Expander graphs

Summer school
“Applications of expander graphs
to number theory and computer science”

UNC' Greensboro, May 24 to 28, 2021

E. Kowalski

ETH ZURICH
kowalski@math.ethz.ch


kowalski@math.ethz.ch

CONTENTS

Lecture 1: combinatorial definition

1.1. Graphs

1.2. Distance and diameter

1.3. Cayley graphs

1.4. Expansion

1.5.  Exercises

Lecture 2: spectral definition

2.1.  The Markov operator

2.2.  The Markov operator and expansion
2.3. The expander mixing lemma

2.4. The discrete Laplace operator

2.5.  Expansion of Cayley graphs

2.6. Equidistribution for Cayley graphs
2.7. Exercises

Lecture 3: expanders exist

3.1. Probabilistic existence of expanders
3.2.  Ramanujan graphs

3.3. Cayley graphs of finite linear groups
3.4. Property (T)

3.5.  Exercises

Lecture 4: some applications of expander graphs
References

(0ol \VIN \V]

18
21
21
25
31
32
33
34
36
39
39
39
41
43
45
48
49



LECTURE 1: COMBINATORIAL DEFINITION

In this first lecture, we define graphs, and explain the key concepts that are most
relevant in the theory of expander graphs (especially the metric on graphs). Then we
provide some examples before defining expander graphs.

1.1. Graphs. We consider graphs of a certain specific type: unoriented graphs, where
loops based at a vertex and multiple edges are permitted. There is more than one way
to do it, so one should see the following definition as specifying a specific “encoding” of
the intuitive notion that we want to use, and not as the only way to define graphs.

Definition 1.1 (Graph). A graph T" is given by a triple (V, E,ep) where V and E are
arbitrary sets, called respectively the set of vertices of I' and the set of edges of I', and

ep: E— V3

is an arbitrary map, called the endpoint map, where V3 denotes the set of subsets e C V
of cardinality either 1 or 2.

If « € F is an edge of T', the elements of ep(a) are called extremities of a. If o # 3
are distinct edges of ', they are called adjacent at a vertex x € V if x € ep(a) Nep(p) is
a common extremity.

Given a vertex x € V, the number of edges a such that x is an extremity, i.e., such
that = € ep(«), is called the degree or valency of x, denoted val(z). If the valency is the
same, say equal to d > 0, at all vertices, the graph is called regular, or d-regular.

A graph is finite when both V' and FE are finite; it is countable if both V' and E are
countable.

Remark 1.2. (1) The intuition should be clear, as the terminology indicates: to express a
graph (say, one drawn on paper) in this form, one takes as set of edges the “physical” ones,
and one defines ep(a) to be the set of extremities of such an edge. This allows loops, which
are edges where ep(a) = {x} is a singleton (the loop is then based at z, of course), as well
as multiple edges with the same endpoints, say a; # ag with ep(a;) = ep(aq) = {z,y}.

=

Conversely, to “draw” a graph I' coded as a triple (V| E,ep), we can draw the points
of V, then for each o € E, we look at ep(a) and draw either (1) a loop from z to x
if ep(a) = {z} is a single element, or (2) an arc (without orientation) from z to y if

ep(a) = {z,y} with x # y.
For instance, consider the graph with V' = {a,b,¢,d}, E = {1,2,3,4,5,6,7}, and

ep(l) = {a> b}a ep(2) = {b’ C}a ep(3) = {C’ d}a ep(4) = {av d}a
ep(5) = {CL, C}, ep(ﬁ) = {b’ d}’ ep(?) = {C7 d}7

and check that it can be represented as



a b

As in this figure, it is not always possible to draw the edges without some overlap
(graphs for which it is possible are called planar; see for instance [3, Ch. 10] for a
discussion of properties and characterizations of planar graphs). However, for any finite
graph, it is possible to “draw” it in R® without overlap. This should be fairly clear
intuitively, and the reader should attempt to see what is involved in a rigorous proof.
(Basically, R® minus a finite number of smooth compact curves, seen as images of maps
v : [0,1] — R3, is path-connected.)

(2) If T" has no loops (which means that every set of endpoints ep(«) contains two
elements) and no multiple edges (so that ep is an injection of E into the set of subsets
of order 2 in V'), the graph is called simple. In that case, the set of edges can also
be identified with a subset R C V x V such that (z,y) € R if and only if (y,z) € R
(expressing the fact that edges are not oriented) and such that (z,z) ¢ R for all z € V
(expressing the absence of loops). This is a more common way of “coding” simple graphs.
We will sometimes omit mention of ep when considering a simple graph, viewing the edges
as a set of subsets of V' with two elements.

(3) We will also x ~ y to say that vertices x and y are joined by at least one edge.

(4) By convention, for a graph I', we write |I'| = |V]: the “size” of I is identified with
the number of vertices. We also sometimes write z € I" to mean x € V.

In order to encode a finite graph, one can also use its adjacency matriz:

Definition 1.3 (Adjacency matrix). Let I' be a finite graph. The adjacency matrix
Ar = (a(x,y)) is the matrix with rows and columns indexed by Vi and with a(x,y) equal
to the number of edges with extremities (x,y), formally

a(z,y) = {a € Er | ep(e) = {z,y}}|.

Note that the adjacency matrix is always symmetric (in the sense that a(x,y) =
a(y,x)), which reflects our use of unoriented edges. Conversely, given a symmetric ma-
trix with non-negative integral entriers, one easily constructs a graph for which it is the
adjacency matrix.

Example 1.4. Here are some elementary examples of “coding” for various families of
graphs using Definition 1.1. The examples will be used frequently to illustrate some basic
concepts.

(1) [Cycle] Let m > 1 be an integer. The m-cycle C,, is the graph with vertices
Vin = Z/mZ, edges E,, = Z/mZ, and endpoint map given by

ep(i) = {i,1 +1}

for i € Z/mZ. In other words, except when m = 1 (in which case the cycle is a single
loop based at 0), there are two edges adjacent to any given i € V,,: the edges coded by

1 — 1, and the one coded by 7 itself.

Here are the graphs for m =1, m =2 and m = 5:
3
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(2) [Path] Let m > 0 be an integer. The path of length m, denoted P,,, is the graph
with vertex set V,,, = {0,...,m} and edge set E,,, = {1,...,m}, where ep(i) = {i — 1,i}
for 1 < i < m. A path of length 0 is a graph with a single vertex and no edges. Here is
the path of length 4:

We often say, somewhat abusively, that the vertices 0 and m are the extremities of the
path.

(3) [Complete graph] Let again m > 1 be an integer. The complete graph K, with
m vertices has also V,, = {1,...,m} but now E,, = {(x,y) € V,, | = < y}, with
ep((z,y)) = {z,y}. In other words, each pair of distinct vertices is joined by (exactly)
one edge. Here is the complete graph Kg:

All graphs in these first examples are simple graphs, except for the cycles C and Cs.
Most of them are regular: C} is 1-regular, ), is 2-regular for m > 2; F; is O-regular, P,
is 1-regular (but Py is not regular for k > 2); K,, is (m — 1)-regular for all m > 1.

(4) [A Cayley graph] Our last sequence of examples is less obvious, but it illustrates
a very important type of graphs which will occur frequently later on, the Cayley graphs
associated to finite groups.

Following Diaconis and Saloff-Coste [20], we fix n > 3 and take as vertex set V,, all the
possible arrangements of a deck D,, of n cards (so there are n! elements in V,,). Then
we define G,, as the simple graph where the vertex set is V,, and the edges correspond
to either exchanging the top two cards (connecting, say, (a,b,c,d) € V4, to (b,a,c,d)),
or bringing the bottom card to the top, or conversely (connecting, say (a,b,c,d) € Vj to
(d,a,b,c) — bottom to top — and (a, b, ¢, d) to (b,c,d,a) — top to bottom.)

Thus, by definition, GG, is a 3-regular graph for each n > 3, with n! vertices. Here is
an illustration of G3, with the deck D3 = {a, b, ¢}, and in Figure 1.1 one of G4, with deck
Dy ={a,b,c,d} (it is by far the most complicated graph we will draw...).

bca cab

abc
bac

ach cba

As often in mathematics, once we have defined some types of “objects”, it is important
to discuss relations between them, which are encoded formally in certain “morphisms”.
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F1GURE 1.1. The graph G4
aCbdca dacb .4

degb adbc
cabd badc
bead cdab
% dcba
abed
/ cdba
bacd
chad dcab
achd abdc
bcda dabc

bdac dbca adcbcadb

Definition 1.5 (Maps of graphs). Let I'; and I'y be graphs. A morphism, or graph map,
from I'y to I'y is a pair (f, f.) where

f:Vr, —Vp,
is a map between the vertex sets and

f« Er, — Er,

is a map between the edges, such that

(1.1) ep(fi(a)) = f(ep(a))
for all & € Er,. In other words: an edge a between x and y is sent to an edge f.(a) with

extremities f(z) and f(y). We most often simply write f for such a map, using f, for
the edge map.

If the graphs are simple, then the companion edge-map f, is uniquely specified by f
itself: in that case, whenever there is an edge e between x and vy, it is unique, and there
must also be an edge between f(z) and f(y), which determines f.(e). However, in the
presence of multiple edges, we must specify where each individual edge between x and y
goes.

Let ' be a graph. The identity map I' — I of T is the pair (Idy,Idg), and is denoted
Idp. For any graphs I'y, I's, I's and maps

r, S0, @)

the composite map is defined by the pair (go f, g. o f.), and is simply denoted go f. Then
ho(gof)=(hog)of
for any three maps that can be composed, and if f : 'y — 'y, we have
foIdF1:f7 IdFQOf:f'
More definitions:
Definition 1.6 (Isomorphism, automorphism, embedding). (1) A graph map f : I'; —
[’y is an isomorphism with inverse g if and only if fog = Idp, and go f = Idp,. If

' =T, =T, then f is called an automorphism of T'.
5



(2) The inverse of an isomorphism is unique and is denoted f~!. In fact, a morphism
(f, f+) is an isomorphism if and only if f and f, are both bijections, and then (f, f,)™! =
(f71, f7Y). In particular, the inverse of (f, f.) is also an isomorphism. Moreover, the
composite of two isomorphisms is also an isomorphism; hence the set of automorphisms
of I', with the composition law, is a group, which is denoted Aut(T").

(3) An embedding I'y < T’y is a graph map (f, fi) such that f and f, are both injective.
If I'; and I'; and both simple, it suffices that the vertex map f: V4 — V5 is injective.

Example 1.7. (1) The path P, for £ > 1, has a non-trivial automorphism f (in fact an
involution, i.e., we have f o f = Id) which is intuitively given by “reversing the path”,
and can be defined formally by

for any vertex i € V,, = {0,...,m} and edge j € E,, = {1,...,m}.

(2) [Subgraphs| Let T' = (V, E, ep) be a graph. For any subset V' C V of vertices, and
any subset E' C F of edges with extremities lying in V' (i.e., such that ep(a) C V' for
any o € FE’), the pair of inclusions (V' — V,E' — FE) is an embedding of the graph
(V' E' ep) inside (V, E,ep). We then say that (V’, E' ep) is a subgraph of I.

If E' is the set of all edges with extremities in V', i.e., if E’ is defined to be

E'={a€F | epla) C V'},

we say that (V') E’, ep) is a full subgraph of I'. Such subgraphs are therefore in one-to-one
correspondence with subsets of V.

Embeddings or other graph maps can frequently be used to define invariants and dis-
tinguish special families of graphs. Here is an important example:

Definition 1.8 (Girth). Let I' = (V, E, ep) be a graph.

(1) For m > 1, a cycle of length m in ' is an embedding C,,, — T.

(2) The girth of T is the smallest integer m > 1 such that there exists at least one cycle
of length m in I', or +o0 if no cycle exists at all in I'. We denote this integer girth(I").

Example 1.9. The girth of the cycle C,, itself is equal to m. Moreover, I" has girth 1 if
and only if I has at least one loop, and it has girth 2 if and only if it has no loop, but
there are two distinct vertices which are joined by at least two edges. Similarly, having
girth 3 means there are no loops, no multiple edges, but there exists a triangle in T, i.e.,
three distinct vertices x1, o, 3 and three edges aq, as and az with a4 joining xq, and -,
Qi joining xo and x3 and finally ag joining x; and x3. (This is also equivalent to being a
simple graph with an embedding of K3 = C3). For instance, the girth of K, is infinite
for m = 1 or 2, and is equal to 3 for m > 3. The reader is invited to check all these
assertions...

Example 1.10 (Trees and forests). Graphs with infinite girth have a name:

Definition 1.11 (Forests (and trees)). A graph I' with infinite girth (i.e., there is no
embedding C,, — T', for any m > 1) is called a forest. Anticipating the definition of
connected graphs, a connected forest is called a tree.

In particular, forests (and trees) are simple graphs. An example is the path P of
length £ > 1. Here are some more interesting examples. Fix some integers d > 2 and
k > 1. The finite rooted tree of degree d and depth k, denoted Tyy, is a simple graph
defined by taking V' to be the set of all words of length < & (including the empty word,
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of length 0, which is called the “root” vertex of the tree) in the alphabet A = {1,..., d}
with no letter repeated twice in a row, i.e.

V= S1y...,54 GAj S; 8i1f0r1<i<'—1,
J + J

0<j<k

with edges between “neighboring” words, where w; is a neighbor of wy if wy can be
obtained from w; either by adding a letter on the right (chosen among the d — 1 letters
distinct from the rightmost letter of w;), or by removing the last letter.

Here are pictures of 753 and Tjo, with the vertices labeled with the corresponding
words, which should clarify the matter. (Note that Ty is not d-regular.)

