-residue and the pair of 2-simplicies a{1}-residue or panel (so again, each panel con-
tains two chambers). The six chambers in the rank 2 residue have a single common vertex
at their center, and there is a one-one correspondence between the rank 2 residues and the
vertices; similarly there is a one-one correspondence between the panels and the edges. So
the chambers are the maximal dimensional simplicies and theresidues correspond to the
lower dimensional ones. We will return to this point below.
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Example 3.2 (flag complexes).Generalizing the example of§1, letV be ann-dimensional
vector space over a fieldk. A flag is a sequence of subspacesVi0 ⊂ · · · ⊂ Vik with Vi j a
proper subspace ofVi j+1. Let ∆ be the chamber system overI = {1, . . . , n − 1} whose
chambers are themaximalflagsV1 ⊂ · · · ⊂ Vn−1 with dimVi = i, and where

(V1 ⊂ · · · ⊂ Vn−1) ∼i (V′1 ⊂ · · · ⊂ V′n−1)

whenV j = V′j for j , i, i.e. any difference between the maximal flags occurs only in
the i-th position. The chambers in the panel (or{i}-residue) containingV1 ⊂ · · · ⊂ Vn−1

correspond to the 1-dimensional subspaces of the 2-dimensional spaceVi+1/Vi−1. If k is
finite of orderq then each panel thus containsq + 1 chambers; ifk is infinite then each
panel contains infinitely many chambers.

Example 3.3 (Coxeter complexes).In §2 we defined chambers, panels andi-adjacence
for a finite reflection groupW acting on a Euclidean space: the chambers were in one-one
correspondence with the elements ofW via g↔ gc0 (c0 a fixed fundamental chamber), and
gc0 andg′c0 werei-adjacent wheng′ = gsi .

Now let (W,S) be a Coxeter system withS = {si}i∈I . TheCoxeter complex∆W is the
chamber system overI with chambers the elements ofW and

g ∼i g′ if and only if g′ = gsi in W. (8)

Thusg ∼i gsi and alsogsi ∼i gsi si = g. The{i}-panel containingg is thus{g, gsi}, so each
panel contains exactly two chambers (which can be thought ofas lying on either side of the
panel). This is the picture the geometry was giving us in§2. A gallery in∆W has the form

g ∼i1 gsi1 ∼i2 gsi1 si2 ∼ · · · ∼ik gsi1 si2 . . . sik .

If f = i1i2 . . . ik andsf = si1 si2 . . . sik , then there is a galleryg → f g′ in ∆W exactly when
g′ = gsf in W.

If si , sj ∈ S then starting at the chamberg we can set off in the two directions given by
the galleries:

g ∼i gsi ∼ j gsi sj ∼i gsi sj si · · · and g ∼ j gsj ∼i gsj si ∼ j gsj si sj · · ·

If the order ofsi sj is finite, then (si sj)mi j = 1 is equivalent to the relation

si sj si · · · = sj si sj · · · ,

where there aremi j symbols on both sides, so the two galleries above, despite starting out
in opposite directions, nevertheless end up at the same place: the chambergsi sj si · · · =

gsj si sj · · · . Thus the{i, j}-residues in∆W are circuits containing 2mi j chambers whensi sj

has finite order. If the order is not finite then the residue is an infinitely long line of cham-
bers stretching in “both directions” fromg. The two Coxeter groups from the end of§2
have Coxeter complexes illustrating both these phenomena:

1

2

1

2

1

2

1s1

s2s1s2

s2s1s1s2s1 = s2s1s2 s1 s2

1 0 1 0 1 0 1

s0s1s0 s0s1 s0 1 s1 s1s0

s0 s1

∞
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Aside. In all our pictures of chamber systems, the chambers, panelsand lower dimensional
cells have been simplicies. It turns out that chamber systems are particularly nice exam-
ples of simplicial complexes where the chambers are the maximal dimensional simplicies.
Moreover in all the chamber systems arising in these lectures there is a correspondence
between the lower dimensional simplicies and the residues.

To see why, recall that an abstract simplicial complexX with vertex setV is a collection
of subsets ofV such that

(a).σ ∈ X andτ ⊂ σ⇒ τ ∈ X and (b).{v} ∈ X for all v ∈ V.

A σ = {v0, . . . , vk} is a k-simplex of the simplicial complexX. The empty set∅ is by
convention the unique simplex of dimension−1.

Now let∆ be a chamber system overI and letV be the set of residues of rank|I | − 1
(recall that there is only one residue of rank|I |, namely∆ itself). Then letX∆ be the
simplicial complex with vertex setV and such that ifR0, . . . ,Rk are rank|I | − 1 residues
then

σ = {R0, . . . ,Rk} is ak-simplex ofX∆ ⇔
⋂

Ri , ∅.

