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Kleptoparasitic melees - modelling food

stealing featuring contests with multiple

individuals

Received: date / Revised version: date – c© Springer-Verlag 2008
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or more, and discuss the circumstances when particular ESSs occur, and when

there are likely to be multiple ESSs.

M. Broom: Department of Mathematics, University of Sussex, Brighton BN1 9RF,

UK, e-mail: M.Broom@sussex.ac.uk
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1. Introduction

Kleptoparasitism is the stealing of items of food by one animal from another

(Rothschild and Clay 1952), and is common amongst many types of animals

for example insects (Jeanne 1972), fish (Grimm and Klinge 1996) and mam-

mals (Kruuk 1972). It is perhaps most common in birds (see Brockmann

and Barnard 1979 for a review), and especially seabirds (Steele and Hockey

1995, Triplet et al. 1999, Spear et al. 1999).

A significant body of literature using game theoretic models to investi-

gate kleptoparasitic behavior in nature has been built up (e.g. Barnard and

Sibly 1981; Stillmann et al. 1997; Broom and Ruxton 1998; Ruxton and

Broom 1999; Broom and Ruxton 2003). The original model of Broom and

Ruxton (1998) has been developed in a variety of ways in recent papers. For

instance Luther and Broom (2004) showed that key dynamic assumptions of

the model were correct, Broom et al. (2004) developed the game by allowing

handling birds to surrender food items and varying the success probability

of the contestants, Broom and Rychtář (2007) analysed the models using

adaptive dynamics for the first time, and Luther et al. (2007) considered

two groups of birds, kleptoparasites and those which only foraged. However

in each of these papers, fights were limited to two contestants only. In all of

these earlier models, the key ingredient was this contest over food between

the two animals, and where the different models gave different results, it

was often because the nature of these contest changed from one scenario to

another.
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If an individual came across a contest for food already in progress, it

was not allowed to intervene. This is not always reasonable, and it has been

observed (e.g. Steele and Hockey, 1995) that large numbers of birds can

fight over the same piece of food. Such groups can be particularly visible

compared to smaller contests, and so such multiple contests may be very

common. In this paper we explore this situation by allowing challenges to

groups contesting a food item, and individuals have to decide whether to

challenge any given sized group.

We find the equilibrium distribution of the population conditional on

the strategies employed by the population members and find conditions

when it is worth challenging a group in a given situation; this is more

complicated than in the previous models where only single individuals could

be challenged. Every individual can choose what size groups it is prepared

to challenge. We investigate how large a group is worth challenging and

the distribution of contest sizes in the population. We show that the only

sensible strategies are to challenge groups up to a certain maximum size,

and not to challenge larger groups. In particular we look for what parameter

values such strategies are Evolutionarily Stable Strategies (ESSs). We show

that there is always at least one ESS in every case, but that there can be

two or more ESSs, sometimes many.

2. The Model

Individuals are either searchers (S), handlers (H) or involved in fights. Such

kleptoparasitic contests can involve fights in groups of size i, for general i ≥



4 M. Broom, J. Rychtář

2. Searchers are allowed to challenge groups already involved in a contest,

thus increasing the number of contestants by one. Let Fi be the density of

individuals involved in fighting in groups of size i, and Gi the density of

such groups, so that Fi = iGi. Note that in the original model of Broom &

Ruxton (1998) individuals were only allowed to fight in groups of size two,

and their density was labeled A (equivalent to F2 here).

Transitions between the states occur according to a continuous time

Markov chain, so every possible transition is associated with a single rate.

Food is found at rate νff , and is handled at rate 1/th. All fights, irrespec-

tive of the size of the groups, end at rate 1/tc, where tc is the expected

duration of a contest. In previous papers where all such contests contained

two individuals, this average fighting time tc was written as ta/2. Searchers

find groups of size i fighting over food at rate νhi
Gi (so that the rate of

finding a handler is νh1H). When a searcher sees a group of size i, it chal-

lenges with probability pi (so the probability of challenging a handler is p1).

These probabilities may be fixed properties of the population, or be po-

tentially different for different individuals. We will consider particular fixed

systems, but we will be particularly interested in the optimal values of pi

if all possibilities are allowed in the population. When contests end each

group member is equally likely to be the winner, and emerge as a handler,

all others becoming searchers. The parameters of the model are summarised

in Table 1 and the transitions are shown in Figure 1.
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Meaning

P the density of individuals in the population

νff the rate that food items are found

1/th the rate that food items are handled

1/tc the rate that fights are resolved

vh1 the rate that handlers are found

vhi
the rate that groups of i fighters are found

S the density of searchers

H the density of handlers

Gi the density of groups of i individuals; G1 = H

Fi the density of individuals in groups of size i, Fi = iGi

p1 the probability a handler is challenged if found

pi the probability a group of i fighters is challenged if found

p the challenging strategy, p= (p1, p2, p3, . . .)