121 212
12 21
1 2

One can extend this construction to infinite depth: the d-regular tree Ty, for d > 2, is
the infinite graph with vertices given by all words of length > 0, without repeated letter,
in the alphabet {1,...,d}, and with edges described in the same way using neighboring
words.

One can also try to distinguish special graphs using (surjective) maps to another fixed
one. Here is a classical notion that can be interpreted in this manner:

Definition 1.12 (Bipartite graph). A graph IT' is bipartite if there exists a partition
Ve = Vo U V] of the vertex set in two disjoint subsets, so that any edge has one extremity
in V4, and one in V7, i.e., such that

ep(a) Vo #0,  epla)NVi#0

for each a € Epr. One sometimes says that Vj is the set of “inputs” and V; the set of
“outputs”.

Example 1.13. The complete bipartite graph K, , with m > 1 inputs and n > 1
outputs is the simple bipartite graph defined by the vertices

Vo =2Z/mZ, Vi=Z7Z/nZ, V=Wuwn
(a disjoint union) and edges
E = {{Io,l’l} cVv | zo € Vy, x1 € ‘/1}

Here are pictures of K33 and K 4:

el N

The reader can check, for instance, that the girth of K, , is equal to 4 for m, n > 2,

while it is infinite for m =1 or n = 1.
7



1.2. Distance and diameter. Our edges have, for the moment, not been really used,
except as abstract elements. Of course, an edge is intuitively supposed to represent a way
of going from one extremity to another. And if one goes from z to an adjacent vertex (or
neighbor) y, there is no reason to stop there. Going further on longer adventures along
the edges of a graph will lead us to the topic of expansion. But first, we explain how to
measure how far we can go:

Definition 1.14 (Paths and distance on a graph). Let I' = (V, E,ep) be a graph.
(1) A path of length k > 0 in T is a graph map Py 5 T, ie., an ordered sequence
(xo, ..., x) of vertices of I', and an ordered sequence (o, .. ., ay) of edges of I' such that

ep(a;) = {Ti1, 23}

for 1 <i < k. If kK > 1, the extremities of the path ~ are the vertices z = v(0), y = v(k),
where 0 and k£ denote the distinguished vertices of P, which have a single adjacent vertex.
One says that «y is a path from z to y, and one writes ¢(y) = k for its length.

(2) For any two vertices x, y € V, the distance on I" between x and y, denoted dr(z,y)
is defined as the minimum length of a path between z and y, if such a path exists, or
+o00 otherwise, i.e.,

dr(z,y) = min{{(y) | v is a path from between x and y} € {0,1,...} U {+oo}.

(3) The graph is connected if and only if dr(z,y) is finite for all z and y € V| i.e., any
two points can be joined by at least one path.

(4) A geodesic in I' is a path « such that the length of v is equal to the distance in I'
between the extremities of ~.

Note that a path is allowed to “backtrack”, since edges are unoriented, and that the
vertices x; might not be distinct. On the other hand, to compute the length, we need
only look at paths that do not involve twice the same edge in succession.

Definition 1.15. Let I' be a graph. A path v: P, — T" of length &£ > 0 in I" is non-
backtracking if v.(i) # v.«(i + 1) for 1 < ¢ < k — 1, i.e., if the ordered sequence of edges
corresponding to v does not contain consecutively the same edge.

Proposition 1.16. (1) If " is a connected graph, the distance function dr is a metric on
V', i.e., it is non-negative and satisfies

dF(ZL’,y) = dF(y,ﬂf),
dr(z,y) = 0 if and only if x =y,
dr(z,y) < dr(z, 2) + dr(z,y)

for all vertices x, y, z € V.
(2) If we define an equivalence relation on V by

T~y <= dp(z,y) < +00,

then the full subgraph of T' corresponding to an equivalence class V' C V is a connected
graph such that the distance dp/ is the restriction of dr to V' x V', and there are no edges
with an extremity in V' and another outside V'. These subgraphs are called the connected
components of I".

Proof. Part (1) is intuitively clear, but we give details. The symmetry is because a path
Py can be reversed using the automorphism f of P, (Example 1.7, (2); note in passing

that this depends on the fact that the edges are unoriented). The map v — o f is then
8



an involution (since f is an involution) between paths of length k from x to y and paths
of length k from y to x, which implies dr(z,y) = dr(y, ).

Further, dr(x,y) = 0 if and only if there exists a path of length 0 from z to y; but
a path v: Py — I of length 0 has only one extremity, so that this holds if and only
if + = y. Finally, the triangle inequality comes from the possibility of concatenating a
path of length k; = dr(x, z) between = and z with one of length ky = dr(z,y) between z
and y to obtain one of length k; + ky between x and y, as seen above, which shows that
dp(.%’,y) g kl + kQ = dp(ili', Z) + dp(Z,y).

For (2), the fact that ~ is an equivalence relation is elementary, and if V' is an equiv-
alence class, we note that any edge o« € E has either all or no extremities in V': if
ep(a) = {z,y} with z € V', then the edge o shows (by definition) that dr(z,y) < 1, so
that y ~ x is also in V’. Thus, if £’ is the set of edges with an extremity in V', the graph
(V', E',ep) is a full subgraph of I". Using a base vertex € V', so that any y € V' is at
finite distance to x, and the triangle inequality, we see that any two points of V"’ are at
finite distance, i.e., (V', E', ep) is connected.

Moreover, since one can not connect elements of V’ in I using edges others than those
in E’, we also see that the distance in I is the restriction to V' x V' of dr. O

Because of this construction, a number of classical invariants from metric geometry
can be immediately “imported” into graph theory. We will consider in particular the
diameter, and we recall the definition:

Definition 1.17 (Diameter of a graph). Let I be a graph. The diameter of T", denoted
diam(I"), is the largest distance between two vertices in I', i.e., we have
diam(I") = sup dr(z,y) € {0,1,2,...} U{4o0}.
z,yeV
Example 1.18. If T is a finite connected, graph, its diameter will be finite. One of the
key questions that the concept of expander graphs (hence, this book!) addresses is: given
certain connected finite graphs, what can one say about their diameters? In particular,
is this diameter relatively small, compared with the number of vertices?
We can immediately treat the obvious examples, among the graphs which were already
described in Example 1.4:
e The path Py has diameter k;
e The complete graph K, has diameter 1 for m > 2 (K; = Py has diameter 0);
e The diameter of the complete bipartite graph K, is 2 if either m or n is > 2,
while diam(K; ) = 1;
e The diameter of the cycle C,, is given by

if m is even
=L if m is odd.

3 »f3

diam(C,,) = {

w‘

Checking rigorously these values is left to the reader as an exercise. For the graphs G,
of Example 1.4, (4), computing the diameter is not so easy. In Exercise 1.8, the reader
will be invited to prove that diam(G,,) < n?. Since |G,| = n!, this means that

diam(G,,) < (log|G,|)?,
hence the diameter is here rather small compared with the number of vertices.
1.3. Cayley graphs. We will now define the Cayley graphs, which are used to get a

geometric vision of groups and their properties. These are among the most important

examples of graphs for applications to number theory.
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Definition 1.19 (Cayley graph). Let G be a group and let S C G be any subset which
is symmetric, in the sense that s € S if and only if s~ € S. The Cayley graph of G with
respect to S is the graph (V, E, ep) where the set of vertices is V' = G, the edges are given
by

E={{g.9s} | g€ G, seS}cV®?
and ep is the inclusion map E — V(). This graph is denoted C(G, S).

In other words, to draw C(G, S), we use the elements of the group as vertices, and draw
an edge between z and vy if and only if 271y € S; since S is symmetric, this is equivalent
with y~'x € S. This graph is not always a simple graph: although it has no multiple
edges, it may have loops. In fact, this happens if and only if 1 € S, in which case there
is a loop at every vertex.

If S is finite, then C(G,S) is |S|-regular (there are |S — {1}| edges from g € G with
distinct extremities, because S is symmetric so {g, gs} = {gs, (gs)s~'}, and one possible
loop if 1 € 9).

For a lively and insightful discussion of some of the many aspects of Cayley graphs
that we will not discuss in this book, we refer to the book [39] of de la Harpe.

Example 1.20. (1) For m > 3, the cycle C,, can be seen as (i.e., it is isomorphic to) the
Cayley graph C(Z/mZ,{£1}), as the reader is invited to check. For m = 2, this is not
the case (because 1 = —1 in Z/2Z); indeed, C(Z/2Z, {1}) is isomorphic to Ps.

Similarly, for all m > 2, the complete graph K, is also isomorphic to a Cayley graph
of Z/mZ, but with respect to S = Z/mZ —{0}. This already shows that Cayley graphs
can look quite different for the same group G when we change the set S.

(2) Here is a picture of the Cayley graph C(Z/10Z, {£2}):

Note that this graph is not connected.

(3) If G =7 and S = {£1}, we obtain an infinite path (extending indefinitely in both
directions).

(4) The graph G,, defined in Example 1.4, (4), is isomorphic to the Cayley graph of
the symmetric group &,, with respect to the (symmetric) subset

(1.2) S, ={r, (12 --- n)*L

Indeed, if we use the deck of cards D, = {1,...,n}, the isomorphism (say f) maps
o € 6, to the arrangement (o(1),...,0(n)) of the deck (read left-to-right as being top-
to-bottom), which respects the edges: from

flor) = (0(2),0(1),0(3),...,0(n))

we see that the edge {0, 07} corresponds to switching the first two cards, while

floo,) = (0(2),0(3),...,0(n),c(1))
and

floa V) = (o(n),o(1),...,0(n —1))

10



do correspond to putting the top card at the bottom, and conversely. We will simply
refer to the graphs GG, as Cayley graphs from now on.

The reader should check visually that the graph G4 is connected and bipartite. As we
will soon see, these facts reflect some basic group-theoretic properties of &,, and of .S,,.

(5) Let n > 2 be an integer and let G be a free group on n generators (aq,...,a;)
(see for instance [39, Ch. II] for an introduction to free groups). The Cayley graph of G
with respect to the symmetric set S = {a1,a]",...,a,,a;'} is isomorphic to the infinite
(2n)-regular tree Ty, (Example 1.10). You should attempt to understand why this is so.

The geometric notions of the previous section are particularly interesting when applied
to Cayley graphs. In particular, we have a group-theoretic interpretation of connectedness
and of the distance in Cayley graphs:

Proposition 1.21 (Metric properties of Cayley graphs). Let G be a group and S a
symmetric subset of G. Let I' = C(G, S) be the corresponding Cayley graph.

(1) The Cayley graph T' is connected if and only if S is a generating set of G.

(2) Denote ||z||s = dr(1,x). Then the distance dr satisfies

(1.3) dr(z,y) = =7 yls,
for all x, y € G = Vr, and in particular it is left-invariant, i.e.
dr(ﬂfy, [L'Z) = dI‘(ya Z)

for all x, y, z in G. Moreover
(1.4) |z|ls = min{k >0 | x = s1--- sk for some s; € S},
which s called the word length of x with respect to S.
Proof. Statement (1) is intuitively clear, since paths in C(G, S) join two elements which
differ by multiplication by an element in S, and we leave the proof to the reader.

(2) The formulas (1.3) and (1.4) are implicit in what was done before: given z, y € G,

there is for any k > 0 a bijection, which we just constructed, between paths v : P, — T
between z and y, and k-tuples (sy,...,s;) € S¥ such that

Y =axS8182 " Sk-

The minimal possible & for given = and y is the distance between = and y, so that (1.4)
follows, and since the equation above is equivalent with 271y = s; - - - s, this means also
that

dr(z,y) = lz""ylls,
proving (1.3). O
Cayley graphs do not only give a geometric “representation” of groups, the construc-

tion is compatible with homomorphisms, i.e., with possible “relations” between groups:
whenever we have a homomorphism

¢-Lon
of groups, and a subset S C G, we get an induced graph map
(f f+) : C(G,S) — C(H, f(5))
which is defined by the map f itself on the vertices, and by the definition
f{g.9s}) = f({g.9s}) = {f(9), F(9)f(s)}

(“qui s’impose”) for any edge {g,9s} € FEe,s). Obviously, this association maps the
identity to the identity of the Cayley graph, and is compatible with composition (in the
11



language of categories, it is a functor) on the category of groups with a subset. We also
see that (f, f«) is an embedding whenever f is injective.

Proposition 1.22. Let G be a group, and let S be a symmetric generating set of G. The
Cayley graph C(G, S) is bipartite if and only if there ezists a surjective group homomor-
phism

e: G— {£1}

such that (s) = —1 for all s € S. (In particular, if 1 € S, the Cayley graph C(G,S) is
not bipartite. )

The proof is left as an exercise.

Example 1.23. (1) Consider G = &,,, the symmetric group on n letters, and the gen-
erating set S = { transpositions in G }. Then C(G,S) is bipartite, the corresponding
homomorphism being the signature € : &, — {£1}.

(2) For the Cayley graphs G,, = C(&,,S,) discussed in Example 1.20, (3), note that
we have e(17) = —1, &((1 2--- n)) = (=1)""!, so that G,, is bipartite if and only if n is
even. (For instance, this occurs for G4, which we drew earlier.)

(3) The first two examples show that bipartiteness is not purely a condition on the
group involved, but also depends on the choice of generators. In particular, in situations
where having a bipartite graph is a problem (as happens with the behavior of random
walks, as we will see in Section 1.5), one can often efficiently bypass the issue for a Cayley
graph C(G, S) by considering instead C(G, S U {1}), which is not bipartite. Graphically,
adding 1 to S amounts to replacing the graph C(G,S) with the graph with the same
vertices, but with an extra loop added at each vertex.