In other words,X∆ is thenerveof the covering of∆ by rank|I | −1 residues. Take the empty
intersection to be the union

⋃

V Ri , and observe that the maximum dimension a simplex can
have is|I | − 1.

If ∆ is the flag complex chamber system of Example 3.2 with chambers the maximal
flags, then thek-simplicies ofX∆ correspond to the flagsVi0 ⊂ · · · ⊂ Vik containingk + 1
subspaces.

We illustrate with the Coxeter complex∆W of the Coxeter system (W,S) with the sym-
bol shown below left. Some elements ofW have been written down in a suggestive pattern,
grouped into three rank 2 residues. The simplicial complexX∆ acquires a 2-simplex from
these residues as any two intersect in a residue of rank 1 and all three intersect in a residue
of rank 0. In factXW is the infinite tiling of the plane from Example 3.1:

s1

s2

s3

(W,S)

s1s3

s1s2 1

s1 s3

s3s1

s1s3s1s1s3s2

s1s2s3

s1s2s3s2

s2s1s2s1

s2s1

{1, 3}-residue{2, 3}-residue

{1, 2}-residue

∆W

X∆

It would seem from this example that ifR0, . . . ,Rk are rank|I | − 1 residues overJ0, . . . , Jk

with
⋂

Ri , ∅, then
⋂

Ri is a residue over
⋂

Ji . In fact this is always true for a Coxeter
complex and indeed any building, although not for an arbitrary chamber system. As

⋂

Ji

has|I | − (k+ 1) elements, there is a one-one correspondence between the simplicies ofX∆
and the residues of∆:

codimensionℓ simpliciesσ = {R0, . . . ,Rm} ↔ residues
m
⋂

i=0

Ri of rankℓ,

wherem = |I | − (ℓ + 1). So for buildings the chambers of a chamber system∆ are the top
dimensional simplicies ofX∆, with the lower dimensional simplicies given by the residues.
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Returning to the general discussion, we now have all the properties of chamber systems
that we need. We finish the section by defining aW-valued metric on a Coxeter complex
∆W.

If (W,S) is a Coxeter system andf = i1i2 . . . ik with sf = si1 si2 . . . sik , then we have
seen that there is a galleryg→ f g′ in ∆W exactly wheng′ = gsf in W. Call such a gallery
minimal if there is no gallery in∆W from g to g′ that passes through fewer chambers. Call
an expressionsf = si1 si2 . . . sik reducedif there is no expression inW for sf involving
fewers’s (counted with multiplicity). Thus a galleryg→ f g′ is minimal if and only if the
expressionsf is reduced.

DefineδW : ∆W × ∆W →W by δW(g, g′) = g−1g′. Then

δW(g, g′) = sf ⇔ g′ = gsf ⇔ there is a galleryg→ f g′. (9)

Moreover,δW(g, g′) is reduced if and only if the galleryg → f g′ is minimal. A slight
relaxation will define the metric on an arbitrary building. Here are two examples, one of
which is our running one:

1

2

1

2

1

2

g′ = s2g = s1s2

s1 s2

δW(g, g′) = s2s1s2 (= s1s2s1)

2 3 1

123

23 1

3

3
g

g′

δW(g, g′) = s2s3s2s1s3 (= s3s2s1s3s1 = etc)

s1

s2

s3

Another way to draw chamber systems.A chamber system overI can be drawn as a graph
whose edges are “coloured” byI . The vertices of the graph are the chambers, and two
vertices are joined by an edge labeledi ∈ I iff the corresponding chambers arei-adjacent.
These graphs are essentially the 1-skeletons of the duals ofour simplicial complexes. If
∆W is the Coxeter complex of the Coxeter system (W,S) then this graph is the Cayley
graph ofW with respect to the generating setS. Figure 4 (left) shows the graph for the
local picture of the flag complex of a four dimensional space of Figure 3 (or the Coxeter
complex of ) and (right) the graph for the Coxeter complex of the group
of symmetries of the dodecahedron (with Coxeter symbol 5 ).

4. Buildings and Apartments

Let (W,S) be a Coxeter system withS = {si}i∈I . A building of type(W,S) is a chamber
system∆ overI such that:

(B1). every panel of∆ contains at least two chambers;

(B2). ∆ has aW-valued metricδ : ∆ × ∆ → W such that ifsf = si1 . . . sik is a reduced
expression inW then

δ(c, c′) = sf ⇔ there is a galleryc→ f c′ in ∆.

Example 4.1 (Coxeter complexes).There is at least one building for every Coxeter sys-
tem (W,S), namely the Coxeter complex∆W with δ = δW in (9), hence (B2). For (B1) we
observed in Example 3.3 that the panels in∆W have the form{g, gs} for g ∈ W ands ∈ S.
Such a building, where each panel has the minimum possible number of chambers, is said
to bethin. It turns out that the thin buildings are precisely the Coxeter complexes.