Vk the strategy to challenge groups of size < k only

πi the probability of becoming a handler when currently in Gi

ρi the probability that a new individuals joins Gi

Xk any value X if all individuals play Vk

(e.g. Gi becomes Gi,k)

Table 1. A summary of model parameters (top section) and notation (bottom

section).

The transitions translate into the following system of differential equa-

tions.

dS

dt
=

H

th
− νffS +

1

tc

∞
∑

i=2

(i − 1)Gi − νh1p1SH − S

∞
∑

i=2

νhi
piGi

dH

dt
= νf fS −

H

th
− νh1p1SH +

1

tc

∞
∑

i=2

Gi
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νff

1/th
vh1

Hp1 vh1
Sp1

1/tc 1/tc

vh2
Sp2

2/tc 1/tc

1/tc

vh2
G2p2

vhi−1
Gi−1pi−1

(i− 1)/tc

S H

G2

G3

Gi

vhi−1
Spi−1

vh3
Sp3

vhi
Spi

Fig. 1. Schematic description of the model.

dGi

dt
= νh(i−1)

SGi−1pi−1 −
1

tc
Gi − Giνhi

Spi i = 2, 3, . . .

3. Evaluating the population state densities

We first proceed to find expressions for each of the state densities described

above. The system of differential equations described above tends to equilib-

rium exponentially fast, following Luther & Broom (2004). Hence, the time

derivatives can be considered 0 and by labeling the following summations

FT =

∞
∑

i=2

iGi

GT =

∞
∑

i=2

Gi

GS =

∞
∑

i=2

νhi
piGi
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we obtain

0 =
H

th
− νffS +

1

tc
(FT − GT ) − νh1p1SH − SGS (1)

0 = νffS −
H

th
− νh1p1SH +

1

tc
GT (2)

dG2

dt
= νh1SHp1 − G2

(

1

tc
+ νh2Sp2

)

= 0 (3)

0 = (νh(i−1)
Spi−1)Gi−1 −

(

1

tc
+ νhi

Spi

)

Gi i = 3, 4, . . . (4)

3.1. Solving for the equilibrium solutions

Equation (4) rearranges to give

Gi =
νh(i−1)

pi−1S

νhi
piS + 1/tc

Gi−1 = G2

i
∏

j=3

(

νh(j−1)
pj−1S

νhj
pjS + 1/tc

)

(5)

This in turn gives

FT = G2

∞
∑

i=2

i

i
∏

j=3

(

νh(j−1)
pj−1S

νhj
pjS + 1/tc

)

GT = G2

∞
∑

i=2

i
∏

j=3

(

νh(j−1)
pj−1S

νhj
pjS + 1/tc

)

GS = G2

∞
∑

i=2

νhi
pi

i
∏

j=3

(

νh(j−1)
pj−1S

νhj
pjS + 1/tc

)

We now have the system completely expressed in terms of known parame-

ters, assuming at this stage that the values of the pis are known, and the

three unknowns S, H and G2. We now proceed to find expressions for each

of S, H and G2.

Equation (4) implies that

∞
∑

i=3

Gi +

∞
∑

i=3

tcνhi
piSGi =

∞
∑

i=2

tcνhi
piSGi
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and hence

GT =

∞
∑

i=2

Gi = G2 + tcνh2p2SG2 = (1 + tcνh2p2S)G2.

From (4) we also get, for any k > j,

tcνhi
piSGi = (1 + tcνh(i+1)

pi+1S)Gi+1 =

k
∑

j=i+1

Gj + tcνhkpkSGk =
∞
∑

j=i+1

Gj

using the fact that Gi → 0 as i → ∞, and letting k → ∞. Thus,

tcSGS =
∞
∑

i=2

tcνhi
piSGi =

∞
∑

i=2





∞
∑

j=i+1

Gj





=
∞
∑

i=2

(i − 2)Gi = FT − 2GT

and so

FT − tcSGS = 2GT = 2(1 + tcνh2p2S)G2 (6)