See Exercise 1.10 for the characterization of the girth of a Cayley graph.

1.4. Expansion. In this section, we begin the study of expansion properties of graphs.
This will lead to the definition of an expander family of graphs.

The goal is to find a quantitative invariant that can be used to measure a very high
level of connectedness of a graph. Of course, assuming a graph is known to be connected,
the diameter is the first natural invariant that comes to mind: for a fixed number of
vertices, a graph with smaller diameter is “better connected”.

However we also wish to be able to detect (using our invariant) that the graph is
“robust”, by which we mean that it can not be disconnected too easily.

For instance, consider a graph I',, given by taking the disjoint union of two copies I'
and I of a complete graph K,,, for some m > 2, and adding a single edge between chosen
vertices 1 € I' and x, € IT™:

(1.5)

We clearly have diam(I',,) = 3, for any m, which shows that T',, has very small di-
ameter. But if we remove the single additional edge between x; and x5, we obtain a
disconnected graph. This behavior is not desirable in many applications, and leads to
the definition of the “expansion constant”, or Cheeger constant, of a graph (the name is

motivated by the geometric analogue defined by Cheeger in [22]).
12



Definition 1.24 (Expansion constant). Let I' = (V, E, ep) be a finite graph.
(1) For any disjoint subsets of vertices V1, Vo C V', we denote by E(V;, V3) or Er(V4, V3)
the set of edges of I' with one extremity in V; and one extremity in V5,
EV1,Va) ={a € E [ ep(a)nVi #0, ep(a)NVa#0}.

and we denote by E(Vi) or Ep(V}) the set E(V1,V =V)) of edges with one extremity in
V1, and one outside V.
(2) The ezpansion constant h(I') is defined by

h(T) = min{ ’8%)' €10, +00[ |0 £ W C V and [W]| < §|r|},

with the convention that A(I') = 400 if I' has at most one vertex.

In other words, h(T") is the smallest possible ratio between the number of edges exiting
from W and the size of W, when W is a set of vertices that is non-empty, but not too
big. This will provide a measure of robustness, in the following sense: the larger h(T")
is, the more difficult it is to disconnect a largish subset of V' from the rest of the graph.
This is expressed in the following result:

Proposition 1.25. Let I' = (V, E, ep) be a finite graph with at least two vertices, so that
h(T") < +0c0.

(1) We have h(I') > 0 if and only if T" is connected.

(2) If W C V is a subset of vertices with |W| = 6|V| where 0 < § < L, one must
remove at least Oh(T')|V| edges from T' to disconnect W from the rest of the graph.

Proof. (1) The condition h(I') = 0 means that there exists some W C V, non-empty, of
size < |['|/2, such that E(W) is empty. In particular V =W is also of size > 1. Let
x € W and y ¢ W be two vertices. Then there is no path in I' between x and y, since
such a path would have to cross from W to V =W at some point (we leave as an exercise
to make this rigorous). Therefore I' is not connected.

Conversely, if I' is not connected, there are at least two connected components in I,
and at least one of them, say W, must have size |W| < |['|/2. Since W is not empty and
EW) =0, we get h(T") < [E(W)|/|[W]=0.

(2) Once we explain the meaning of the sentence, it will become clear: we say that
removing a set C' of edges disconnects W from V — W if E(W) C C, i.e., all edges that
go from W to “somewhere else” are contained in C'. Then since

[EW)| = (D) |W] = on(T)|V],
by definition of A(I"), our statement is just a reformulation of the definition. U

Example 1.26. (1) Consider the complete graph K, with m > 2 vertices. Any two sub-
sets of the vertices with the same cardinality are equivalent (i.e., there is an automorphism
of the graph mapping one to the other), and hence

1 : : . m
A(Kp) = min SJE({1 )= min (m—j)=m- ||

(since there are j(m — j) edges in K, from {1,...,j} to its complement {j +1,...,m}).
(2) Consider now I' = C,,, the cycle with m > 2 vertices. The subsets of size < m/2

m

that expand least are given by the images W of paths in C,, of length diam(C,,) = [ % | <
m/2 (this is intuitively clear, and the proof is left as an exercise). In this case £(V) has

two elements (one edge from each end of the path), and therefore

(1.6) h(Ch) = —



Note that the inequality h(Cp,) < 4/(m — 1) follows, even if one does not know that
paths are the least expanding subsets, since

by definition for any subset W.
(3) Let I" be a graph like the one in (1.5): two copies of K,, joined by a single edge .
Then if we take W to be the first copy of K,,, we see that (W) = {a}, hence

(4) Let T' = Ty be a finite tree with degree d > 3 and depth k£ > 1. The expansion
constant can be bounded from above by taking as subset W one of the subtrees “below a
neighbor of the root”, i.e., if xy is the root and z; is a vertex indexed with a single letter
of the alphabet (e.g., z; = 1), we let

W= J {(1,s2,....55) € Vir}
2<j<k
which (see Exercise 1.4, (4)), can be written equivalently as
W =A{y e Vr | dr(y,z0) = dr(y, 1)}
We then have |W| = \TIT—l < @, and therefore
ew)|

MT) < S

It is clear from the picture

that E(W) contains a single edge, the one joining 0 to 1 (in other words, to “escape”
from the subtree induced by W, one must pass through the root), and therefore

1 d
Wi T =1

MT) <

These examples are already instructive. In particular, they show that h(I") behaves in
a way consistent with our goal: the “super”-connected complete graphs have h(I") very
large, while large, easily-disconnected graphs, like C,,, or those of Example (3) have quite
small expansion constants.

Although the arguments were highly elementary, they also show that it is much easier
to give an upper-bound for A(I') than a lower-bound: since the expansion constant is
defined as a minimum, a single well-chosen subset W may lead to a good upper-bound,
while we need to know which sets are the worst behaved in order to give a non-trivial

lower-bound. This is confirmed by the wide gap in the following trivial bounds.
14



We now come to a proper result: we show that a large A(I") implies that the diameter
of a graph is relatively small. This means that the expansion constant does control this
more natural-looking invariant.

Proposition 1.27 (Expansion and diameter). Let I' be a finite non-empty connected
graph. We have

log Ll
(1.7) diam(T) < 2— 22 43

log (1 + %)

where v = max val(z) is the mazimal valency.
eV

The following lemma is the crucial step:

Lemma 1.28. Let I' be a finite non-empty connected graph and x € V. For any n > 0,
let B,(n) be the ball of radius n around x, i.e.

B.(n) ={y €V | dr(z,y) <n}.

Then, with v denoting the maximal valency of I', we have

|B.(n)| > m1n<|F| <1+@>n>

27 v
Proof. 1t is enough to show that if n > 0 is such that |B,(n)| < |T'|/2, then we have

Ban+ 1)) > (14 ) 3,m),

since B,(0) = {x}. To prove this inequality, we observe simply that if a« € E(B,(n)) is
an edge exiting from B, (n), its extremity which is not in B,(n) is in B,(n+ 1) =B, (n),
i.e., is at distance n + 1 from x: this is a “new” point.

It is possible that multiple edges « starting from B, (n) lead to the same y, but since all
these edges share the extremity y, the maximal number of edges leading to y is val(y) < v,
so that

E(Bi(n h(T
Baln + 1) =B, )] > CCDL S M )
by definition of h(I"), using the assumption that |B,(n)| < |['|/2. Then we get

Bl 1)] = [Balo) 4 (B + 1) =By ()] > (1470, 00

as desired. O

Proof of Proposition 1.27. Let x, y € V' be two arbitrary vertices; we are going to esti-
mate dr(x,y) from above. For this, we denote

v

and we denote by n > 1 the smallest integer such that
r
sl
(which is possible since 8 > 1, in view of the connectedness of I'). Then by Lemma 1.28,

applied to x and y, we find that
Iy T
B.(n)| = = By(n)] > -
2 s 2



In fact, we must have |B,(n + 1)| > |I'|/2 (because either this is true for B,(n), or else
|B.(n)| = |T'|/2 and then there are some vertices at distance n + 1), and therefore

B.(n+1)NB,(n) #0,

which means that dr(z,y) < 2n + 1 by passing through an intermediate point z lying in
this intersection...
Since x and y were arbitrary, we have diam(I') < 2n + 1, and since

log % log %
— < 1
n=| log 3 W g3 |
we obtain the diameter bound that we stated. ]

Now comes the most important definition of these lectures, that of expander graphs.
This encapsulate the idea of graphs which are both relatively sparse and highly, and
robustly, connected.

Definition 1.29 (Expander graphs). A family (I';);e; of finite non-empty connected
graphs I'; = (V;, E;, ep) is an expander family, or a family of expanders, if there exist
constants v > 1 and h > 0, independent of ¢, such that:

(1) The number of vertices |V;| “tends to infinity”, in the sense that for any N > 1,
there are only finitely many ¢ € I such that I'; has at most N vertices.

(2) For each ¢ € I, we have

max val(z) < v,
z€eV;

i.e., the maximal valency of the graphs is bounded independently of i.
(3) For each 7 € I, the expansion constant satisfies

i.e., it is bounded away from 0 by a constant independent of i.
We will say that a pair (h,v) for which the two properties above hold are expansion
parameters of the family.

Let us review these conditions. The first is, to some extent, a matter of convention:
if I' is a fixed non-empty connected graph, it has bounded valency, of course, as well as
positive expansion constant, and hence a “constant” family with I'; = I' for all ¢ would
qualify as expanders if the number of vertices was allowed to remain bounded. But since
our intuition is that a family of expanders should allow us to construct arbitrarily large
graphs (measured with the number of vertices) which are “sparse” and “super-connected”,
it is not of interest to just repeat a single graph infinitely many times.

The second condition is our interpretation of sparsity. The point is that if the valency
of vertices of a graph I' is < k, the number of edges is controlled by the number of vertices,
namely

|Er| < E|Vr|.

The number of edges is seen here as a “cost” involved in constructing the graph.
Bounding the valency means that we ensure that the cost scales linearly with the number
of vertices.

Finally, the last condition is a connectedness and robustness assertion. It is natural
in view of our examples and of Proposition 1.27. It is the best to hope for, since (for a
graph with bounded valency), the Cheeger constant cannot not be unbounded.

The first important property of expander graphs is that they have small diameter:
16



Corollary 1.30 (Diameter of expanders). Let (I';) be an expander family of graphs. Then
we have

diam(T';) < log(3|T|)
for all i, where the implied constant depends only on the expansion parameters (h,v) of
the family. *

Note that the examples of finite trees T}, with d > 3 fixed, show that the converse
to this statement is not true: the sequence (Tx)r>1 is a sequence of graphs which have
valency bounded by d, and diameter 2k < log [Ty x|, but they are not expanders.

Proof. Let J be the set of the (finitely many) indices i € I such that [[;| < $e’. We
apply Proposition 1.27: denoting

v = max max val(z) < 400, h = inf h(T;) > 0,
i€l zel; el
and
§= ! > 0
~ log(1+ h/v) ’
we get first

diam(T;) < 2¢ log(%|Fi|) +3<2 log(%|FiD + log(3|T])
< (26 + 1) log(3[Ty),

for i ¢ J. We can then get an estimate valid for all i, e.g., by writing diam([;) <
C'log(3|T;]) with

(1.8) C' = max(2¢ + 1, max diam(T';))
JE€
for all 7 € 1. U

This estimate is best possible, since it is not difficult to prove (see Exercise 1.12) that
the diameter of a graph with bounded valency can not grow slower than the logarithm
of the number of vertices.

Thus we see that, if they exist, expander families are essentially optimal graphs when
it comes to combining sparsity and strong connectedness (or expansion) properties.

At this point, the most pressing question is: do expanders really exist? In all the
easy examples of graphs (with bounded valency) for which we computed the expansion
constant, it tends to 0 as the number of vertices goes to infinity, even in the case of
finite trees where the diameter, at least, has the right order of magnitude. A pessimist’s
attitude might be that this is a bad sign.

An optimist might observe that, in the case of the “best” candidates so far (the finite
trees Ty with d > 3 fixed and k — +o00), there are many subsets of vertices which
do have large expansion ratio |E(W)|/|W|. Roughly speaking, as long as W is a set of
vertices that only contains a few elements at the maximal distance k from the root of the
tree, there will be many edges “escaping” further away from the root, in fact typically as
many as the size of W. In other words, one might imagine that adding an edges to each
of the far vertices, reconnecting them to the middle of the tree, might have a chance of
producing graphs with good expansion constant.

We will not actually proceed this way; but, indeed, the optimists are in the right
here: expanders do exist, and in fact exist in cheerful abundance. We will survey this

1 We use 3|T;| to avoid any problem with the possible exceptional i’s where |T;| = 1, and because
log 3 > 1; this is old analytic number theory lore...
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in Lecture 3 using three different methods, in particular using probabilistic methods, as
originally done by Barzdin and Kolmogorov [5], and independently by Pinsker [69].

However, what we will first do in the next lecture is to provide another equivalent
definition of expander graphs, which is often more easily applicable and more natural in
applications.

1.5. Exercises.
Exercise 1.1. (1) Let I" be a finite d-regular graph with girth g > 3. Prove that
IT| > d(d — 1)L(g—3)/2J_

(2) Show that the girth of a finite graph d-regular graph I" with d > 3 is < log(|T'|),
where the implied constant depends only on d.

Exercise 1.2. Show that the number of vertices and edges of the finite tree Ty are given
by

(d—1)k -1
T, | =d——2 — =
| T T

if d 2 3, and |T27k| =2k + 1, |E27k| = 2k.