13



Figure 4: Chamber systems as edge coloured graphs. The localpicture for the flag complex of a four dimensional
space(left) and the Coxeter complex of the group of symmetries of a dodecahedron(right). Both are chamber
systems overI = {1, 2,3}.

Example 4.2 (a spherical building of type ). For (W,S) hav-
ing this symbol (n− 1 vertices) we put aW-valued metric on the flag complex of Example
3.2. First identify (W,S) with Sn as in§2, with si 7→ (i, i + 1) for 1≤ i ≤ n− 1. Let

c = (V1 ⊂ · · · ⊂ Vn−1) andc′ = (V′1 ⊂ · · · ⊂ V′n−1)

be chambers and writeV0 = V′0 = 0, Vn = V′n = V. We can defineδ(c, c′) ∈ Sn using the
filtration of V′i /V

′
i−1 of §1 in the obvious way. Alternatively, for 1≤ i ≤ n, let

π(i) = min{ j |V′i ⊂ V′i−1 + V j}

and defineδ(c, c′) = π. We show that we have a building (when dimV = 3) at the end of
this section.

Example 4.3 (an affine building of type ∞ ). An affine building has type (W,S)
an affine reflection group as in Example 2.3. Taking this example, with S = {s0, s1} and

Coxeter symbol ∞ , let ∆ be the chamber system overI = {0, 1} shown below –
an infinite 3-valent tree. The edges are the chambers, and twochambers are 0-adjacent
when they share a common black vertex and 1-adjacent when they share a common white
vertex. Each panel thus contains three chambers, hence (B1). The Coxeter complex∆W is
in Example 3.3 (also a tree).

= 0-adjacent

= 1-adjacent

∆
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To define theW-metric on∆ recall that in a tree there is a unique path between chambers
without “backtracking”: a backtrack is a path that crosses an edge and then immediately
comes back across the edge again. For chambersc, c′ ∈ ∆, match this unique path between
c andc′ with the same path starting at 1 in the Coxeter complex∆W:

unique path

∆

∆W
1 g

c c′

and defineδ(c, c′) to be the resultingg. To see (B2), letδ(c, c′) = g ∈ W and suppose that
g = sj1 . . . sjℓ . Then by (9) there is a gallery in∆W from 1 tog of type j1 . . . jℓ. As∆W is also
a tree this gallery differs from the unique minimal one only by backtracks. First transfer
this minimal gallery to∆ to get the minimal gallery fromc to c′, and then transfer the
backtracks to obtain a gallery of typej1 . . . jℓ from c to c′. Conversely if there is a gallery
from c to c′ of type j i . . . jℓ with sj1 . . . sjℓ reduced, then in particular no two consecutive
s’s are the same and so the gallery has no backtracks. Thus it istheunique minimal gallery
from c to c′ giving δ(c, c′) = sj1 . . . sjℓ by definition.

In a Coxeter complex we haveδW(c, c′) = si1 . . . sik if and only if there is a gallery of
type i1 . . . ik from c to c′, but in an arbitrary building there is the extra condition that the
word si1 . . . sik be reduced. We can see why in the example above: if there is a gallery of
type i1 . . . ik from c to c′ with si1 . . . sik not reduced, thenδ(c, c′) need not necessarily be
si1 . . . sik . For example, if we have three adjacent chambers:

c

c′

f=1 f ′=11

then there is a gallery of type 1 fromc to c′ with s1 reduced, henceδ(c, c′) = s1. The
non-reduced galleryc→11 c′ does not giveδ(c, c′) = s1s1, ass1s1 = 1 , s1.

Examples 4.2-4.3 are our first ofthick buildings: one where every panel contains at
least three chambers. “Thick” is generally taken to be synonymous with interesting.

It turns out that there are quite naturally arising Coxeter groups for which there are
no thick buildings. One such example is the group of reflectional symmetries of a regular
dodecahedron having symbol 5 .

In §1 (as well as Example 4.3) we defined theW-metricδ by situating a pair of chambers
c, c′ inside a copy of the Coxeter complex∆W and transferring the metricδW defined in (9).
We need to see that this process is well defined – although thisis obvious in Example 4.3
– and that the resultingδ satisfies (B2). This leads to an alternative definition of building
(Theorem 4.2 below) based on this idea of definingδ locally.

Let (∆, δ) and (∆′, δ′) be buildings of type (W,S) andX ⊂ (∆, δ),Y ⊂ (∆′, δ′) be subsets.
A morphismα : X → Y is anisometrywhen it preserves theW-metrics: for all chambers
c, c′ in X we haveδ′(α(c), α(c′)) = δ(c, c′). A simple example is ifg0 ∈ W, theng 7→ g0g
is an isometry∆W → ∆W.

The following result guarantees the existence of copies of the Coxeter complex in a
building:
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Theorem 4.1. Let ∆ be a building of type(W,S) and X a subset of the Coxeter complex
∆W. Then any isometry X→ ∆ extends to an isometry∆W → ∆.