From (6) it is clear that equations (1), (2) and (3) multiplied by two add to

zero and so there are really only two equations here. The third equation for

our three unknowns comes from the fact that every individual is in exactly

one state, so that

S + H +

∞
∑

i=2

Fi = S + H + FT = P (7)

Equations (1), (2) and (6) yield

H = thνffS. (8)

This now means, using (3), that

G2 =
tcνh1p1thνffS2

1 + tcνh2p2S
(9)
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We thus have every other density term (H, G2, G3, . . .) expressed as a func-

tion of the density of searchers S. Finally we obtain an equation for S by

substitution into (7). This yields

P = S + H + FT = S(1 + thνff) + G2

∞
∑

i=2

i
i
∏

j=3

(

tcνh(j−1)
pj−1S

tcνhj
pjS + 1

)

= S(1 + thνff) + thνffS

∞
∑

i=2

i

i
∏

j=2

(

tcνh(j−1)
pj−1S

tcνhj
pjS + 1

)

(10)

3.2. Special cases and examples

3.2.1. Challenging handlers only. If p1 > 0 and pi = 0, for all i > 1, then

(10) becomes

S(1 + thνff) + thνffS × 2tcνh1p1S = P

which rearranges to

(

H

P

)2

taνh1p1P +
H

P
(1 + thνff) = thνff

as in the original Broom & Ruxton (1998) model. Note that the equation

for H/P was used because the rate of food consumption in the population

is directly proportional to H/P .

3.2.2. Challenging handlers or groups of at most two fighters. If p1 >

0, p2 > 0, and pi = 0, for all i > 2, then (10) becomes

S(1 + thνff) + thνf fS

(

2
tcνh1p1S

tcνh2p2S + 1
+ 3

(tcνh1p1S)(tcνh2p2S)

tcνh2p2S + 1

)

= P

which rearranges to

3A1A2CS3 + (A2(1 + C) + 2A1C)S2 + (1 + C − PA2)S − P = 0
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where C = thνff , A1 = tcνh1p1 and A2 = tcνh2p2.

This in turn rearranges to

0 = 3A1A2P
2

(

H

P

)3

+ (A2(1 + C) + 2A1C)P

(

H

P

)2

+C(1 + C − PA2)
H

P
− C2. (11)

The first two terms in (11) are positive, and the third may or may not be.

If the third term is positive, it is clear that there is a unique root. If it is

negative, the function of H/P on the right hand side of (11) has at most

one turning point; combined with the fact that the value of the function is

negative if H/P is replaced by 0, and positive if it is replaced by 1, this

again means that the cubic equation gives us the handing ratio uniquely.

3.2.3. Challenging all groups with equal probability. If νhi
= νh, pi = p for

all i ≥ 1, then (10) becomes

S(1 + thνff) + thνffS

∞
∑

i=2

i

i
∏

j=2

(

tcνhpS

tcνhpS + 1

)

= P

We set

a =
tcνhpS

1 + tcνhpS

and since

∞
∑

i=2

iai−1 =
1

(1 − a)2
− 1

= (tcνhpS + 1)2 − 1(tcνhpS)2 + 2tcνhpS,

we get

S(1 + thνff) + thνf fS2((tcνhp)2S + 2tcνhp) = P.
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Using (8) where again C = thνff and A = tcνhp we obtain

P 2A2

(

H

P

)3

+ 2ACP

(

H

P

)2

+ C(1 + C)
H

P
= C2 (12)

It should again be noted that since all right-hand terms of (12) are positive,

(12) determines the handling ratio uniquely.

4. Optimal challenging strategies

We now consider the various situations that an individual may face, and

what the best strategy is in each case. In particular, if a group of i individuals

involved in a contest is observed, should a bird challenge or not (i.e. what

should its value of pi be)? We shall assume that all other individuals in

the population play the strategy p = (p1, p2, . . .) and we consider a mutant

individual playing q = (q1, q2, . . .). We find what ESSs are possible, and

then conditions for each of them to actually be ESSs.

4.1. Preliminary calculations

4.1.1. Calculation of the searching time. We define TS as the expected

time for an individual in the searching state to become a handler and let

πk denote the probability of becoming a handler at the end of the contest

when presently in a group of size k. We shall first consider individuals which

join a contest. The Markov property guarantees that contests end at rate

1/tc irrespective of the size of the group or whether new individuals have

challenged since our focal individual joined the group. Thus the expected

time taken for an individual to become a handler when joining such a contest
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already containing k individuals is

tc + 0 × πk+1 + TS × (1 − πk+1)

Following on from this, the expected time to become a handler from the

searching position is

TS =
1

νff +
∑

∞

i=1
νhi

Giqi

+
νff

νff +
∑

∞

i=1
νhi

Giqi

× 0

+
1

νff +
∑

∞

i=1
νhi

Giqi

∞
∑

i=1

νhi
Giqi

(

tc +
(

πi+1 · 0 + (1 − πi+1)TS

)

)

.