(d—1)%—1

+ 1, [Earl = |Tuxl i_2

Exercise 1.3. Show that a graph I' = (V| E ep) is bipartite if and only if there exists a
graph map [' — P;, where P, is the path of length 1:

*—o

Exercise 1.4. We consider here some specific features of trees, which we recall are
connected forests.

(1) Show that the diameter of a finite tree Ty with d > 2 and k£ > 0 is equal to
2k, and is achieved by the distance between any two distinct vertices labeled with words
(s1,...,sk) and (s),...,s}) of (maximal) length k& with s; # s}.

(2) Show that if T" is a tree, then for any two vertices x and y, there exists a unique
geodesic on T with extremities x and y (the image of all paths of length dr(x,y) between
two vertices x and y of T' is the same).

(3) If T'= T,y with “root” vertex zop =0 and 0 < j

V/ = {JI - VT | dT(LL’(),l’

induces a full subgraph isomorphic to 7y ;.
(4) If T =Ty, with root zg and = € T is any vertex, show that

V"={y e Vr | dr(y,z0) = dr(y,z)}

induces a full subgraph T" of T which is also a tree.
(5) Let I be any graph with girth ¢ > 1, and let 25 € V. Show that the subgraph of T
induced by

k, show that

J}

<
<

V' = {x eV | dr(zg,x) < g}

is a tree.

Exercise 1.5. Let I'y and I'; be graphs, and let f : I'y — I'y be a graph map. Show
that f is always distance-decreasing, i.e., we have

for any x, y € I';. In particular, if f is surjective on vertices, the diameter of I'y is at

most that of I'y, and if f is an isomorphism, it is isometric.
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Exercise 1.6. Here is an application of graphs and connected components to group

theory, due to Bauer and Knutson (see [33, Lemma, p. 98|). Let k > 2 be an integer,
G = G the symmetric group on k letters. We suppose given a subgroup H of G such
that: (i) H acts transitively on {1,...,k}; (ii) H contains at least one transposition; (iii)

H contains a cycle of length p > k/2 such that p is prime. The goal is to prove that, in
fact, we have H = G = G,

Let I' = (V, E) be the simple graph with V' = {1,... k} and with an edge between
any pair (i,7) € V x V such that i # j and the transposition (i j) is in H. Assumption
(ii) means that the edge set is not empty.

(1) Show that any connected component in I" is a complete graph.

(2) Show that it is enough to show that I' is connected in order to prove that H = G.

(3) Show that the action of G on {1,...,k} induces an action of G on I" by automor-
phisms. Show then that GG acts transitively on the set of all connected components of I'.
Deduce that all such components are isomorphic.

(4) Show that a p-cycle o € H as in (iii) must fix (globally, not necessarily pointwise)
each component of I', and conclude from this.

Exercise 1.7 (Uniqueness of bipartite decompositions). (1) Let I" be a connected bipar-
tite graph with a bipartite decomposition V =V, U V;. If 2y € V, show that

(1.10) Vo = {y € V| there is a path of even length joining x to y}.

(2) Deduce that the partition of edges V' = V[, UV} which exhibits the bipartiteness of
a connected bipartite graph is unique (i.e., if Wy U W is another such partition, we have
(WOan) = (V07V1> or (WOle) = (tho>>

(3) Let I' be an arbitrary connected graph, and define W by the right-hand side
in (1.10). Compute W when I' is not bipartite.

(4) Show that a forest is always bipartite.

(5) Show that if a graph I' is finite and not bipartite, then its girth is finite. In fact,
show that girth(I') < 2diam(I") + 1, and that this is best possible.

Exercise 1.8. Prove that the set S, given by (1.2) generates &,,, and hence that the
graphs G, of Example 1.20, (3), are all connected. In fact, show that there exist constants
¢ > 0 and C' > 0 such that the diameter of (G,, satisfies

(1.11) en? < diam(G,,) < On?
for all n > 3. [Hint: This is a fairly classic exercise. As described by Diaconis and Saloff-
Coste [20, §3, Ex. 1], it can be convenient to think of this in terms of card shuffling.]

Exercise 1.9. Let G be a group, and let S be a symmetric generating set of G. Show
that C(G, S) is bipartite if and only if there exists a surjective group homomorphism

e: G— {£1}

such that £(s) = —1 for all s € S. (In particular, if 1 € S, the Cayley graph C(G,S) is
not bipartite.)

Exercise 1.10. Let GG be a group and S C G a symmetric subset which does not contain
a non-trivial involution.

(1) Let T' = €(G, S) be the corresponding Cayley graph. Show that the girth of T
is then equal to the length of the shortest non-trivial relation among the elements of
S, namely girth(I") is the smallest m > 1 for which there exist (sq,...,s,) in S, with
siSiy1 # 1 for all 7, such that sy1s5 -+ s, = 1. (In particular, if G is finite, the girth of the
Cayley graph T is finite.)

(2) Show that the restriction on S is needed (a very simple example suffices).
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Exercise 1.11. For any finite connected graph I" with at least two vertices, show that
2
— < h(I") < minval(x).
T (I') < min val(z)

Exercise 1.12. Let I' be a non-empty finite graph with maximal valency < k, where
k > 1 is an integer. Show that

log(|T"])

iam(l') > .
diam(I") log &

Exercise 1.13. Let (I';) be an expander family. Show that the metric balls in I'; are
uniformly exponentially expanding, in the sense that there exists v > 1, independent of
1, such that for any graph I'; in the family, we have

B(n)] > min( ] 97).
forallz € I'; and n > 0.
Exercise 1.14 (Some Cayley graphs of &,,). We consider again the Cayley graphs G,, =
C(S,,S,) of Example 1.20. Could (G,,) be an expander family? For the moment, we

only know an upper bound (1.11) for the diameter that is a bit too weak, but is not very
far off from the estimate

diam(G,,) < log |G,| < nlogn

that would be necessary for an expander. However, we will see here concretely that (G,,)
is not an expander.

It is convenient here to see &,, as acting by permutations of Z/nZ. With this inter-
pretation, the generators o, and o' act on Z/nZ by

on(i)=i+1, o'(i)=i-1

for i € Z/nZ.
Define then

W, ={0 €6, | thereisnoi € Z/nZ such that o(i+1) =0(i) + 1} C &,,.
(1) Show that

A
[EH n
(2) Show that
1 < liminf —— W | < lim sup —— W < 1
35 e, SIm s, S
and conclude that h(G,,)) < n~!. [Hint: You can use 1nclus1on—exclusion.]
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LECTURE 2: SPECTRAL DEFINITION

In this second lecture, we explain a different equivalent (or essentially equivalent)
definition of expander graphs, based on discrete spectral theory. There are in fact two very
closely related variants of this definition, depending on the way one wishes to normalize
the underlying analogue of the Laplace operator. We concentrate on the approach based
on the so-called Markov operator, which is very closely related to probabilistic aspects
(especially random walks on graphs), although we will not discuss this in detail.

We will consider spectral theory only finite graphs for simplicity.

2.1. The Markov operator.

Definition 2.1 (Measure and functions on a graph). Let I' = (V| E, ep) be a finite graph
with V' and F non-empty, without isolated vertex.
(1) The (normalized) graph measure on I is the probability measure on V' defined by

pr(f}) = V0

N = Zval(x) >0

zeV
(2) The space of functions on I is the space L?(T", ur), i.e., it is the vector space of all
functions ¢ : I' = C, with the inner product

(1, p2) Zval z)p1(x)pa().

mEV

for all x € V., where

Remark 2.2. (1) If T' is d-regular for some d > 1, then the measure ur is simply the
normalized probability counting measure on V', namely

W
pr(W) = 7
V]
for all W C V. This case will in fact occur very often, so the reader may read the

remainder of this lecture with this case in mind. Note the comparison relation

v W _ vy [W]
(2.1) <pur(W) < =2
ve [V v V]

for all W C V| where

= | = |
v grg‘r/lva( ), vy = Iilea‘iiva( x).

(2) Finally, we will also have the occasion to use the supremum norm
llloo = max fo(x)]
for ¢ € L*(T', vr).

Note that we can compare the two norms by

N\ 1/2
(2:2) el < llelle < (55) "l

where the left-hand inequality is a classical fact which holds for any probability measure,
while the right-hand inequality follows from

N
§ (2 = 2ol
max |p(x val( vﬁHSOH

%
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Definition 2.3. Let I' = (V, E, ep) be a finite graph with no isolated vertex. The Markov
averaging operator on L?(T', ur) is the linear map

MF . { L2(P>MF) — LQ(F7MF)

@ — A4f¢
such that
1 1
M = = .
(Mrp)(x) val(z) > wy) val(z) > alz,y)ey)
ack yev
ep(a)={z,y} dr(z,y)<1

We will often simply write M instead of M when only one graph is involved.
We note that the condition dr(z,y) < 1 can be omitted in the second expression for
M, since the quantity

a(z,y) = {a € E | ep(a) = {z,y}}|

is zero unless dr(z,y) < 1.
The choice of the measure ur on a graph is important, because the self-adjointness
property of M depends on it.

Proposition 2.4 (Spectral properties of the Markov operator). Let I' = (V, E,ep) be a
finite graph with no isolated vertex. Let M be the Markov averaging operator for T'.
(1) For any function o € L*(T, ur), we have

(23) (1= Mg o = 5= 3 ale,y)le(e) - o),
(2.4) (14 Mg, o = 5 3 ale,n)le(a) + o)
z,yeVvV

(2) The operator M is self-adjoint of norm < 1. It is bounded from above by the identity
and from below by minus the identity.

Part (2) combines three assertions: first, we have

<M<P1; 902>1“ = <901, M902>1“

for any functions ¢y, py € L*(T, ur) (self-adjointness), next, we have ||[Mpl|r < ||¢|| for
¢ € L*(T, ur) (norm at most 1), and finally we have

(2.5) — (o, o)r < (Mo, )r < (@, @)r
for all p € L*(T, ur).

Proof. We start by proving the self-adjointness, which is a key property (ultimately, it
relates to the fact that we are working with unoriented graphs). We have by definition

(2.6) =5 2 Az y)ei(y)ea(z)

and since a(z,y) = a(y, ), this is also (p1, Mpa)r.
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We now prove the formulas (2.3) and (2.4). Both are very similar and we deal only
with the first one. Using (2.17), the symmetry of the adjacency matrix and (2.6), we
have

2N (@, o)r — (Mo, 0)r) =2 > alz,y)le(@)? =2 ) a(z, y)e(x)e(y)

z,yeV z,yeV

= alzyle@) P+ Y al@ e’ -2 > alz.y)e@)e(y)

z,yeVv z,yeV z,yeVv

which is equal to

> az,y)le(x) — o)

z,yeV
These formulas (2.3) and (2.4) immediately imply (2.5). From this, we get

(M, )| < lloll?
for all ¢ € L*(T, ur), and since it is standard that

Mo, o)r|

(
|M][ = sup
o0 llell?

for a self-adjoint operator, this gives || M| < 1. O

Corollary 2.5. Let I' = (V, E,ep) be a finite graph with no isolated vertex.

(1) The Markov operator M is diagonalizable in an orthonormal basis of L*(T, ur),
its ergenvalues are real numbers, and all eigenvalues have absolute value at most 1. For
o € L*(T, pr), we have

27) (Mor2) = v 3 alz, ) ()ea(a).

z,yev

(2) The 1-eigenspace ker(M — 1) of M has dimension equal to the number of connected
components of I', and is spanned by the characteristic functions of these connected com-
ponents. In particular, if T' is connected, then we have ker(M — 1) = C, spanned by
constant functions.

(3) If T is connected, the (—1)-eigenspace ker(M + 1) is zero unless I' is bipartite. In
that case, it is one-dimensional and spanned by a function e+ equal to 1, resp. —1, on
the set of inputs, resp. outputs, of a bipartite decomposition of V.

(4) If T is bipartite, then the spectrum of M is symmetric: if X is an eigenvalue of M,
then so is — .

Proof. (1) Since T is finite, the space L*(T, ur) is finite-dimensional, so by linear algebra,
the endomorphism M is diagonalizable in an orthonormal basis of L*(T', ur), and its
eigenvalues are real. The formula (2.7) restates (2.6).

(2) We next investigate the structure of ker(M — 1) using (2.3), though there is a nice
“geometric” computation also (see the exercise below). If M¢ = ¢, we get immediately

the identity
> al@y)le() — e(y)]* =0,

z,yeV
from (2.3). By positivity, this is equivalent with ¢(z) = ¢(y) whenever a(z,y) # 0, i.e., ¢
has the same value at all extremities of any edge. If we fix any xq € V', and use induction
on dr(zg, x), we get o(x) = p(z) for all x reachable by a path from zy. This means that

 is constant on each connected component of I'. The converse is easy: if ¢ is constant
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on each connected component, the definition shows that it does satisfty My = . Hence
ker(M — 1) is the space spanned by characteristic functions of connected components in
the graph.

(3) We deal similarly with the possible —1 eigenvalue, for which we restrict our attention
to connected graphs for simplicity. The reader should first check that, if I' is bipartite,
then the function 5 defined in the statement of the theorem is indeed in ker(A + 1).
We now proceed to show that it generates the (—1)-eigenspace.

Let ¢ be such that My = —p. We get from (2.4) that

p(r) = —¢(y)

for all z and y connected by an edge. If v : P, — I' is any path of length 2 with
v(0) =z, v(2) =y, it follows that

p(z) = —p(v(1)) = p(y).

[terating, we obtain p(z) = ¢(y(2k)) for any path v of even length 2k. Now we fix some
xg € V, and let W be the set of vertices in I' which are the other extremity of a path
v : Py, — T of even length with 7(0) = z¢ (in particular, zo € W using a path of
length 0). We see that ¢ is constant, equal to ¢(zg), on all of W. If W = V' it follows
that ¢ is constant, hence My = ¢ = —p, so ¢ = 0.

