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Abstract. The high number of mates of honeybee queens has lead to the pro-
posal of several adaptive explanations. The competing hypotheses to explain
multiple mating in honeybees and some other social insects have been mostly
evaluated empirically with comprehensive theoretical analysis lacking behind.
We report on the mathematical analysis of the diploid drone hypothesis for
multiple mating, which suggests that multiple mating evolved as a safeguard
against the production of infertile male offspring. In accordance with earlier
models, our analysis shows that multiple mating does not reduce the average
value of diploid drone production but reduces its variance. We combine this
observation with a colony growth model to assess the impact of this reduc-
tion in variance to the colony fitness. Considering a plausible parameter space
for the honeybee, we conclude that the reduction in variance of diploid drone
production can be a significant selective force for multiple mating.

We have also described rules of a game for which a problem of finding the
best strategy is equivalent to the above biological problem of bee mating. We
made a significant progress in the general solution of this game and conjectured
that the best strategy is strongly related to the geometry of rational numbers.

1. Introduction

There are several competing hypothesis explaining the multiple mating of west-
ern honeybees (Apis mellifera). In this paper we focus on a diploid drone production
hypothesis. It predicts that multiple mating reduces a production of diploid drones
- sterile males whose production means costs to the bee colony without providing
any benefits in returns. There has been no comprehensive theoretical analysis of
this hypothesis so far.

We build an explicit ODE model for colony growth (Section 3), taking the diploid
drone production as well as other biological phenomena (summarized in Section 2)
into account. Using this ODE model and binomial distribution, we introduce two
fitness functions (Section 4) that measure the colony success as a function of a
number of mates. This yields an optimization problem - find the number of mates
for which the fitness is maximal. In Section 5 we reintroduce the problem with
the help of an abstract game. Finding the best strategy for our game is equivalent
to the above biological problem of bee mating. We made a significant progress in
the general solution of this game and conjectured that the best strategy is strongly
related to the geometry of rational numbers.
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For a large number of mates, the fitness functions are maximized qualitatively in
Section 6. Also, in Section 9, we approximate the binomial distribution by normal
distribution. This approximation made theoretical analysis more feasible and we
were able to confirm results obtained in Section 6.

For a small number of mates, the fitness functions are maximized quantitatively
in Section 7 . We have discovered that the behavior of the fitness functions depends
heavily on the properties of rational numbers. In Section 8, we discuss in detail the
impact of the geometry of rational numbers on our analysis and present a conjecture
that might be of interest to both mathematicians and biologists.

2. Biological background

Mating patterns across the animal kingdom are highly variable but most species
are either polygamous (multiple males mate with multiple females) or polygynous
(a single male mating with several females). Monogamy and polyandry (one female
mating with multiple males) are much rarer (Andersson 1994). Within the social
insects monogamy is the rule but numerous exceptions for polyandry exist. Queens
of honeybees (Palmer and Oldroyd 2000), leaf-cutter ants (Boomsma et al. 1999),
harvester ants (Wiernasz et al. 2004), old- and new-world army ants (Denny et al.
2004; Kronauer et al. 2006), and higher vespid wasps (Foster and Ratnieks 2001)
mate with multiple males, often to extreme degrees (Wattanachaiyingcharoen et
al. 2003). These mating occur during mating flights at the beginning of their
reproductive lives on one or several mating flights, and the sperm is stored for the
rest of their lives to reproduce new worker and sexuals. Re-mating seems not to
occur (Kronauer et al. 2006).

In western honeybees (Apis mellifera), the reproductive cycle starts with the
raising of a set of new queens from existing brood in the hive. Before these new
queens emerge and fight each other until only one remains (Tarpy et al. 2004),
the old queen leaves the hive with about half of the workers to establish a new
colony elsewhere (reproductive swarming). The single remaining new, virgin queen
engages in one to five mating flights (Schluns et al. 2005) during which she mates
with up to 45 males (Neumann et al. 1999). After her final mating flight the
newly mated queen starts to produce new offspring. Normally, the majority of the
offspring consists of new workers to increase the workforce of the hive to ensure
successful survival (Winston 1987).

Production of workers is under queen control because honeybees exhibit a haplo-
diploid sex determination system: Unfertilized (haploid) eggs develop into males,
fertilized (diploid) eggs into females that mostly develop into workers. The molecu-
lar basis for this sex determination has been identified as the csd gene that governs
the sex determination cascade in honey bees (Beye et al. 2003). If this gene is
present in two different versions (alleles), the organism develops into a female, if it
is represented only by one allele, male development results. Consequently, males
develop from haploid eggs but also from diploid eggs that bear accidentally two
copies of the same allele (Beye et al. 2003). These diploid males are infertile and
generally cannibalized within 72 hours of emergence (Woyke 1963). Diversifying se-
lection has generated allelic diversity at the csd locus with allele number estimates
varying between 11 and 19 (Hasselmann and Beye 2004). However, a queen mating
with only one male with an identical csd allele (incompatible drone) will suffer 50%
mortality of its diploid (worker destined) offspring. In contrast, when only one of
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two males bears an identical csd allele, diploid drones will only make up 25% of all
workers destined brood. Upon survival to the new reproductive season, the focal
hive will produce usually one swarm and numerous males that attempt to mate
with virgin queens from other hives. In some cases, large original swarms can pro-
duce secondary after-swarms but the fitness impact of this is debatable (Winston
1987).