Hence,

TS =
1 + tc

∑

∞

i=1
νhi

Giqi

νff +
∑

∞

i=1
νhi

Giqiπi+1

. (13)

4.1.2. Calculation of πk. Since πk is the probability of becoming a handler

when in a group of size k, clearly π1 = 1. For groups of size at least two,

the next event that occurs is either the resolution of a contest, so that all

individuals have an equal chance of gaining the food, or a new individual

joining a contest. A new individual joins with probability

ρi =
νhi

piS

1/tc + νhi
piS

=
tcνhi

piS

1 + tcνhi
piS

(14)

so that, for i ≥ 2,

πi =
1

i
(1 − ρi) + ρiπi+1. (15)

Note that it follows immediately from (15) that

πi+1 < πi

since, trivially, πi+1 < 1

i
.
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From (15) we obtain

πi =
1

i
(1 − ρi) + ρi

(

1

i + 1
(1 − ρi+1) + ρi+1πi+2

)

= . . .

=
1

i
−

∞
∑

l=i

1

l(l + 1)

l
∏

j=i

ρj (16)

since
∏l

j=i ρj → 0 as l → ∞.

4.1.3. To challenge or not to challenge a group of size k. When faced with

the opportunity to challenge a group of size k the best option is the one

which has the least expected time to become a handler, so that (neglecting

the extremely unlikely possibility of equality) it should challenge if and only

if

tc + TS(1 − πk+1) < TS

which is equivalent to

πk+1

tc
>

1

TS

. (17)

Thus, qk = 1 is optimal if

πk+1 − tcνff + tc

∞
∑

i=1

νhi
Giqi(πk+1 − πi+1) > 0. (18)

Otherwise, qk = 0 is optimal.

4.1.4. Candidate strategies. The left-hand term of (18) is clearly decreas-

ing with k, so that for any internally consistent set of qis (i.e. each qj is

optimal in conjunction with q= (q1, q2, q3, . . .)), optimal invading strategies

must be of the form qi = 1, for i < K and qi = 0, for i ≥ K, for some

constant K; i.e. groups up to a certain size only should be challenged.
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νff 0.01 0.11 0.21 0.31 0.41 0.51 0.61 0.71 1.21 2.51

S7 963 749 640 568 515 474 441 414 321 213

H7 9.63 82 134 176 211 242 269 294 389 535

G2,7 4.73 35 52 64 72 78 82 86 95 94

G3,7 2.32 15 20 23 24 25 25 25 23 16

G4,7 1.14 6.47 7.97 8.36 8.31 8.06 7.72 7.35 5.59 2.90

G5,7 0.56 2.77 3.11 3.03 2.82 2.59 2.36 2.15 1.36 0.509

G6,7 0.27 1.19 1.21 1.10 0.960 0.83 0.72 0.63 0.03 0.01

G7,7 0.26 0.89 0.78 0.62 0.5 0.4 0.32 0.26 0.11 0.02

Table 2. Group densities (times 103) for strategy V7 as νff varies. Other param-

eter values are th = 1, tc = 1, νh = 1, P = 1.

Let Vk be the strategy to challenge all groups of size less than k. For a

population all playing Vk, the maximum group size is k, occurring when a

group of size k−1 is challenged. We can use (10) to find the value of S, and

then (8), (9) and (5) to give the values of H and Gi, which in turn give the

values of ρi and πi. Each of these will depend upon the value of k and we

thus label the values of S, H, Gi, ρi and πi for a population playing strategy

Vk as Sk, Hk, Gi,k , ρi,k and πi,k respectively.

For illustration we give a numerical example; the densities of the various

group sizes for the example population V7 are shown in Table 2. As the rate

of finding food increases, the densities of searchers declines, the density of

handlers increases, and the density of groups of each size first increases and

then declines.
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4.2. Evolutionarily Stable Strategies

We have shown that if any strategy can invade residents playing p, a strategy

Vk, for some k, can invade. What is the ”best” of such potentially invading

strategies will depend upon the values of the pis, while although they do

not appear in (18) explicitly, they do implicitly since the Gis are functions

of them. Note also that any strategy p which is not of the form Vk must be

invadable, since we can consider a ’mutant’ which plays p exactly. It clearly

performs equally well to the resident population, but above we have shown

that there is a better mutant, which hence must invade. We can thus confine

our attentions to the strategies Vk.