On the other hand, if W # V| we claim that Vo = W, V|, = V =W is a bipartite
partition of V. Indeed, let @ € E be an edge with extremities {x1,z5}. It is not possible
that z; and x5 are both in Vj: if that were to happen, then given any y € Vi, we would
get a path of even length joining xy to y by (1) going from z to z; with a path of even
length 2¢; (possible since x1 € Vp); (2) going to x;1 to xe by the path of length 1 given by
a; (3) going from x5 to xg with a path of even length 2¢; (again, because xs € Vj); (4)
going from xg to y, which is possible since I' is connected, and possible with odd length
203 + 1 since y ¢ Vp: the total length is

201+ 1+ 205+ 203+ 1 = 0 (mod 2).

This contradicts the fact that Vy = W # V. Similarly, we see that x;, x5 can not
both be in Vi, and this concludes the proof that I' is bipartite. It is now easy to finish
determining : it is constant, equal to ¢(xg), on Vp, and for any = € Vi, finding y € V;
connected by an edge, we get ¢(y) = —p(x) = —¢(xy). Thus it is equal to ¢(zg)ex.

(4) Assume that I' is bipartite with bipartite partition V' = V; UV,. Whenever ¢: V —
C is a A-eigenfunction of M, it follows that ¢ defined by ¢(z) = ¢(x) for x € V; and
P(x) = —p(x) for z € Vs is a —A-eigenfunction of M. O

We following invariant will turn out to provide the tool to characterize expanders.

Definition 2.6 (Equidistribution radius). Let I' = (V, E, ep) be a connected non-empty
finite graph without isolated vertices. The equidistribution radius of I', denoted or, is the
maximum of the absolute values |\| for A an eigenvalue of M which is different from +1.
Equivalently, or is the spectral radius of the restriction of M to the subspace

L3(T, ur) = (ker(M — 1) @ ker(M + 1))+,
i.e., (1) if [ is not bipartite, the restriction to the space of ¢ € L*(T", ur) such that

(o.1) = = S val()ple) =0,
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and (2) if " is bipartite with bipartite partition Vo U V) = V| the restriction to the space
of ¢ € L*(T, ur) such that

S vale) =0, © 3 valllels) = 5 3 val(@)().

zeV zeVy zeVy

The equivalence of the stated definitions of or, and of the subspace L3(T, ur), are direct
consequences of Proposition 2.4 (taking into account the assumption that I' is connected).
The following are also almost part of the definition:

Lemma 2.7. Let I' = (V, E,ep) be a connected, non-empty, finite graph without isolated
vertices. We have 0 < or < 1 and or is given by

(2.8) or =  max [(Me, )] (’0>|
o#pel3(Cur) ||l

Proof. The inequality or < 1 simply expresses the fact that M is self-adjoint with real
eigenvalues of absolute value at most 1, so that, on the orthogonal complement LZ(T, ur)
of the space spanned by the eigenspaces for 41, all eigenvalues have modulus < 1.

Similarly, the restriction of the self-adjoint operator M to L3(T', ur) is self-adjoint, and
its norm is gr. The formula (2.8) is then a standard property of endomorphisms of Hilbert
spaces. ]

2.2. The Markov operator and expansion. As promised, we will now describe the
precise link between the expansion constant h(I') and the equidistribution radius or of
a finite graph. As we mentioned already, there is a technical point to address. Indeed,
being or not bipartite (or “very close”, in the sense that there is an eigenvalue of the
Markov operator M that is very close to —1) is a property essentially unrelated to being
an expander, but it affects or. This is clarified by the next definition:

Definition 2.8 (“Absolute Expanders”). Let (I';) be a family of finite, non-empty, con-
nected graphs I'; = (V;, E;, ep) with maximal valency < v for all 4, such that the number
of vertices of I'; tends to infinity, in the same sense as in Definition 1.29. We say that
(I';) is a family of absolute expanders if and only if there exists o < 1 such that

(2.9) or, <o<1
for all 7 € 1.

The precise link between expanders and absolute expanders is the content of the fol-
lowing result:

Theorem 2.9 (Spectral definition of expanders). (1) A family of absolute expanders is
an expander family. N

(2) Conversely, let (I;) be an expander family with I'; = (V;, E;,ep). Let T'; be the
“relaxzed” graphs obtained from T'; by adding a loop at each vertex, i.e.,

T, = (V;, E; UV ep))

with ep’(a) = ep(a) for a € E; and ep’(z) = {x} for x € V;. Then (I';) is a family of
absolute expanders.

Remark 2.10. Since the vertices do not change, and only loops are added to the edges of
the relaxed graphs, which has no effect on the value of &(W7, W3) for any subsets W7,
Wy C V, we have h(I';) = h(T).

Moreover, we only add one loop for each vertex, so that the maximal valency of the

relaxed graphs has only been increased by 1. In particular, we see that (I';) is an expander
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family if and only if (fz) is an expander family. On the other hand, because we added
loops, fz is not bipartite, and hence —1 is not an eigenvalue of M. In fact, having added
loops to all vertices allows us quite easily to show that there is no eigenvalue of M too
close to —1, and this explains why the relaxed family behaves better with respect to or.

In fact, more is true: there are quantitative two-sided inequalities relating h(I") and or,
from which the statement will immediately follow with relations between the expansion
and equidistribution parameters.

By definition, or is either the largest eigenvalue < 1 of M, or the negative of the
smallest eigenvalue which is > —1. A convenient way to express this is to give names to
the distance of the largest and smallest eigenvalues to 1 and —1.

Definition 2.11 (Normalized spectral gaps). Let I" be a finite non-empty connected
graph. The normalized spectral gap XA;(I") is the smallest non-zero eigenvalue of Id — M.

The complementary normalized spectral gap p,(I") is the smallest non-zero eigenvalue of
Id + M.

The largest eigenvalue < 1 of M is therefore 1 — A, and the smallest > —1is —1 + p;.
Thus we have

or = max(1l — X ([), p (T') — 1).
Moreover we have

_ iy (dd = M), )
(2.10) A(T) = in, ==
(2.11) _ i A= Me9)

% not constant ||(p — <Q07<P>||2 7

where the equality between these two characterizations follows from the fact that

(Id = M), ¢) = ((Id — M)po, ¢o)

for o = ¢ — (¢, 1), which is orthogonal to 1, so that the range of values in the minimum
in the second definition is in fact identical to the one in the first.

The link between A(I') and equidistribution becomes visible here. First by comparing
with the definition of the expansion constant, also as a minimum, and then by using (2.3)
which shows that the numerator is determined by the difference in values of ¢ on adjacent
vertices, so that suitable choices of ¢ lead to the quantity €(W), as the following lemma
shows:

Lemma 2.12. Let I' be a finite non-empty graph without isolated vertices. Let W C V
be a subset of vertices, W =V =W, and let

Y= 1W—MF(W)7

the “centered” characteristic function of W. Then

((1d ~ Mg, 0) = {(1d — M)y, 1) = (X7
and ||o||* = pr (W) ur (W').
Proof. The formula (2.3) gives

(14— Mg, 0) = 5o 3 alw o) (p(a) — o(0))’
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hence

(1= Mg ) = 50 S aly)(Lw(e) — 1w (y))
z,yeV
The only non-zero terms in this sum are those where, on the one hand, x and y are
adjacent, and on the other hand, one of them is in W and the other is not. The two cases

xeW,y¢ W and x ¢ W,y € W have equal contribution, and hence

((Id = M)p, p) = % > alz,y) = |8(X[V)|~
zeW
yEWw

The formula for [|p]|? is a simple computation: since ¢ is orthogonal to constants, we
have
loll® = 11w ll* = pr(W)* = pr (W) = pp(W)* = pup (W) (W).
O

We can now immediately prove (1) in Theorem 2.9. Indeed, it follows from the next
proposition, which is the analogue for graphs of the Cheeger inequality for manifolds [22].

Proposition 2.13 (Discrete Cheeger inequality). Let I' = (V, E,ep) be a connected,
non-empty, finite graph without isolated vertices. We have

2
(2.12) 1—or <M(D) < (%)h(r)
v
where, as before, we denote
v- = min val(z), v+ = max val(z).
In particular, if I' is d-reqular, then we have
2
1 —or < A(IN) < Eh(F).
Proof. Because of (2.10), we can estimate A;(I") from above by
Id—-M
A < & )p: ©)
{0, 9)

for any suitable function ¢ orthogonal to 1. Applying Lemma 2.12 to a non-empty subset
W C V with |W| < |T'|/2 such that A(I") = |E(W)|/|WV], we get
EW) 1 1 €W
N el N e (W) e (W)
We now use (2.1) in order to make the exact ratio |E(W)|/|W| appear, obtaining

v W] < v? W]

vy VI 7 200
and the inequality (2.12) follows. O

A(T) <

Npr(W)pr (W) 2 v_[W] x

Remark 2.14. The Cheeger inequality is very often the best way to obtain lower bounds
for the expansion constant of a graph. It is also useful numerically: since A;(I") is an
eigenvalue of the linear operator Id — M acting on L?(T'), which is a finite-dimensional
vector space, of dimension |V, the problem of determining A;(I") (or indeed gr itself) is
a problem of linear algebra. Of course, if V' has enormous size, it might not be feasible
to find all eigenvalues, but the fact that or is the largest absolute value of any eigenvalue
on L3(T', ur) also leads to the possibility of applying various approximation algorithms

for this specific problem.
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We will now investigate the converse of (2.12). We may note already that it can not
be a simple relation stating that A; (or 1 — p) is of the same order of magnitude as the
expansion constant up to constant factors, since for the cycles, we have found in (1.6)
that h(C,,) < 1/m for m large, while 1 — g¢, < 1/m? by Exercise 2.6, which is much
smaller. However, this is essentially as bad as it can get, as shown by the following bound,
which is the discrete analogue of an inequality of Buser in the context of the geometric
Cheeger constant [19]:

Proposition 2.15 (Discrete Buser inequality). Let I' = (V, E,ep) be a connected, non-
empty, finite graph without isolated vertices. We have

(2.13) () < vin/2 A (D).

We will prove this by following an argument of L. Trevisan [80, Handout 4], which
highlights a practical algorithmic interpretation of this inequality. The idea is to study
the expansion of sets of the type

Woe=¢ (oo t]) ={z eV | pz) <t}

for a real-valued function ¢ : V' — R and a real number ¢, and to show that some of
them satisfy

EOVedl vi/220(D),

|W<,D,t|

while containing at most |V |/2 vertices. The idea, to begin with, is to compute the average
(over t) of the size of the sets E(W,,,) for a given function, and deduce the existence of
sets with certain expansion ratio. The following lemma performs this computation:

Lemma 2.16 (Expansion of sublevel sets). Let I' = (V| E ep) be a finite non-empty
connected graph and let ¢ : V — R be a real-valued non-constant function on V. Let

a=minp(z),  b=maxep(r),

and let ty € R be such that®
v
W <
if and only if t < ty.
Then for any choice of a probability measure v on R supported on [a,b] and without
atoms, we can find t € R such that either W = W, or W =V =W, satisfies |W| <
V|/2 and

W) _ A
wl — B
where
A=2 3 aleyle), o)
B =3 ullto o))
eV

using the convention that v([a,b]) = v(|min(a, b), max(a,b)]).

2 This means that to is a “median” of the values of .
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Proof. We denote W, = W,,, for simplicity. An edge o with ep(a) = {z,y} is in E(W}) if
and only if ¢ lies in the interval I, between ¢(x) and ¢(y) where the largest is excluded,
i.e., I, = [min(¢(x), p(y)), max(p(x), ¢(y)[. Thus we may compute the average of |E(W;)]
as

/ |E(Wy)|dv(t) = Z v{t | tis in the interval I,}
R

acE

=Y ) =5 3 aleyw(le(), o)) = A,

acl z,yeVv

since v has no atom.

We want to compare this with the number of elements of W;, or rather with the
minimum min(|W;|, |V =W;|) < |V]/2 (with the idea of using either W; or V =W} to test
the expansion constant).

Since the size of W; is non-decreasing as a function of ¢, a real number t; such that
|W;| < |V|/2 if and only if ¢ < ty exists. Then (again using the fact that v has no atoms)
we have

/R win (Wi, [V = Wi|)dv(t) = / Widu(t) + / [V =W ldu (1)

t<to
=S udt | ele) St <toh+ vt | to <1< pla))
zeV zeV
=> v(fto, ¢ = B.
zeV

We now argue simply that since
/ (BIEGW)] — Amin( W], [V = W,))du(t) = 0,
R

there must exist some ¢ € [a, b] for which
BIE(W:)| — Amin(|W4], [V =Wi]) <0,
which is the desired conclusion! O

We are now led to an attempt to select a measure v and then find a function ¢
to minimize the ratio A/B. The most natural-looking choice seems to be the uniform
probability measure on [a, b], with dv(t) = dt/(b — a). In this case, we get

1 |o(x) = #(y)| () — tol
(214) A= 5 Z (I(l’,y)T, Z b—a s
z,yeV zeV
and the problem looks similar, in a rather more L'-ish sense, to the computation of A;
using the minimization characterization (2.10). However, because the L'-norm is much
less flexible and accessible than the L?-norm, this does not seem easy to work out (as
mentioned by Trevisan [31]; see Example 2.8 below for an instance of this). So we use

instead, as in [30], the measure v defined by
1

dv(t) = <|t — to|dt

) = i~ told,

where S is the normalizing factor that makes this a probability measure on [a,b]. We
have then

(to, o)) = 55lola) — tof
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for all  and a second’s thought shows that

v([e(x), e(y)]) < %h@(ﬁ) — ()l x (le(x) = to| + l(y) — tol)-

Hence we find in this way a set W for which

lew)] _ A
h(l') < ——% < =
o W] B
where

_! Z a(z, 1)) — tol + lo(y) — tol (@) — o(y)],

B=Y lp(x) —tol*

We can now estimate further in terms of quantities related to M. First, we write

B=Y lp(x) —to]* > Zval x) = to|” ——+||s0—lto||2

zeV acEV

l\D

while, by the Cauchy-Schwarz inequality and the formulas (2.3) and (2.4), we have

(A < (5 X ate.w)lel@) — o)) (5 3 atw ) {lele) — ol + o) ~ 1]}

T,y z,Yy

= N((Id = M), p) x N((Id + M)[p — o, | = to).
Since ||Id + M]|| < 2, we obtain

A 2((Id — M), o)\ /2
:év
B +( ¢ — ol )

We finally select ¢ to be an eigenfunction of Id — M with eigenvalue A\;. Since ¢ is
orthogonal to the constants, it is the orthogonal projection of ¢ — ¢y to the orthogonal
complement of the constants, so || — to|| = ||¢]|, and we get the inequality

h(T) < vy y/2M

(note that there always exists a real-valued eigenfunction of Id — M, since the real and
imaginary parts of an eigenfunction ¢ are still eigenfunctions with the same eigenvalue,
and one at least must be non-zero if ¢ # 0...) This finishes the proof of the discrete Buser
inequality.