An apartmentin a building∆ of type (W,S) is an isometric image of the Coxeter com-
plex∆W, i.e. a subset of the formα(∆W) for α : ∆W → ∆ some isometry. Apartments are
precisely the local pictures we saw in§1.

We are particularly interested in the following two consequences of Theorem 4.1:

Any two chambersc, c′ lie in some apartmentA. (10)

(If δ(c, c′) = g ∈ W, thenX = (1, g) ⊂ ∆W 7→ (c, c′) ⊂ ∆ is an isometry. It extends by
Theorem 4.1 to an isometry∆W → ∆ and hence an apartment containingc, c′.) So the
W-metric on∆ can be recovered from the metric on the Coxeter complex; moreover, the
metrics on overlapping Coxeter complexes agree on the overlaps:

If chambersc, c′ ∈ A andc, c′ ∈ A′ then there is an isometryA→ A′ fixing A∩ A′. (11)

(We leave this to the reader with the following hints: use theapartments to get an isometry
A→ A′ fixing a chamberc0 ∈ A∩ A′; then show that every chamber in the intersection is
fixed by showing that in an apartment there is a unique chambera givenW-distance from
c0.)

It turns out that any chamber system covered by sufficiently many Coxeter complexes
in a sufficiently nice way so that (10) and (11) hold can be madeinto a building by patching
together the local metrics on the Coxeter complexesala §1.

To formulate this properly we need to replace isometries by maps not involving metrics.
Let ∆,∆′ be chamber systems over the same setI . We leave it as an exercise to show that
(i). α : (∆, δ)→ (∆′, δ′) is an isometry of buildings if and only ifα : ∆→ ∆′ is an injective
morphism of chamber systems, and (ii).α is a surjective isometry of buildings if and only
if α an isomorphism of chamber systems.

Theorem 4.2. Let (W,S) be a Coxeter system with S= {si}i∈I and∆ a chamber system
over I. Suppose∆ contains a collection{Aα} of sub-chamber systems over I, called apart-
ments, with each subsystem isomorphic (as a chamber system)to the Coxeter complex∆W.
Suppose also that

(B1′). any two chambers c, c′ of∆ are contained in some apartment A, and

(B2′). if chambers c, c′ ∈ Aα and ∈ Aβ, then there is an isomorphism Aα → Aβ fixing
Aα ∩ Aβ.

Defineδ : ∆ × ∆ → W byδ(c, c′) = δW(α(c), α(c′)) whereα : ∆W → A is an isomorphism
with c, c′ ∈ A. Then(∆, δ) is a building of type(W,S).

Example 4.4 (the flag complex of§1 revisited). The chamber system structure on the flag
complex∆ of §1 was given there (and in Example 3.2, where we saw that∆ is thick). If
L1, L2, L3 are lines inV spanned by independent vectors, then we get a hexagonal configu-
ration as in§1. Let the apartments be all the hexagons obtained in this way. If c = V1 ⊂ V2

andc′ = V′1 ⊂ V′2 are chambers, then they can be situated in an apartment by extending
V1,V′1 to a setL1, L2, L3 of independent lines. IfV1 , V′1, V2 , V′2 andV2∩V′2 is a line dif-
ferent fromV1,V′1 as for thec, c′ of §1, then this extension is unique, soc, c′ lie in a unique
apartment. Otherwise (e.g. ifV2 ∩V′2 is one ofV2 or V′2) there is some choice. In any case,
if L1, L2, L3 andL′1, L

′
2, L
′
3 are two such extensions corresponding to apartmentsAα,Aβ con-

tainingc, c′, then anyg ∈ GL(V) with g(Li) = L′i induces an isomorphismAα → Aβ that
fixesAα ∩ Aβ.
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〈e1, e3〉

〈e2, e3〉〈e1, e2〉

〈e1〉

〈e2〉

〈e2〉

c0

Figure 5: ApartmentA0

5. Spherical Buildings

So far our supply ofthick buildings is a little disappointing: only the flag complex of
§1 and the affine building of Example 4.3. In this section we considerably increase the
library by extracting a building from the structure of a reductive algebraic group. These
guys really are the motivating examples of buildings.

Call a building of type (W,S) sphericalwhen the Coxeter system (W,S) is spherical (i.e.
finite). It turns out that there is a uniform construction of alarge class of thick spherical
buildings. To motivate this we reconstruct the flag complex building ∆ of §1 inside the
general linear groupG = GL(V) � GL3(k).