4.2.1. Comparison of expressions for Vk populations for different k. From

(10) - since for Vk , pi takes value 1 for i < k and 0 otherwise - it is clear

that Sk decreases with k. This in turn means that Hk, by (8), G2,k, by (9),

Gi,k, by (5), and ρi,k, by (14) all decrease with k.

Rearranging (15) we obtain

ρi =

(

1

i
− πi+1

)

/

(

1

i
− πi

)

Since ρi,k decreases with k then this implies that if πi,k > πi,k+1 then

πi+1,k > πi+1,k+1. In particular, if π2,k > π2,k+1 then πi,k > πi,k+1, for all

i ≥ 2.

4.2.2. Conditions for strategy Vk to be an ESS. Consider a population of

individuals playing Vk. When can an individual playing Vl invade?
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If l > k then groups of resident individuals form only up to size k, so that

our individual may challenge such a group, but will never get the opportu-

nity to challenge larger groups. Thus the strategy indicated for encounters

with such groups is irrelevant, and the payoff to any strategy Vl, l > k is

identical, and so equal to the payoff of Vk+1.

Now suppose that l < k. Vl invades Vk when TS is smaller for the invader

than for the resident. By (13), this happens if

1 + tc
∑l−1

i=1
νhi

Gi,k

νff +
∑l−1

i=1
νhi

Gi,kπi+1,k

<
1 + tc

∑k−1

i=1
νhi

Gi,k

νff +
∑k−1

i=1
νhi

Gi,kπi+1,k

⇒

k−1
∑

i=l

νhi
Gi,k



νfftc − πi+1,k + tc

l−1
∑

j=1

νhj
Gj,k(πj+1,k − πi+1,k)



 > 0 (19)

The term in brackets in (19) increases with both l and i. For l = k − 1

there is just a single term, and if this is negative then invasion does not

occur. If l < k − 1, then the expression consists of the sum of several of

these terms, all smaller than the i = l = k − 1 term, so that invasion of Vl

cannot occur for l < k − 1 if it does not occur for Vk−1.

A strategy Vk is thus an ESS if and only if it can resist invasion by

both Vk−1 and Vk+1 for k ≥ 2 (V1 must resist invasion only from V2). This

is equivalent to saying that in a population of Vk individuals the optimal

strategy when encountering a group of size k − 1 is to challenge (qk−1 = 1)

and the optimal strategy against a group of size k is not to challenge (qk =

0). By (18), this is equivalent to

tcνff >
1

k + 1
+ tc

k−1
∑

i=1

νhi
Gi,k

(

1

k + 1
− πi+1,k

)

(20)
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tcνff <
1

k
+ tc

k−2
∑

i=1

νhi
Gi,k

(

1

k
− πi+1,k

)

, (21)

since, in a population of Vk individuals, πk,k = 1/k and πk+1,k = 1/(k + 1)

for any mutant that challenged a group of size k; note that πi,k < 1

i
for

i < k.

Notice that the right hand side of (20) is always smaller then the right

hand side of (21). Thus since (20) is satisfied for sufficiently large tcνff ,

there is an interval of values of tcνff for which Vk is an ESS.

We now proceed to express (20) and (21) in lower level terms. We will

simplify the expression
∑k−1

i=1
νhi

Gi,kπi+1,k that essentially appears in both

(20) and (21) for k > 1. Firstly using (5) and (9) we obtain

Gi,k = thνffSk

i
∏

j=2

(

tcνh(j−1)
pj−1Sk

1 + tcνhj
pjSk

)

, i = 2, 3, . . . , k − 1. (22)

Next, using (22) and (16),

k−1
∑

i=1

νhi
Gi,kπi+1,k =

(

k−1
∑

i=1

νhi
Gi,k

1

i + 1

)

−

k−1
∑

i=1

thνffνh1Sk

∞
∑

l=i+1

1

l(l + 1)

l
∏

j=2

ρj,k

=

(

k−1
∑

i=1

νhi
Gi,k

1

i + 1

)

−

k−1
∑

i=1

k−1
∑

l=i+1

1

l(l + 1)
νhl

Gl,k

=

(

k−1
∑

i=2

νhi
Gi,k

1

i(i + 1)

)

+
1

2
νh1G1,k

= (1 − π2) νh1G1,k.