We can now also conclude the proof of part (2) in Theorem 2.9. Given a family (T;)
of expanders, we see from the discrete Buser inequality that the relaxed graph satisfy

v\/2 A1 (1) = h(T;) = h(T,).

This shows that the normalized spectral gap is bounded away from zero. Hence it
is now enough to prove that I'; can not have an eigenvalue too close to —1. But the
definition of I'; with its added loops leads to the formula

(I + D)p, ) = % S eyl + o)
2]1\71 (MZGV a(z, y)le(e) + e w)l” + 4;% (@)
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and since N; = N; 4 |Vi| < 2N; and val(z) < vy < v, we get by positivity

(I + Mg, ) > NZ!@ )] > !s0|!2

zeV;

which implies that J\Z has no eigenvalue < —1 4+ v~!. Hence we derive
<1-min(2 1) <1
= <1—min{—, —
or, 20 v
for all ¢, giving equidistribution parameters of the relaxed graphs in terms of the expansion

parameters (h,v) of (I';). (Typically, h?/2 is less than 1, of course, so we can replace this
expression by 1 — h?/(2v).)

2.3. The expander mixing lemma. The following proposition holds in general, but it
is in the setting of expanders that it is especially useful, and is called “expander mixing
lemma”.

Proposition 2.17. Let I' = (V| E,ep) be a finite graph with no isolated vertices. For
any subsets Vi and V, of V', we have

OB (e (V)] < /e (VO T3,

where or is the spectral radius of M restricted to the orthogonal of the constant functions
in L*(T, ur). In particular, if T is connected and not bipartite, we have or = or, and if
I' is d-reqular for some d > 2, then we have
d Vi||Vx
e, va)l - T < eIV

Proof. For i =1, 2, let ; be the characteristic function of V. Since these are real-valued,
by (2.7), we have

1
(M, 02) = > a(z,y)ei(y)pa(z)
z,yeVvV
and by definition of a(x,y), this is equal to |E(V;, V2)|/N.
On the other hand, we write ¢; = (@;, 1)+¢; o, Where ¢; ¢ is orthogonal to the constants.
By orthogonality of the eigenvectors, it follows that

(M1, 02) = (@1, 1) (@2, 1) + (M @10, 020)-
The first term is equal to p(V;)u(Va), whereas the second satisfies

[{Mpr0, 2.0)] < arllenollllezoll < erlledllivzll = or v/ p(Vi)u(Va).

Comparing this with the first formula gives the desired statement. If I is d-regular, then
ur(Vi) = |Vi|/|V| and N = d|V|, hence the second inequality follows. O

This result gives a good idea of the virtues of expander graphs: if gr is relatively small,
but the sets V; and V5 are pretty large, then we obtain a very precise estimate on the
size of E(V7,V,). The result also fits with the often-stated philosophy that an expander
behaves like a random graph in many ways: indeed, if we consider a random graph with
vertex set V' and edges added independently between each pair of vertices, with the same
probability for each edge, adjusted so that the average degree is d, then it is elementary
that the expected value of |E(Vy, V3)| is d|Vi||Va|/|V].
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2.4. The discrete Laplace operator. In the course of Section 1.5, we have in fact seen
that the spectral gap of a connected graph controls the expansion constant. This leads
to a characterization of expanders using only the operator Id — M.

Definition 2.18. Let I' = (V| F,ep) be a finite graph. The normalized Laplace operator
of ', denoted Ar, is the linear operator

L3(T LA(I)
AF{ ;) : (Id — M)y

where M is the Markov operator of I'. If T" is d-regular for some d > 1, then the Laplace

operator of I is defined by A = dAr, and its spectral gap A, (I") is its smallest non-zero
eigenvalue. It is equal to d A;(I'y).

Here is a summary of the results of the previous section in terms of the combinatorial
Laplace operator, for regular graphs.

Proposition 2.19 (Properties of Ap). Let I' = (V, E,ep) be a finite connected d-regular
graph without isolated vertex.

(1) The Laplace operator is self-adjoint and non-negative; its kernel is one-dimensional
and spanned by the constant functions Moreover we have

2
(Are, ¢) 2|V| > alz,y)lel@) — o)

z,yeV

for all ¢ € L*(T).

(2) We have
Al (1—\) — min <AF¢7 90>

pel?(r)  (©,)
(p,1)=0

and

A (T
(2.15) AL hr) < ada D).

These are immediate consequences of the previous discussion. Similarly, we state for
completeness the characterization of expander graphs in terms of A;(I') and A, (T").

Theorem 2.20 (Spectral definition of expanders). Let (I';);cr be a family of connected
finite graphs with ;| — 400 and bounded valency max; max, val(z) < v. Then (I';) is
an expander family if and only if there exists A > 0 such that

AT =2A>0

foralliel.
If each T; is d-reqular for a fized d > 3, then (I';);er is an expander family if and only
if there exists X' > 0 such that
MT) =N >0
foralliel.
We call (A, v), or (N, d), the spectral expansion parameters of the family. For d-reqular

graphs, one can take X' = d\.

The definition of expanders using the Laplace operator is qualitatively equivalent to
that based on the expansion constant, and choosing one instead of the other may be a
matter of personal taste. In concrete applications, on the other hand, it may well be the
case that one requires that a family of graph satisfy specifically one of the two conditions

(or three, if random walks are considered as slightly different). Even then, if the actual
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values of the expansion parameters (A, v) or (h,v) are not important, there is no problem
in using either definition.

But it can very well happen that one wishes to have expanders according to, say, the
spectral definition, and that the explicit value A > 0 of the spectral gap plays a role
in the results (for instance, this matters enormously for applications of expander graphs
involving sieve methods in number theory, as we will sketch in Lecture 4). In such cases,
starting from the “wrong” definition and translating the parameters from the expansion
constant to the spectral gap might lead to serious loss of precision, since the order of
magnitude of A(I") and A, (") might differ quite significantly.

As a final remark, the spectral theory of graphs is a very useful and powerful tool in
graph theory, well beyond simply giving a characterization of expansion. It is especially
interesting in concrete applications because it is algorithmically very manageable to com-
pute eigenvalues of the Markov operator or of the discrete Laplace operator, even for
rather large graphs (because it is a problem of linear algebra). Hence any problem that
can be reduced (even if only approximately) to spectral properties can be studied quite
deeply. Examples are given in Trevisan’s notes [30] on spectral partitioning. Another
illustration is the paper of Varshney, Chen, Paniagua, Hall and Chklovskii [33] on the
spectral properties of the graph of the nervous system of the worm c. elegans (the only
animal whose full neural network has been mapped in detail; it has 302 neurons, i.e.,
vertices, and about 8000 synapses, i.e. edges).

2.5. Expansion of Cayley graphs. When we specialize the general definitions and
results of the previous sections to the case of a Cayley graph, we obtain group-theoretic
reformulation of the definitions, which are as follows:

(1) Let G be a finite group, and S C G is a non-empty” symmetric generating set. For
the Cayley graph I' = C(G, S), we have

. [EW)]
h(I') = min
1) pzwea  |W]
WI<|G|/2

with
[EW)] = {(g,5) € W x5 | gs ¢ W}
(a bijection from (W) and the set on the right is (g, s) — {g,9s} € Er).
(2) The space L*(T', ur) coincides with the space L*(G) of complex-valued functions

on (G, with the inner-product corresponding to the uniform probability measure on G,
namely

(p1,02) = |—é| > eilg)ea(g)

geG

for ¢; and ¢y in L?*(G). The Markov averaging operator is given by

M(g) = ﬁ S elgs).

seS

3Tt could only be empty if G is trivial.
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for p € L*(G) and g € G. Therefore we have
App(g) = 1Sle(g) = Y elgs),

sesS
(App, @) = 2|G|Z|90 gs) — e(g)I?
geg
se

for all ¢ € L*(G) and, as usual, the minimization formula

A (T) = |8 Ay(T) = min 80280
vl [le]?
A remarkable non-trivial features of Cayley graphs, which is related to their symme-
tries, is that the diameter already gives a rather good control of the spectral gap, and
hence of the expansion constant.

Proposition 2.21 (Bounding the spectral gap from the diameter). Let G be a finite
group, S C G a non-empty finite symmetric generating set of GG. For the Cayley graph
I'=C(G,S5), we have

1
M) 22—,
A () diam(I")?
and hence ]
h(T) >

~ 2diam(T)2’
We omit the proof (see [52, Cor. 3.5.3]).

Example 2.22. The result is essentially sharp, as shown by the case of the cycles C,,, =
C(Z/mZ,{+£1}), for which we have diam(C,,) ~ m/2 and

472 72
(diam C,, )?
as m — 400 by Example 2.5 (2) (taking into account that C,, is 2-regular.)

Example 2.23. Let G,, = C(&,, 5,) for n > 3 as in Example 1 20, where we see again
S, as acting on Z/nZ. We already know that diam(G,,) < n? (by Exercise 1.8), and

therefore we derive ]

(log |Gin])*

by Corollary 2.21. We also know (Exercise 1.14) that (G,) is not an expander, since
h(G,) <n !

2.6. Equidistribution for Cayley graphs. We explain now another important basic
application of the spectral definition of expander graphs, which is particularly relevant
to arithmetic applications in the context of Cayley graphs. The proper framework would
involve random walks, but we will assume for simplicity that the graph is a Cayley graph,
in which case there is a simple concrete interpretation.

1

Proposition 2.24. Let G be a finite group and S a symmetric generating set of G such
that 1 € S.
For any element g € G, and forn > 1, we have

W|{(sl,...,sn)es"|sl- =g} = |G| O(")

where o = or for I' = C(G,S). In fact, the modulus of the difference is < of.
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Proof. Note that the condition that 1 € S implies that the graph I' is not bipartite. Let

1
pn:WH(Sla--wsn)ESn | 31"'8n=9}|

for n > 1. Let ¢ denote the characteristic function of the point g, so that we can write

1
pn = |S|n Z 90(81”'871)'

(81,-+-,8n)ES™

If we further define
1
Yo =% — 47
G

so that o € L(T') (again because T is not bipartite), then we see that

Pn = + an
€]

where

1
= g > olsiesa),

(S15e--,8n)ES™

and we need to estimate ¢, from above.
The basic formula, where the Markov operator enters the picture, is the fact that for
any function ¢ € L?(T"), and n > 1, we have

1 1
(216) W Z w(Sl cee Sn) = ’S‘ﬁ Z (Mpw)(sl s Sn,1>.
(31,...,sn)€S” (51,...,871_1)65”_1

We will prove this later, and conclude first the proof, assmuing that this is correct. We
apply the basic formula to ¥ = ¢p, and then inductively to Mrey, ..., Mpyo. We obtain

1
Qn = |S|n Z 900(31"'Sn)

(814eees8n)ES™
= My (o)(1)
(the 1 is the neutral element of G, the “empty product” of 0 elements of S). But then
0 < gn < [ Miwolloo < |GIV2[ Mol < 02 |GI72 0]l = of-

It remains to prove (2.16). This is elementary: by the definition of Cayley graphs, we
have

seS

and hence, if we split the sum on the left-hand side of (2.16) according to the value of
sp, €5, we get

1 1
|S’” Z w(51 . Sn) = |S|"__1 Z Z w . 787171)577,)

(815eeeySn)ES™ (81,-ey8n—1)€ES™ 1L sn€S
1
= 15p1 > (Mrg)(s1eesn),
(81,...,871_1)65'”71
as claimed. N
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Remark 2.25. (1) If you are familiar with probabilistic language, the previous compu-
tation is interpreted as follows. We are considering a simple (nearest neighbor) random
walk (X,)ns0 on G, defined by Xg =1 and X,, = & ---&, for n > 1, where (§,),>1 i a
sequence of independent random variables uniformly distributed in the finite set S. Then

1
ST Z W(s1---sp)

(815++,8n)ES™

is the same as the expectation (on the underlying probability space on which the random
variables are defined) of ¥(X,,). The basic formula (2.16) becomes

E((Xn)) = E(Mry)(Xn-1))

for n > 1. The proposition can be interpreted as a simple special case of the general theory
of finite Markov chains (convergence of the random walk to the equilibrium measure,
which here is uniform on G).