First, letP ⊂ G be the subgroup of permutation matrices – those matrices with exactly
one 1 in each row and column and all other entries 0; alternatively, theaπ =

∑

j eπ j, j, where
π ∈ S3 andei j is the 3× 3 matrix with a 1 in thei j -th position and 0’s elsewhere. The map
π 7→ aπ is an isomorphismS3→ P with

s1 = (1, 2) 7→





















0 1 0
1 0 0
0 0 1





















ands2 = (2, 3) 7→





















1 0 0
0 0 1
0 1 0





















. (12)

For the rest of this section we will blur the distinction between the symmetric groupS3,
the group of permutation matricesP, and the Coxeter system (W,S) with the symbol

.
Assume for the moment that:

(G1). The action ofG on the flag complex∆ given bya : V1 ⊂ V2 7→ aV1 ⊂ aV2 for
a ∈ G, is by chamber system isomorphisms (hence via isometries bythe comments
immediately prior to Theorem 4.2).

(G2). Fix g ∈ (W,S) and let X(g) = {(c, c′) ∈ ∆ × ∆ | δ(c, c′) = g}. Then for anyg
the diagonal actiona : (c, c′) 7→ (ac, ac′) of G on X(g) is transitive (thusG acts
transitively on the ordered pairs of chambers a fixedW-distance apart).

(G3). Let A0 ⊂ ∆ be the apartment given by the linesLi = 〈ei〉 with {e1, e2, e3} the usual
basis forV, andc0 the chamber〈e1〉 ⊂ 〈e1, e2〉 – see Figure 5. ThenP acts onA0.
Moreover, the isometry∆W → A0, g 7→ gc0 is equivariant with respect to the (W,S)-

actiong
g0
7→ g0g on the Coxeter complex∆W and theP-action on the apartmentA0

(thus, the (W,S)-action on∆W is the same as theP-action onA0).

These three allow us to reconstruct the chambers, adjacencyandS3-metric of∆ insideG:

Reconstructing the chambers of∆ in G. For a ∈ G we haveac0 = c0 with c0 = 〈e1〉 ⊂

〈e1, e2〉, exactly when

a ∈ B :=







































• • •

0 • •

0 0 •





















∈ G



















,
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the subgroup of upper triangular matrices. It is easy to showthat (G2) is equivalent to
(G2a): theG-action on∆ is transitive on the chambers, and (G2b): for anyg ∈ (W,S) the
action of the subgroupB is transitive on the chambersc such thatδ(c0, c) = g.

Combining (G2a) with the fact that the chamberc0 has stabilizerB, we get a 1-1 corre-
spondence between the chambers of∆ and the left cosetsG/B:

chambersac0 ∈ ∆ oo
1-1

// cosetsaB∈ G/B.

Reconstructing the i-adjacency.Let c1, c2 ∈ ∆ be 1-adjacent chambers:c1 = V1 ⊂ V2 and
c2 = V′1 ⊂ V2, and letci = aic0 with theai ∈ G. Thena−1

1 a2 stabilizes the subspace〈e1, e2〉,
hence

a−1
1 a2 ∈







































• • •

• • •

0 0 •





















∈ G



















. (13)

The reader can show that fors1 the permutation matrix in (12), the subgroup of matrices in
(13) is the disjoint unionB〈s1〉B := B∪ Bs1B, whereBaB= {bab′ | b, b′ ∈ B} is a double
coset. Thus, if we are to replace the chambersc1, c2 by the cosetsa1B, a2B, then we need
to replacec1 ∼1 c2 by a−1

1 a2 ∈ B〈s1〉B. Similarly

c1 ∼2 c2 exactly when theci = aic0 with a−1
1 a2 ∈







































• • •

0 • •

0 • •





















∈ G



















= B〈s2〉B.

Reconstructing theS3-metricδ. Let c1, c2 ∈ ∆ be chambers withci = aic0. Suppose that
δ(c1, c2) = g ∈ (W,S). As G is acting by isometries (G1), we haveδ(c0, a−1

1 a2c0) = g. In
the Coxeter complex∆W we have by (9) thatδW(1, g) = g, so that by (G3),δ(c0, gc0) = g
also. Thus by (G2b) there is ab ∈ B with (bc0, bgc0) = (c0, a−1

1 a2c0), so in particular,
bgc0 = a−1

1 a2c0. As the elements ofG sendingc0 to bgc0 are precisely the cosetbgB, we
geta−1

1 a2 ∈ bgB⊂ BgB.
Conversely, ifa−1

1 a2 ∈ BgBthen

δ(c1, c2) = δ(a1c0, a2c0) = δ(c0, a
−1
1 a2c0) = δ(c0, bgb′c0) = δ(c0, bgc0),

for someb ∈ B, and so

δ(c0, bgc0) = δ(bc0, bgc0) = δ(c0, gc0) = δW(1, g) = g,

(the first asB stabilizesc0, the second by (G1) and the third by (G3)). We conclude that

δ(c1, c2) = g ∈ (W,S) if and only if a−1
1 a2 ∈ BgB.