Moreover, using (6) and the fact that pj = 0 for j ≥ k, we get

tc

k−1
∑

i=2

vhi
Gi,k =

FT − 2GT

S
.
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Since G1,k = Hk, for k > 1 (20) and (21) become

tcνff >
1

k + 1

(

P

Sk

− thνff

)

+ tcνh1Hk

(

π2,k − 1 −
1

k + 1

)

(23)

tcνff <
1

k

(

P

Sk

− thνff

)

+ tcνh1Hk

(

π2,k − 1 −
1

k

)

. (24)

It follows directly from (20) that V1 cannot be invaded by V2 if and only

if

tcνff >
1

2
.

It is easy to see from (21) that the conditions for all other ESSs imply that

tcνff < 1

2
so that when V1 is an ESS, so that no fighting is a stable solution,

it is the only ESS.

4.3. Overlapping regions and multiple ESSs

We start to consider the possibility of multiple ESSs with a range of numer-

ical examples. Table 3 shows the different group sizes for the ESS strategy

for varying νff with other parameters fixed (note that for νff = 0.31 there

are two ESSs and both of these are given). Here we can see that the ESS

value of k decreases with the rate of foraging νff .

Figure 2 shows the range of values of νff for which each of the strategies

Vi are ESSs for i = 1, . . . , 10. We are particularly interested in the overlaps

between the regions, when there are multiple ESSs, and we explore this

concept both analytically and numerically in the following sections.

4.3.1. Overlaps between Vk and Vk−1 for k ≥ 3. Assume that k ≥ 3 and

consider (20) for Vk−1 and (21) for Vk to be an ESS. In view of the obser-
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νff 0.1 0.21 0.31 0.31 0.41 0.51

ESS k=7 k=4 k=3 k=2 k=2 k=1

Sk 0.749 0.644 0.577 0.596 0.540 0.662

Hk 0.082 0.135 0.179 0.185 0.221 0.338

G2,k 0.035 0.053 0.065 0.110 0.119 0

G3,k 0.015 0.021 0.038 0 0 0

G4,k 0.006 0.013 0 0 0 0

G5,k 0.003 0 0 0 0 0

G6,k 0.001 0 0 0 0 0

G7,k 0.0009 0 0 0 0 0

Table 3. Group sizes for ESSs as νff varies, other parameter values: th = 1, tc =

1, νh = 1, P = 1.

vation at the end of Section 4.2.2, it is clear that if

1

k
+ tc

k−2
∑

i=1

νhi
Gi,k−1(

1

k
− πi+1,k−1) <

1

k
+ tc

k−2
∑

i=1

νhi
Gi,k(

1

k
− πi+1,k), (25)

or equivalently (by (23) for Vk−1 and (24) for Vk) if

1

k

(

P

Sk−1

− thνff

)

+ tcνh1Hk−1

(

π2,k−1 − 1 −
1

k

)

<
1

k

(

P

Sk

− thνff

)

+ tcνh1Hk

(

π2,k − 1 −
1

k

)

(26)

then both Vk and Vk−1 can be ESSs for the same parameters.

We will consider two possibilities. First, suppose that π2,k−1 > π2,k. We

already observed at the end of Section 4.2.1 that in this case πi,k−1 > πi,k ,

for all i. We also know that Gi,k−1 > Gi,k and that both 1

k
− πi+1,k−1 and

1

k
− πi+1,k are negative for i ≤ k − 2. Hence, (25) is true.
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Fig. 2. Ranges of νff for specific Vk to be ESS. a) P = 0.1, b) P = 1, c) P = 10,

d) P = 100, e) P = 1000. Other parameter values are th = 1, tc = 1, νh = 1.

Now suppose that π2,k−1 < π2,k. Since Sk−1 > Sk the left hand side of

(26) is negative. Since Hk < Hk−1 and we are assuming that π2,k−1 < π2,k,

the right hand side of (26) is positive. Hence (26) holds.

Thus there is an overlap between the regions where Vk and Vk−1 are

ESSs, k ≥ 3, and these two strategies are both ESSs for some level of the

foraging rate νff irrespective of the values of the other parameters.

4.3.2. Small overlaps for small population sizes. For small populations,

there is very little overlap between the regions where ESSs occur (e.g. see
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Figure 2a). Note that for P ≈ 0 we obtain the conditions for Vk to be an

ESS to be

1

k + 1
< tcνff <

1

k
, k ≥ 2

and so there is always a unique ESS in the limit (with a tiny overlap on the

boundaries for small P ).