(2) The meaning of the proposition, for a given graph, is that the products s;--- s,
become “equidistributed” when n is large: they are about equally as likely to represent
every element in GG. Moreover, the “speed of convergence” is measure by or. Since this
quantity is < 1, the convergence is exponentially fast, but it only starts having effect
when of! is (say) less than 1/(2|G|) (so that the inequality implies that the left-hand side,
which is the probability that X, is equal to g, is at least 1/(2|G])), which means when n
is larger than about log(2|G|)/log(1/0).

This implies yet another interpretation of expander families: for Cayley graphs C(G;, S;),
with S; of bounded size, the expander property means that the “mixing” towards equi-
librium is happening uniformly fast over all ¢.

2.7. Exercises.

Exercise 2.1. Let I' = (V, E,ep) be a finite graph.
(1) For ¢ € L*(T', ur), show that

(2.17) )l = Z a(z,y)|p(x

z,yeV

(2) Let p € L*(T', ur) be a function such that {(p, 1) = 0 (i.e., a function which averages
to 0). Show that

(218) loll? = 5y O valla) val(y)lo(a) — ol)]”

z,yeVvV

Exercise 2.2. This exercise gives a different proof of the fact that || M| < 1
(1) Explain why the norm of M is the maximum of the absolute values of its eigenvalues.
(2) If X is an eigenvalue, show directly that |A| < 1. [Hint: Use the maximum norm
instead of the L?-norm.]

Exercise 2.3 (Maximum modulus principle). This exercise discusses the “geometric”
computation of ker(M —1). We assume that I' is a finite graph without isolated vertices.
(1) Show that if ¢ is the characteristic function of a connected component of I', we
have My = ¢.
(2) Show that, in order to prove that these characteristic functions span ker(M —1), it
is enough to prove that a real-valued element of ker(M — 1) is constant on each connected

component of I'.
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(3) Let W C V be a connected component. Let ¢ be a real-valued element of ker(M —1),
let m be the maximum value of ¢(z) on W, and zy € W a vertex where ¢(xy) = m.
Show that ¢(z) = m for all x connected to z( by at least one edge.

(4) Deduce that ¢ is equal to m on all of W and conclude.

(5) Using similar methods, determine ker(M + 1).

Exercise 2.4 (Both sides have equal weight). Let I" be a connected non-empty finite
bipartite graph without isolated vertices, partitioned as V = V{ UV} with all edges
between 1V and V;. Show that

pr (V) = pe(Vh) = 3.

Exercise 2.5. Let m > 3 and consider the complete graph K, on m vertices.
(1) Show that the Markov operator is given by

1 1
(M) () = m@ oly) = p(x)) = ———(a).
p € L3(Kn).
(2) Deduce the spectrum and the value of gk

m*

Exercise 2.6. Let m > 2 and let I' = C,,,, with vertex set Z/mZ.
(1) Show that for
o L/mZ — C
we have

Mp(z) = 3 (g(z — 1) + plo+ 1))

(2) Consider the discrete Fourier transform on Z/mZ, which is the linear map
{ L*(Cn) — L*(Cy,)
@ =P
defined by

x€Z/mZ

for a € Z/mZ, where e(z) = €*™* for z € C.
For a € Z/mZ, define x, to be the function on I' such that x,(z) = e(ax/m).

Show that
2ra

m(a) = cos(—){ﬁ(a).
m
for any function ¢ on I' and any a.
(3) Show that

27b
My, = cos<i>xb
m

and that () is an orthonormal basis of L*(T).

(4) If m is odd, show that each eigenvalue, except 1, has a 2-dimensional eigenspace
spanned by x, and x_,. If m is even, show that all eigenvalues except for 1 and —1
(which have 1-dimensional eigenspaces) have a 2-dimensional eigenspace.

(5) Deduce that

2
0c,, = COS(2—7T> =1- 2% +O0(m™)
m m

for m > 2.
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Exercise 2.7. Let G3 be the Cayley graph C(&3,.S3) which we drew in Example 1.4.
(1) Compute the matrix of the Markov operator of G3 in the basis of characteristic

functions of single points, and compute its spectrum and the equidistribution radius.
(2) Compute an orthonormal basis of L?(G3) of eigenfunctions of M.

Exercise 2.8 (The cycles again). Let I' = (), with m > 2 even (so that Exercise 2.6
shows that A;(C,,) = 1 — cos(2r/m) ~ (27%)/m? as m — +oo, while Example 1.26
implies that h(C,,) ~ 4/m).

(1) Consider the real-valued A;-eigenfunction given by

oo = (2) - ()

for x € Z/mZ. Apply Lemma 2.16 with the uniform probability measure to deduce that
there exists some set W with

where

1= 3 [o(2) en(EED))
pe 5[]

0<es<m—
(2) Show that A — 4 as m — +o0, and B ~ 2m. Thus the bound h(C,,) < A/B ~
27 /m is of the right order of magnitude in that case.

Exercise 2.9. Let I' = (V| E') be a finite simple graph. The chromatic number xr is the
smallest integer £ > 0 such that there is a k-coloring of V' where no adjacent vertices
have the same color (i.e., such that there is a function f: V — {1,...,k} such that
f(z) # f(y) whenever x and y are connected by an edge). The independence number ir
is the largest £ > 0 such that there exists Y C V with the property that elements of YV
are never connected.

(1) Show that xrir > |I'].

(2) If I' is d-regular with d > 2, then show that ir < or|I|.
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LECTURE 3: EXPANDERS EXIST

In this third lecture, we will finally explain that expanders exist, and in fact provide
various constructions, each of which is important in its own right. These by no means
exhaust the known examples of expanders!

3.1. Probabilistic existence of expanders. The first approach to construct expander
graphs is to use random constructions. This is the idea was used originally by Barzdin and
Kolmogorov and by Pinsker [69, Lemma 1]. It turns out, in fact, that for many models
of random graphs, there is a high probability that they are expanders, in the sense that
there is a positive lower bound for the Cheeger constant, valid with high probability.

We will state a standard version of this result, involving bipartite expanders. Fix some
integer d > 3. For any fixed n > 1 and any d-tuple o = (074, ..., 0%) of permutations of
{1,...,n}, we define a graph I', with vertex set

V={(,0) [ 1<i<n}U{(i,1) [ 1<i<n}=VUW,

(independent of o) and with edges joining (4, 0) to (o;(7),1) for 1 < j < d: formally, we
take
Ey ={(i,0;(1)) | 1<i<n, 1 <j<d},

and ep((¢,0;(7))) = {(4,0), (¢;(7),1)}. These graphs are bipartite and d-regular, and they
may have multiple edges.

We view these graphs as random graphs by thinking of the permutations o; as taken
independently and uniformly at random in &,,. Thus the probability that the graphs T,
satisfy a property P(T') of graphs, denoted P(T', has P), is simply

1 1
= WHG € &% | T, has P} = ——|{o € & | I, has P}|.

P(T, has P) ()
Then the following results holds:

Theorem 3.1. Fiz d > 3. There exists hy > 0 such that
lim P(h(I'y) < hg) = 0.

n—-+00

In particular, for all n large enough, some I, satisfies h(L'y) = hy.

Remark 3.2. Here is one justification for hoping that such a result could be true. Recall
that we suggested at the end of Section 1.4 that a possible way of constructing expanders
would be to start with the finite trees T} 5, of depth k > 1 with d > 3 fixed and £ — +o0,
and attempt to add some edges connecting the leaves of the tree to vertices “in the
core” of the tree, and in particular to vertices on other branches from the root. Some
elementary attempts of defining a family of edges of this type turn out to fail — either
because the resulting graphs are again too easily disconnected, or because they seem hard
to analyze. But these attempts might suggest that the best chance is to “throw edges
at random”. However, at this point, one can also simply decide that all edges should be
placed randomly, to avoid dealing with two types of edges. This might naturally lead to
the graphs of the type we consider here.

3.2. Ramanujan graphs. The definition of an expander family exhibits the remarkable
feature of being quantitative in some sense (it refers to quantitative properties of the
expansion constant) and qualitative in another (it asks for the existence of some positive
lower bounds for the expansion constants). In applications, as we will see in Lecture 4,
it happens frequently however that the value of this lower bound plays a role (in the

random walk definition, this is obviously related to the speed of convergence to a uniform
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measure). It is natural to ask if the expansion or equidistribution constants can have
a meaning, or in a related way, how good can equidistribution be in the best possible
world.

Although (to the author’s knowledge) the values and limits of the expansion constant
for expander families do not have any special property or interpretation, it turns out that
the spectral data (Definition 2.8) can have some meaning, and in particular that it is
natural to consider optimal cases: these are known as Ramanujan graphs.

Definition 3.3. Let d > 2 be an integer. A d-regular connected finite graph I is called
a Ramanujan graph if all the eigenvalues A of the Markov operator M of I' satisfy either

re{=1,1 or [\ < 2\/?, or in other words, if or < 2\/21?-

There is a good theoretical motivation for this definition, depending on the notion
of the universal cover of a graph, which in the case of a d-regular graph is an infinite
d-regular tree. For such an infinite graph, one can also define a Markov operator, and
Kesten proved that the spectrum of the Markov operator is interval

2vd —1 2v/d—1
d d
This means that the definition of a Ramanujan graph states that all “non-trivial”
eigenvalues of M are contained in the spectrum of the universal cover of T'.
In addition, a result of Alon-Boppana (see, e.g. [12, Th. 5.3] or [74, Prop. 3.2.7]) shows
that this is the strongest possible restriction for an infinite family of graphs: if (I';);es is
any family of d-regular connected graphs with |I';| — 400, then we have

i 2vd—1
limsup or, > ———.
i ' d
Example 3.4. (1) Let d > 3. The complete graph K, is a Ramanujan graph: indeed by
Example 2.5, we have g, = 1/(d — 1) < 2v/d — 1/d.

(2) Let d > 3 and let K4 be the complete bipartite graph with input set Vy = Z/dZ
and output set V; = Z/dZ (Example 1.13, (2)). Then K,  is also a Ramanujan graph.
Indeed, since K, 4 is bipartite, both 1 and —1 are eigenvalues of the Markov operator.
But also, the kernel of the Markov operator is the space of f € L*(K,4) such that

Y fa) =) fl@)=0,

zeVy zeV]

which has codimension 2 in L?(Kz4). This means that 0 is the only eigenvalue of the
Markov operator on L(Kg.4).

Since Ramanujan graphs are, individually, the best-possible graphs from the point of
view of the Markov operator, one can ask if they can form expanders. In other words,
does there exist an infinite family of Ramanujan graphs with bounded valency and in-
creasing size? This turns out to be a rather subtle question. The paper where Ramanujan
graphs were first defined by Lubotzky, Phillips and Sarnak [59] contains explicit exam-
ples of infinite families of d-regular Ramanujan graphs (also discovered independently by
Margulis [61], both constructions relying on deep arithmetic input due to Deligne and
Drinfeld), but only when d = p + 1 for some prime number p. This essential restriction
was related to the specific arithmetic origin of these graphs. Further examples, always
relying on number theory, produced examples with d = p¥ + 1 for v > 1, always with
p prime. Only quite recently have Marcus, Spielman and Srivastava [00] constructed

Ramanujan graphs of arbitrary degree:
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Theorem 3.5. Let d > 3 be an integer. There exists a family (I';);>0 of bipartite d-
reqular Ramanujan graphs with |T;| = d2°.

The proof uses a probabilistic argument, but in very different manner than Section 3.1:
the idea is to show that given any starting d-regular bipartite Ramanujan graph I', there
exists another bipartite Ramanujan graph I with |[I”| = 2|T'| which is a “2-covering” of
I'. This property had been conjectured by Bilu and Linial. Applied inductively, starting
with the “trivial” example of the complete bipartite graph Ky, (Example 3.4, (2)), the
theorem follows. (For generalizations to other coverings, see the paper [35] of Hall, Puder
and Sawin.)

3.3. Cayley graphs of finite linear groups. For many of the applications of expander
graphs that we will discuss in Chapter 3.5, the most important families of graphs are those
arising from Cayley graphs of finite linear groups. Considerable progress has been made
in recent years in understanding the expansion properties of these graphs.

There are two general, related, constructions of such families. We may consider a
family (G;) of finite groups, with |G;| — 400, given with symmetric generating subsets
S; C G; of fixed cardinality k, and the family (C(G;, S;)). (For example, consider SLy(F,)

with generating set
{((1) j:(p—1 1)/2) | (:l:(p—l b (1))}

for p prime > 3). Alternatively, we may consider an infinite finitely generated group
G, with a fixed symmetric finite set of generators S C G, and a family K; of normal
subgroups K; < G with finite index [G' : K;] — 400, and consider the relative Cayley
graphs C(G/K;, S). (For example, take G = SLy(Z) with

s={( 7). (4 1))

and K, for p prime, the kernel of reduction modulo p).

Note that the second case is essentially a special case of the first one (taking S; to be
the image of S modulo K;), but the first case is much more mysterious.

The question we wish to address is, quite generally: under which type of condition is
it true that a family of Cayley graphs as above is an expander family?

Up to now, only two examples of sequences of Cayley graphs have appeared in this
book, but these are not representative of the general case: the cycles C,, for m > 2
(which are 2-regular Cayley graphs of G,, = Z/mZ) or the graphs G, = C(&,,S,) of
Example 1.20 (4)). In both cases, we have seen that these are not expanders (though
the second is not too far). But it turns out that, for many interesting sequences of
“complicated” non-abelian groups, the answer to the question is positive, or conjectured
to be so. For instance, in Section 3.4, we will give a fairly detailed sketch of the proof of
the case m = 3 of the following theorem that combines results of Kazhdan and Margulis:

Theorem 3.6 (Kazhdan, Margulis). Let m > 3 be an integer. For any finite symmetric
generating set S of SL,,(Z), the family of relative Cayley graphs

(C(SLin(Z)/H, 5)) tasLy (),

where H Tuns over all finite index normal subgroups of SL,,(Z), is an expander family.