Summarizing, let the left cosetsG/B be a chamber system overI = {1, 2} with ad-
jacency defined bya1B ∼i a2B iff a−1

1 a2 ∈ B〈si〉B andS3-metric δ(a1B, a2B) = g iff
a−1

1 a2 ∈ BgB. ThenG/B is a building of type , isomorphic to the flag complex of
§1.

We leave it to the reader to show that the assumptions (G1)-(G3) hold (hint: for (G2)
with δ(c1, c2) = δ(c′1, c

′
2), situatec1, c2 in a hexagon as in§1 andc′1, c

′
2 similarly. Then use

the fact thatGL(V) acts transitively on ordered bases ofV).
We are feeling our way towards a class of groups in which we canmimic this recon-

struction of the flag complex. It turns out to be convenient toformulate the class abstractly
first, and then bring in the natural examples later.

A Tits systemor BN-pair for a groupG is a pair of subgroupsB andN of G satisfying
the following axioms:

(BN0). B andN generateG;
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(BN1). the subgroupT = B∩ N is normal inN, and the quotientN/T is a Coxeter system
(W,S) for someS = {si}i∈I ;

(BN2). for everyg ∈W ands ∈ S the product of double cosets3 BsB·BgB⊂ BgB
⋃

BsgB;

(BN3). for everys ∈ S we havesBs, B.

The groupW is called theWeyl groupof G, and is in general not finite.

Example 5.1. G = GLn(k); B = the upper triangular matrices inG; N = the monomial
matrices inG (those having exactly one non-zero entry in each row and column),

T = {diag(t1, . . . , tn) | t1 . . . tn , 0},

andW = the permutation matrices with

si =







































































1

1
0 1
1 0

1

1







































































for i ∈ {1, . . . , n − 1}, where the number of 1’s on the diagonal before the 2× 2 block is
i − 1. Let ei be then-column vector (0, . . . , 1, . . . , 0)T with the 1 in thei-th position and
Li = {tei | t ∈ k}. ThenN permutes the set of lines{L1, . . . , Ln} andW is isomorphic to the
symmetric group on this set (hence� Sn). This example is misleadingly special in that the
extension 1→ T → N → W→ 1 splits, so that the Weyl groupW can be realised, via the
permutation matrices, as a subgroup ofG. In general this doesn’t happen.

Theorem 5.1. Let G be a group with a BN-pair and let∆ be a chamber system over I with
chambers the cosets G/B and adjacency defined by a1B ∼i a2B iff a−1

1 a2 ∈ B〈si〉B. Define
a W-metric byδ(a1B, a2B) = g ∈W iff a−1

1 a2 ∈ BgB. Then(∆, δ) is a thick building of type
(W,S).

Example 5.2. G = the symplectic groupSp2n(k) = {g ∈ GL2n(k) | gTJg= J} where

J =

(

0 In

−In 0

)

,

with In the n × n identity matrix; B = the upper triangular matrices inSp2n(k); N = the
monomial matrices inSp2n(k), and

T = {diag(t1, . . . , tn, t
−1
1 , . . . , t

−1
n ) | ti , 0}.

Let {e1, . . . , en, e1, . . . , en} be 2n-column vectors (0, . . . , 1, . . . , 0)T with the 1 in thei-th
position forei and the (i + n)-th position forei . Let Li = {tei | t ∈ k} andLi = {tei | t ∈ k},

writing L = L. ThenN permutes the set{L1, . . . , Ln, L1, . . . , Ln} andW is isomorphic to the
“signed” permutationsS±n = {π ∈ S2n | π(Li) = π(Li)}.

3A g ∈ W is not an element ofG but a cosetgT for some representative ing ∈ N for g. AsT ⊂ B, if g1T = g2T
thenBg1B = Bg2B, so we can unambiguously writeBgBto meanBgB.
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A0

L1L2

L1 L2

L1 + L2

L1 + L2

L1 + L2L1 + L2

Figure 6: The spherical building of the symplectic groupSp4(F2) and apartmentA0.

This can be reformulated geometrically as follows. LetV be a 2n-dimensional space
overk and (u, v) a symplectic form onV – a non-degenerate alternating bilinear form4. Let
O(V) be those linear maps preserving the form, i.e.O(V) = {g ∈ GL(V) | (g(u), g(v)) =
(u, v) for all u, v ∈ V}. The form can be defined on a basis{e1, . . . , en, e1, . . . , en} by

(ei , ej) = 0 = (ei , ej) and (ei , ej) = δi j = −(ej , ei),

so thatO(V) � Sp2n(k). Call a subspaceU ⊂ V totally isotropic if (u, v) = 0 for all u, v ∈ U.
It turns out that the maximal totally isotropic subspaces are n-dimensional. A (maximal)
flag in V is a sequence of totally isotropic subspacesV1 ⊂ · · · ⊂ Vn with dimVi = i. Let∆
be the chamber system with chambers these flags and adjacencies overI = {1, . . . , n} as in
the flag complex of Example 3.2: (V1 ⊂ · · · ⊂ Vn) ∼i (V′1 ⊂ · · · ⊂ V′n) whenV j = V′j for
j , i. Let c0 be the chamber

〈e1〉 ⊂ 〈e1, e2〉 ⊂ · · · ⊂ 〈e1, e2, . . . , en〉

andA0 the set of images ofc0 under the signed permutationsS±n = {π ∈ S2n | π(ei) = π(ei)}
(writing e = e). Finally, let{Aα} be the set of images ofA0 underSp2n(k). Then this set of
apartments∆ gives a building isomorphic to the spherical building ofSp2n(k) arising from
Theorem 5.1 and Example 5.2.