4.3.3. Large overlaps for large population sizes. When the population is

large, the overlaps between regions for the ESSs can be very large, and there

can be multiple ESSs. Moving from Figure 2a to Figure 2e, we can see the

overlaps increasing in size. The extreme example of Figure 2e, where the

population size is very large and thus the level of fighting is unrealistically

high, shows that all strategies V2, . . . , V10 are ESSs for some low values of

νff , and indeed other strategies Vi with i > 10 are also ESSs for some of

these values. Thus it is possible in our model that there are multiple ESSs.

Why can we get multiple ESSs as described above? Consider a popula-

tion where the foraging rate νff is low, and the population size P is large;

in particular we think about fixing νff at some small value and letting P

tend towards infinity. Using equation (10) and then (5), we obtain for a

population playing Vk

P ≈ Sk +
(k − 1)(k − 2)

2
νffSk + νffS2

k

Gi,k ≈ νffSk, i = 1, . . . , k − 1

Gk,k ≈ νffS2
k ,
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which as P becomes large, also implies that νffS2
k ≈ P . In turn the average

rate of becoming a handler in the population is thus approximately

Skνff

P
+

νffS2
k

ktcP
≈

1

tck
.

If an individual changed their strategy to Vk+1, then they would acquire

food almost always by finding food directly, or by challenging a group of

size k and then winning the contest (with probability 1/(k+1)), since there

are many such groups and they are the only individual who will challenge.

Thus their overall rate of becoming a handler is approximately

Skνff

P
+

νf fS2
k

(k + 1)tcP
≈

1

tc(k + 1)
<

1

tck

Thus such an individual will do worse than the rest of the population, and

so cannot invade.

If an individual changed their strategy to Vk−1, then it would spend

more time searching than the other population members. Almost surely, at

the end of the search, it would join a group of size l < k − 1 < k (which

will almost certainly become a group of size k) at rate (k − 2)νffS instead

of rate (k − 1)νffS. Its rate of finding food is again approximately 1/tck

multiplied by the probability of being in one of these large groups. Since

this probability is less for this individual than for the population, it does

worse and cannot invade.

Thus for our given small value of νff and any non-large value of k

(except k = 1 where there are no fights), Vk is an ESS. There is a range of

ESSs, V2 up to VK , and we can find situations where K is arbitrarily large.
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k\P 0.1 1 10 100 1000

1 [.5,∞) [.5,∞) [.5,∞) [.5,∞) [.5,∞)

2 [.330, .500) [.304,.500) [.207, .500) [.068, .500) [.0100, .500)

3 [.246, .329] [.220, .314] [.149, .296] [.053, .289] [.0078, .286]

4 [.196, .245] [.170, .222] [.113, .194] [.046, .184] [.0077, .178]

5 [.163, .195] [.137, .17] [.089, .136] [.039, .125] [.0079, .118]

6 [.139, .162] [.114, .136] [.071, .101] [.035, .087] [.0080, .083]

7 [.121, .138] [.098, .113] [.058, .078] [.03, .065] [.0081, .061]

8 [.108, .12] [.085, .097] [.049, .062] [.025, .05] [.0080, .046]

9 [.097, .107] [.075, .084] [.041, .051] [.023, .039] [.0078, .036]

10 [.087, .096] [.068, .074] [.035, .042] [.02, .032] [.0075, .028]

Table 4. Ranges of νff where specific Vk is an ESS with varying P ; other pa-

rameter values: th = 1, tc = 1, νh = 1.

This type of situation can be observed for example in Figure 2e for small

(but not too small) νff .

Table 4 shows the range of νff where specific Vk are ESSs for different

values of P , following on from Figure 2. The cases with multiple ESSs

required the combination of little food and large populations, leading to

intense contests and very little consumption, which of course is not realistic.

However, for more realistic population sizes, there will be overlaps, but

perhaps not more than two or three ESSs for any given value of νff .

5. Discussion

Kleptoparasitic contests involving multiple competitors are common in na-

ture (Steele and Hockey, 1995), but have not before now been modelled
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mathematically. In this paper we have developed the model of Broom and

Ruxton (1998) to allow for such contests. In contrast to previous models,

when a group of individuals contesting a food item is observed, then it is

possible for the observer to join the contest in the hope of acquiring the food

item. The chance of success will decrease with the number of other com-

petitors, and we investigate a number of possible scenarios. For a defined

challenging behaviour we find the equilibrium distribution of the sizes of

the population density in each of the different categories of activity; there is

a single equation for the density of searchers, from which all other densities

can be found.