This is an important and useful result, but the method of proof shows that the groups
concerned are fairly special. In particular, it does not apply to SLy(Z) (and indeed, the

analogue statement is false for SLy(Z)).
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On the other hand, there is an important theorem, proved by Bourgain and Gam-
burd [10] for m = 2 and by Varju [32] for m > 3 concerning expansion of quotients of
much more general subgroups of SL,,(Z). The price in this generalization is that we must
restrict the family of quotients that are expanding.

Theorem 3.7 (Expansion in Zariski-dense subgroups of SL,,(Z)). Let m > 2 be an
integer. Let S C SL,,(Z) be any finite symmetric subset and let G be the subgroup
generated by S. Assume that G is Zariski-dense in SL,,. For prime numbers p, let
I, = C(SL,.(F,),S) be the relative Cayley graph of the finite quotient group SL,(F,)
with respect to the reduction modulo p of the set S. Then there exists py such that the
family (I'y)p=p, is an expander family.

Remark 3.8. (1) The difference with Theorem 3.6 is that the previous result holds for
any collection of finite index subgroups, not only for a specific family such as the kernels
of reduction modulo primes, or even modulo any integer.

(2) In the special case of SLy(Z), although Theorem 3.6 does not hold, there were
important special cases of Theorem 3.7 that had been proved much earlier, and that were
of great importance (both in terms of applications and of history). In particular, when
G = SLy(Z) itself, Theorem 3.7 follows from a crucial result of Selberg concerning the
spectral gap of the hyperbolic Laplace operator and a comparison principle of Brooks and
Burger. This is related to Lubotzky’s Property (7), and we refer to [56, §4.4] for more
discussion. The most general result along these lines is due to Clozel [23].

In the setting of Theorem 3.7, the condition that G is Zariski-dense has a very simple
equivalent formulation: it means that for all primes p large enough, the reduction modulo
p maps G surjectively to SL,,(F,). In terms of graphs, it therefore means that there exists
po such that C(SL,,(F}), S) is connected for all primes p > po, which is clearly a necessary
condition for the expansion! It is also an elementary condition to check in many cases.
For example, we obtain the following corollary:

Corollary 3.9 (Bourgain-Gamburd). Let k > 1 be an integer, let

{65 (4 ) e

and for p prime, let S, denote the image of S modulo p. Then the family of Cayley graphs
C(SLy(F,), Sy) for ptk is an expander family.

For k =1 or k = 2, this result was part of the special cases known classically that we
mentioned above. However, for £ > 3, this was a notorious open question until the results
of Bourgain-Gamburd led to a general proof. The difference between these two cases is
that S generates a finite index subgroup of SLy(Z) for k = 1 or k = 2, but an infinite index
subgroup if £ > 3. These groups are examples of what are now often known as “thin”
subgroups of SLy(Z) (see the book [13] for many aspects of the fascinating properties of
these groups).

As we will also explain, a crucial step in the proof of Theorem 3.7 is a very important
theorem that was proved by Helfgott [10] for SLy and SL3 (and “almost” for SL,,), and
then generalized by Pyber—Szabé [71] and Breuillard-Green—Tao [14] independently. The
latter immediately implies for instance the following diameter bound:

Theorem 3.10. Let m > 2 be an integer. For any prime number p, let S, C SL,,(F))
be a symmetric generating set of SL,,(F),), and assume that

1S, < k
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for some fized k > 1. Then there exist ¢ > 0 and A > 0 such that the family of Cayley
graphs (C(SL,,(F}), Sp)) satisfies

M(C(SLin(Fp), Sp)) =

_c
(log p)*

Remark 3.11. The following example shows that for certain families of finite groups, there
may exist families of generators for which the associated Cayley graphs are expanders,
and others for which they are not. The Cayley graphs G,, = €(&,,,S,,) of Example 1.20
(4) are not expanders, but a remarkable result of Kassabov [15] shows that there exist
(effectively computable) generating sets 7T, of &, of bounded size as n — +o00, such
that the Cayley graphs (C(S,,T},)) do form an expander. Hence, for symmetric groups
at least, the expansion property is not purely group-theoretical.

The restriction to subgroups of SL,,(Z) and to reduction modulo primes in Theo-
rem 3.7, and to subgroups of SL,,(F,) for Theorem 3.10, is only present for the sake of
simplicity. Much successful work was done from 2010 to around 2014 to generalize these
results to other groups and to reduction modulo other integers, and the current state of
knowledge goes much further. To state these extensions requires the use of the language
of algebraic groups; the reader who is not familiar with the terminology need only know
that the groups SL,, for m > 2 and Sp,, for g > 2 satisfy the conditions of both theorems
we will now state.

The general version of Theorem 3.10 was proved by Pyber and Szabé [71] and Breuillard—
Green—Tao [11] independently. Precisely we have:

Theorem 3.12. Let G be a semisimple almost-simple linear algebraic group over Q.
For p prime, let S, C G(F,) be a symmetric generating set of G(F,). Assume that there
exists an integer k > 1 such that |S,| < k for all p. Then there exist ¢ > 0 and A > 0
such that the family of Cayley graphs (C(G(F)),S,)) satisfies

c
(log )4~

For expanders, Salehi-Golsefidy and Varju [72] proved the following remarkable result,
where the last addition corresponding to SL,, is due to Bourgain and Varju [12].

A (C(SLin(G(Fy), Sp)) >

Theorem 3.13. Let G be a semisimple almost-simple linear algebraic group over Q.
Let T be a Zariski-dense finitely generated discrete subgroup of G(Z). Let S be a finite
symmetric generating set of I'. There exists an integer N > 1 such that the family of
relative Cayley graphs C(G(Z/nZ),S) for n squarefree and coprime to N is an expander
family.

If G = SL,,, then the same holds for the family C(G(Z/nZ),S) for all integers n > 1

coprime to N.

The case of G = SLy and squarefree n is due to Bourgain, Gamburd and Sarnak [I1].

3.4. Property (T). In the 1960’s, Kazhdan [10] introduced an important property of
locally compact groups, related to their unitary representations. A few years later, it was
realized by Margulis that this led to examples of expanders from Cayley graphs of finite
quotients of discrete groups satisfying Kazhdan’s property.

We first explain this result of Margulis, taking a practical point of view where we
specialize the definitions from the outset to discrete groups.
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Definition 3.14 (Kazhdan’s Property (T)). Let G be a discrete group. One says that G
has Property (T) if there exists a finite subset S of G and a positive real number § > 0
such that for any unitary representation

0: G — U(E),

where E is a Hilbert space, either there exists a non-zero vector v € E fixed by ¢ (i.e.,
o(g)v =wv for all g € G) or for all v # 0, we have

max|[|e(g)v — vl = d[fv]].

One then says that (5,0) is a Kazhdan pair for G. If S is fixed, 0 is said to be a Kazhdan

constant.

The shorthand for this definition is: G has Property (T) if, whenever G acts linearly
by unitary transformations on a Hilbert space, either it has a (non-zero) invariant vector,
or it doesn’t even have “almost” invariant vectors: any vector is moved by a non-trivial
amount by some element of S.

Theorem 3.15 (Margulis). Let G be a discrete group with Property (T). Let (S,9) be
a Kazhdan pair for G such that S generates G. Let X be the family of all finite index
normal subgroups of G. For all H € X, we have

h(C(G/H, S)) = o°.

In particular, if X contains elements of arbitrarily large index in G, the family of Cayley
graphs of G/ H, with respect to the image of S, is an expander family.

Proof. Let H € X and denote I' = C(G/H,S). We consider the (finite-dimensional)
Hilbert space E = L?(G/H) (i.e., the L*-space for the Cayley graph T', where the inner
product is defined by

(i fo) = |G/ D h@A®

rEG/H
for fi, fo: G/H — C) and the homomorphism G — U(E) defined by

o(9)f(x) = f(zg)

(where we write xg = x7m(g) in terms of the projection 7: G — G/H). It is indeed
elementary to check that g is a homomorphism, and that g(g) is unitary.

Let Fy be the orthogonal complement of the constant functions in E. Since the constant
functions are invariant, under g, and the representation is unitary, the subspace Ej is also
invariant. Thus g induces a unitary representation go: G — U(E)p). Since S generates G,
there is no function in Ej invariant under the action of G.

Let now W C G/H be a set of vertices of I with [W| < 1|G/H|, and let

bW
|G/H|
be its normalized characteristic function. Then f belongs to Ey, and Kazhdan’s Property

(T) therefore implies that there exists s € S such that ||o(s)f — f||* = 6*||f]|*. However
we have

f=

e

twl? =
—[G/H]



and

lefs) = 17 = et = 1wlF = ez 3 Itwes) = (o)l
z€G/H
()|
rG/Hr(;W”x%V ) < ez

zsgW zsEW
It follows that
[EW)] = 6°[W].
Taking the minimum over W, we see that the Cheeger constant of I" is > §2. O

Remark 3.16. One can show (see, e.g., [0, Prop. 1.3.2]) that in fact, for a discrete group
G with Property (T), any Kazhdan pair (S,0) has the property that S generates G.
Note that this implies that G is finitely generated; this fact was one of the motivating
applications of Property (T), since Kazhdan was able to prove Property (T) for certain
groups that were not previously known to be finitely generated. Conversely, for any finite
generating set S of G, one can show that there exists § > 0 (a Kazhdan constant for 9)
such that (S,0) is a Kazhdan pair.

The following important theorem of Kazhdan implies Theorem 3.6.

Theorem 3.17 (Kazhdan). For any integer m > 3, the group SL,,(Z) has Property (T).
In particular, for any finite symmetric generating set S of SL,,(Z), the family of Cayley
graphs

(C(SLm(Z)/H, S)) rasLa(z);

where H runs over all finite index normal subgroups of SL3(Z), is an expander family.
3.5. Exercises.

Exercise 3.1. Let n > 2. Let S, = {Id+ E;; | 1 < i # j < n} be the generating
set of elementary matrix of SL,(Z). Consider the unitary representation of SL,(Z) on
L*(Z" — {0}) by o(g)p(m) = w(g~'m) for g € SL,(Z), ¢ € L*(Z" — {0}) and m € Z".

Let ¢ be the characteristic function of the n canonical basis vectors in Z™ — {0}. Show

that
max lo(s)s — o > \f ol

(This result is also due to Zuk, and is reported in [76, p. 149]; it shows that the best
possible Kazhdan constant for the generating set of elementary matrices must depend on
n, and tends to 0 with n).

The following exercises are first steps in the direction of sieve-type arithmetic applica-
tions of expander graphs.

Exercise 3.2. Let G = SL3(Z) and let S be a finite symmetric generating set of G
containing 1.
(1) Show that there exists a constant ¢ > 0 such that for primes p, we have

1
—— g € SL3(F Tr(g) =0 é—
‘SLg(Fp)’Hg 3( p) ’ (g) }’ »
(2) Deduce that
) 1 n
Jim rem (st s) €87 | Tr(sy - 0) = 0} = 0.
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(It may be useful to distinguish the cases g33 = 0 and g3 3 # 0.) Does this use the fact
that SL3(Z) has Property (T)?

Exercise 3.3. Let S C G = SL3(Z) be a finite symmetric generating set of G contain-
ing 1.
Let n > 1 be an integer, () > 2 be a parameter and define for p prime

bp(s1,...,8,) =1
if Tr(sy -+ s,) (modp) is a not square modulo p, and
bp(s1,...,8,) =0

otherwise.
(1) For Q > 2, let

No=> b,
P<Q

Show that

1
WH(sl, ooy Sp) €8™ | Tr(sy,...,s,) 18 a square in Z}| <

1
W|{(Sl7 e 78n) | NQ<817 .. -7Sn) - O}‘

(2) Show that

WH(Sl? . '75n) | NQ(Sh aSn) = O}| XX E_gg
where
1
Eq ER > N(si,....s0),
(81 ..... Sn)ESn
1
Vo ST > Nisi,....sn)" — Ep.
(815eeey8n)ES™

(3) Show that there exists > 0 such that

! .
WHQ € SL3(F,) | Tr(g) is a square}| > &
P

if p=>5.
(4) Using expansion, show that there exists A > 1 and 0 > 0 such that
EAn > 571'(14”),
where m(A™) is the number of primes up to A™.
(5) If p1 # po are distinct primes, show that there is an isomorphism of groups

SLs(Fy,) x SLs(Fy,) =~ SLs(Z/p1p2Z).
(6) Using expansion again and (5), show that there exists B > 1 and ¢ > 0 such that
VBn g CT('(Bn)

(this is more difficult; expand the square in N%(sy,...,s,) as sum over pairs (py,p2) of
primes < ), and handle separately the cases p; = py and p; # ps.)
(7) Deduce that
1
lim ——
n——+oo ‘S’n

H{(s1,...,8,) € S™ | Tr(s1,...,5,) is a square in Z}| = 0.
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(8) How far do you think you might generalize this type of statement?
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LECTURE 4: SOME APPLICATIONS OF EXPANDER GRAPHS

This lecture presents, mostly in a survey style, some of the applications of expander
graphs. This is very far from exhaustive — the reader will find many more applications,
especially to combinatorics and theoretical computer science, in [42], and to “pure” math-
ematics in the books and lectures of Lubotzky [56], [57] and of Sarnak [74].
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