We finish where we started by drawing a picture. LetV be four dimensional over
the field of order 2 and equipped with symplectic form (u, v). Let ∆ be the graph with
vertices the proper non-trivial totally isotropic subspaces ofV, with an edge connecting
the (white) one dimensional vertexVi to the (black) two dimensional vertexV j whenever

4Alternating means (u, u) = 0 for all u, and non-degenerate thatV⊥ = {0}.
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Vi is a subspace ofV j. Any one dimensional subspace (of which there are 15) is totally
isotropic, and is contained in 3 two dimensional totally isotropic subspaces, each of which
in turn contains 3 one dimensional subspaces. There are thus15 two dimensional vertices.
The local pictures/apartments are octagons (or barycentrically subdivided diamonds). The
apartmentA0 above has white verticesL1, L2, L1, L2, using the notation of Example 5.2,
and black verticesL1 + L2, L1 + L2, L1 + L2 andL1 + L2. See Figure 6.

Remark 5.1. Examples 5.1 and 5.2 are of classical groups of matrices. This can be gener-
alized. Letk = k be algebraically closed andG a connected algebraic group defined over
k. Suppose also thatG is reductive, i.e. that its unipotent radical is trivial. Let B be a Borel
subgroup (a maximal closed connected soluble subgroup) andT ⊂ B a maximal torus – a
subgroup isomorphic to (k×)m for somem. Finally, letW = N/T be the Weyl group ofG,
whereN is the normalizer inG of T. This is isomorphic to afinite Coxeter group (W,S)
with S = {si}i∈I . The result is aBN-pair forG. For a general non-algebraically closedk a
BN-pair can still be extracted fromG, but one has to tread more carefully.

Notes and References

As mentioned in the Introduction, most of what we have said has its origins in the
work of Tits, and we start by listing his (many) original contributions. Coxeter groups as a
notion first appeared in his 1961 mimeographed notes,Groupes et ǵeoḿetries de Coxeter.
These were reproduced in [7, pages 740–754]. The name is a homage to [8]. The Bourbaki
volume [2] dealing with Coxeter groups was produced after “numerous conversations” with
Tits. Buildings as simplicial complexes go back to the very beginnings of the subject, but
the first complete account can be found in [20]. Buildings as chamber systems with aW-
metric have their origins in [23]. The earliest reference toBN-pairs that we could find in
Tits’s work is in [18]; they start to prove an essential tool in [19].

Section 1.This is mostly folklore. The reader is to be minded of projective geometry as
∆ is the incidence graph of the standard projective plane overk. The ad-hoc argument
(essentially the Jordan-Hölder Theorem) for associatingthe permutation (1, 3) to the pair
of chambers is from [1,§4.3].

Section 2.Standard references on reflection groups and Coxeter groupsare [2] (still the
only place you can find some things), [12] and [13]. The definition of reflection in (2) is
from [2, V.2.2]. ThatH consists of all the reflecting hyperplanes ofW is [12, Proposition
1.14]. The general theory of finite reflection groups, including their classification, can be
found in Chapters 1 and 2 of [12]. Example 2.3, although fairly standard, is taken from
[1, §2.2.2]. The general theory of affine groups is in [12, Chapter4]. For the hyperboloid
or Minkowski model of hyperbolic space, hyperbolic lines, etc, see [14, Chapter 3]. The
standard reference on hyperbolic reflection groups is [24].The treatment of chambers,
panels and adjacency is taken from [1,§1.1.4]. ThatW acts regularly on the chambers is
[12, Theorem 1.12]. Fact 1 is [12, Theorem 1.5] and Fact 2 is [12, Theorem 1.9]. For the
general theory of Coxeter groups see [12, Chapter 5]. The representation (W,S)→ GL(V)
described in Remark 2.1 is called the geometric or reflectional or Tits representation, and
is one of the crucial results of [7]. See [12,§5.3] for its definition; faithfulness is [12,
Corollary 5.4] or [1, Theorem 2.59] (where it is also shown that the image inGL(V) of
(W,S) is discrete).