In particular we are interested in the possible strategies of individuals,

and finding the best strategies under different conditions. It should be noted

that these strategies are more complex here than in most previous models.

In previous models when a challenge is made (and resisted) then the contest

duration is fixed, its real cost is determined by the level of foraging success

that could be expected when not in the contest and the benefit of being

in the contest is fixed as well (often, the contest is won 50% of the time).

In our model further individuals may challenge groups and this makes the

evaluation of the benefits of entering the contest more complex. It is for

this reason that we see many possible strategies, and that multiple ESSs

can occur for a given set of parameters.

We show that when individuals may or may not challenge groups of

any size, the only viable strategies involve only challenging groups up to a
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certain size, and always challenging these. Thus there are an infinite num-

ber of possible strategies. Individuals display varying levels of ”Hawkish”

behaviour, rather than just Hawk or Dove, or more appropriately (since

all individuals resist attacks) Hawk or Retaliator (Maynard Smith, 1982).

We have derived conditions as functions of our parameters for different

strategies to be ESSs. It should be noted that the rate that the population

acquires food (its uptake rate) decreases with the size of group individuals

are prepared to challenge. Its largest value is given by the classical result

from Holling (1959) when no individuals challenge, but only forage, and

falls away sharply if individuals challenge handlers only (Broom and Rux-

ton, 1998, and see also Ruxton and Moody, 1997, when all individuals were

compelled to fight).

We have proved that there is always at least one ESS. As we vary the

food density we can see how the pattern of ESSs changes. From high food

availability we move from never challenging to be an ESS, to challenging

only handlers, to challenging handlers and fighting pairs and so on. As the

availability of food declines, individuals are willing to challenge larger and

larger groups. As the population moves from one situation to the next,

there is an overlap region where both strategies are ESSs (except when go-

ing from no challenges to challenging handlers only). If the population size

is small, the overlap is small, and in most scenarios there will be a single

ESS. However, for larger populations this overlap can become substantial;

in fact it can be sufficiently large for there to be three or more ESSs. It



26 M. Broom, J. Rychtář

should be noted that these situations only occur for very (generally unreal-

istically) large populations, when competition for food is intense. They are

theoretically possible however, and situations where there are three ESSs

are plausible.

In previous models this overlap has not previously been observed, be-

cause only handlers could be challenged, and there is no overlap between the

no challenge (V1) and only challenge handlers (V2) regions. It is possible to

have two ESSs simultaneously, because an individual chooses to challenge a

group of given size if and only if the rate that it finds food by not challeng-

ing is sufficiently poor. Unless we are considering the rate of finding food of

an individual which does not challenge handlers (which is always νff), this

rate is reduced the more others in the population are prepared to challenge,

and so it can be best to challenge if all others are going to challenge, and

not challenge if they are all not going to challenge. Situations with more

than one ESS have been found in other models, often for similar reasons

(that the strategies of others not involved in a particular contest affects this

background uptake rate) but never a potentially unlimited number of ESSs

as in the current paper.

The model developed in this paper predicts significantly different be-

haviour to those allowed in previous models in particular when food is quite

rare and/or populations are large (note that the extremes of these two situ-

ations are unlikely to occur together, except for seasonal variations in food

availability). When food is plentiful it pays nobody to fight, and the ex-
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tra possibility of multiple contests adds nothing. If the population is small,

individuals are unlikely to chance upon competing groups; thus although

theoretically their strategy might be to challenge groups of size seven or

less, they will rarely in practice experience such a situation. Our model is

also only realistic if individuals are foraging in close proximity and it takes

some time to handle the food. For instance Shealer and Spendelow (2002)

examined a real situation where foragers travelled significant distances to

find food, but had to return to the nest site to feed their young, and klep-

toparasites waited near the nest to try to steal. Multiple fights would be

possible in this situation, but the symmetry of our model would be lost, as

there would be at least two distinct types of individual in the population,

as modelled in Luther et al. (2007).

In this paper we have extended the original and simplest of a series of

recent game theoretic models of kleptoparasitic behaviour, so that to allow

for multiple contests we have re-introduced some of the original simplifica-

tions of this model. It would be of interest to develop the current model with

some of the more complex features of later models. For instance in Broom

et al. (2004) individuals did not have to resist challenges, and handlers had

a different probability of success to subsequent challengers.
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