Section 3.Apart from the aside, this section is based mainly on Chapters 1-2 of [15]; the
initial chamber system notions and Example 3.2 are directlyfrom [15,§1.1]. Chapter 2 of
this book is entirely devoted to Coxeter complexes. A thorough exploration of the general
connections between chambers systems and simplicial complexes is given in [1, Appendix
A]. The building specific set-up is in [1,§5.6]. The construction of the simplicial complex
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X∆ as the nerve of the covering by rank|I | − 1 residues is [1, Exercise 5.98]. The statement
about the intersection of residues being a residue is [1, Exercise 5.32]. The edge coloured
graph way of viewing chamber systems is a point of view adopted in [25].

Section 4.This section is based on Chapter 3 of [15] from which the definition of building
is taken. That the Coxeter complexes comprise the thin buildings is from [15,§3.2]. The
alternative definition of the permutation associated to a pair of chambers of a flag complex
in Example 4.2 is taken from [25, Example 7.4]. The infinite 3-valent tree of Example 4.3
is an example of a building that does not have much structure as a combinatorial object.
Nevertheless it can be constructed in an interesting way from a vector space over a field
with a discrete valuation (and as such is an important special case of the Bruhat-Tits theory
[6]) in the following way. LetK be a non-archimedean local field with residue fieldk and
valuation ringA (for exampleK is thep-adicsQp with k = Z/pZ andA thep-adic integers).
If V is a 2-dimensional vector space overK, then a latticeL ⊂ V is a freeA-module of rank
2. Consider the equivalence classesΛ of lattices under the relationL ∼ Lx for x ∈ K×,
and let∆ be the graph with vertices these classes and an edge joiningΛ,Λ′ iff there are
L ∈ Λ, L′ ∈ Λ′ with L′ ⊂ L andL/L′ � k. Then∆ is a tree, and Example 4.3 is the case
wherek has two elements (K = Q2 for example). See [17, II.1.1] for details. In general
there is a construction that extracts aBN-pair, and an affine building, from an algebraic
group defined over such aK, and Example 4.3 is such an affine building forSL2Q2. For
affine buildings in general see [26]. The fact that the affine building for SL2Qp is a tree
was used by Serre to reprove a theorem of Ihara that a torsion free lattice inSL2Qp is a free
group. A theorem of Walter Feit and Graham Higman [10] has consequence that a finite
thick building has type (W,S) a finite reflection group where each irreducible component
of W is of typeAn, Bn/Cn,Dn,E6,E7,E8, F4,G2 or I2(8) (see [1, Theorem 6.94]; see [12,
Chapter 2] for a description of these types of finite reflection group). Hence there can be
no finite thick buildings of type the symmetry group of the dodecahedron, for which (W,S)
has typeH3. That there are noinfinite thick buildings of typeH3 is shown in [22]. Theorem
4.1 is [15, Theorem 3.6] and Theorem 4.2 is [15, Theorem 3.11]. Prior to [23] axioms (B1′)
and (B2′) of Theorem 4.2 provided the standard definition of building.

Section 5.This section is based on [15, Chapter 5]. Properties (G1)-(G3) are the spe-
cialization toGL3 of a strongly transitive group action [15,§5.1]. The argument that re-
constructs theW-metric is taken from the proof of [15, Theorem 5.2]. The axioms for a
BN-pair are from [15,§5.1]. A proof that Example 5.1 is aBN-pair using nothing but
row and column operations can be found in [1,§6.5]. Theorem 5.1 is [15, Theorem 5.3].
The flag complex of a symplectic space is from [15, Chapter 1].Figure 6 has several
names: in graph theory circles it is called Tutte’s eight-cage, and is the unique smallest
cubic graph with girth 8 (where these minimal 8-circuits are, of course, the apartments). It
is a pleasantly mindless exercise to label the vertices of the Figure with the totally isotropic
subspaces (hint: start with the 8-circuit at the top as the apartmentA0). There is also a very
simple construction that goes back to Sylvester (1844) – this (and much else) is engagingly
described in [9]. There are 30 odd permutations of order 2 inS6: 15 transpositions – like
(1, 2) – and 15 products of three disjoint transpositions, like (1, 2)(3, 4)(5, 6). Let these be
the vertices of the eight-cage, and join a vertexσ in one of these two groups to the three
τ1, τ2, τ3 in the other group for whichσ = τ1τ2τ3. That theB (Borel subgroup) andN
(normalizer of a maximal torus) extracted from a reductive groupG in Remark 5.1 are a
BN-pair forG is shown in [11,§29.1].

Further reading. Surely the shortest introduction to buildings is [5]; [4], [16] and [21]
are slightly longer. The book [1] is a greatly expanded version of [3], while [15] is an
updated version of the 1988 original. A nice introduction tospherical buildings, including
an account of Tits’s classification [20] of the thick spherical buildings of type (W,S) for
|S| ≥ 3, is [25]; the sequel [26] treats affine buildings.
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