Presumably, multiple mating bears general costs for females, including time and
energy expenditure, and increased risks of predation and infection with sexually
transmitted diseases (Brown and Schmid-Hempel 2003). Potential benefits are
equally numerous and several hypotheses have been suggested to explain female
multiple mating in the social Hymenoptera (Palmer and Oldroyd 2000; Crozier and
Fjerdingstad 2001). Mating for sufficient sperm has been proposed (Cole 1983) but
largely dismissed for honeybees (but see (Schluns et al. 2005)). More emphasis
has recently been placed on the fact that multiple mating increases the genetic
heterogeneity within the hive. Increased genetic variability may have positive con-
sequences for the disease resistance within hives (Brown and Schmid-Hempel 2003)
and enhance the division of labor and thus maintain nest homeostasis (Oldroyd
and Fewell 2007). Both suggestions have been supported by empirical evidence
(Oldroyd and Fewell 2007; Seeley and Tarpy 2007). In addition, multiple mating
may reduce the risk of producing a large proportion of inviable brood to diploid
male production (Page 1980). After the identification of the sex determination
mechanism (Beye et al. 2003; Hasselmann and Beye 2004), this suggestion could
be precisely tested on a large scale and we therefore extend the initial analysis of
Page (1980) with a new mathematical model that connects a colony growth model
of ordinary differential equations with a fitness step function (Sherman et al. 1988;
Tarpy and Page 2002), based on the observation that a colony either reaches a
critical size to reproduce or fails after establishment. We subsequently link mating
frequency, the number of alleles in the population, and the critical colony size for
success to queen fitness.

The previous model of variance-based selection for honeybee multiple mating
due to diploid drone production (Page 1980) built on empirical observations of the
quasi-logistic growth of honey bee colonies (Sakagami and Fukuda 1968) to model
colony growth with a logistic function. It uses a second logistic function to link
the fitness of the queen to the proportion of viable brood produced which in turn
depends on the number and compatibility of the queen’s mates (Page 1980). The
combination of these two model components lead to the conclusion that multiple
mating continuously increases individual queen fitness in populations with multiple
alleles at the csd locus and benign conditions (i.e. a relatively high brood mortality
can be tolerated) (Page 1980).

In general, our results are in accordance with those reported by Page (1980).
However, our analysis emphasize that honeybee multiple mating has quickly di-
minishing returns, and that fitness functions are not continuously increasing with
increased number of mates. Instead, discontinuous step functions produce results
that argue against selection for multiple mating by diploid drone production in a
significant portion of the parameter space. This effect depends on the continu-
ously increasing risk of mating with at least n incompatible drones, relative to the
stepwise increase in the probability of growing to the critical colony size.
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We believe that the detailed predictions of our analysis will generate new empir-
ical investigations into the importance of diploid drone production, which may be
of considerable practical and theoretical importance, given the highly structured
honeybee populations.

3. Colony Growth Model

For our model we only count workers towards the colony size, C. This can
be justified since drones only consume resources before they mate and die, or are
“kicked out” of the hive at the end of the mating season (Fukuda and Ohtani,
1977). We use the general growth model:

C ′(t) = (b− d)C

where b > 0 is the birthrate and d > 0 the death rate of workers.
Lifespan of honey bees is different between fall and spring season, and summer

season. On average, it is 30-60 days for fall and spring and 15-38 days for summer
(Winston, 1987). We set the death rate, d, to be the inverse of the lifespan.

We assume honey bee queens lay a number of eggs proportional to the size of
the colony, C, divided by h+ k, where h is the number of workers needed to forage
for, and k is the number of workers needed to take care of, each uncapped larva
properly. Both h and k are 5 on average for European honey bees (Eishchen et al.,
1982). Workers take care of the larva for a time T (5.5 days on average in European
honey bees (Tribe & Fletcher, 1977)). Also, we put an upper bound on the queen
egg-laying rate, B (2000 eggs per day in European honeybees (Camazine, 1991)).

This gives us the following:

C ′(t) =

{

(

1
(k+h)T − d

)

C, C

(k+h)T < B

B − dC, o/w.

Not all offspring destined workers actually become workers due to the possibility
that some eggs develop into diploid drones (half of the offspring develop into diploid
drones sons if a father drone carries the same allele at the csd locus as the queen).
If the queen mates with n drones, from that mated with Rn incompatible drones,
then the laying rate will be reduced by a factor 1− Rn

2n
since out of the all possible

eggs, Rn

2n
will give rise to diploid drones instead of workers.

Consequently, the colony growth is given by

(3.1) C ′(t) =

{

(

1
(k+h)T − d

)

C, C

(k+h)T < B
(

1 − Rn

2n

)

B
(

1 − Rn

2n

)

− dC, o/w.

The non-equilibrium solutions of (3.1) tend to equilibriums exponentially fast and
the only stable equilibrium of the system is

(3.2) Cc =
B
(

1 − Rn

2n

)

d

which is also called the carrying capacity.

4. Colony fitness

The fitness is the capability of an individual (in our case the whole colony) of
a certain genotype to reproduce, and it is defined as the proportion of the indi-
vidual’s genes in all the genes of the next generation. We are here interested in



DIPLOID DRONES AND MULTIPLE MATING IN HONEY BEES 5

the relative fitness which is quantified as the average number of surviving progeny
of a particular genotype compared with average number of surviving progeny of
competing genotypes after a single generation, i.e. one genotype is normalized at
fitness 1 and the fitnesses of other genotypes are measured with respect to that
genotype. Relative fitness can therefore take any nonnegative value, including 0.

In order to swarm, the colony needs to grow to a certain critical size Cc (Winston,
1987). We measure the colony fitness as a probability that it will reach such a size.
That is, we measure the relative fitness of the colony comparing it to an ideal colony
that reaches the critical size Cc every time.

4.1. Preliminary calculation of the colony fitness function. Firstly note
that, by (3.2), the carrying capacity is dependent on the number of mates only
through the term

(

1 − Rn

2n

)

, the proportion of genetically healthy workers in the
offspring, and that the dependence on this factor is linear. We thus get

P (C ≥ Cc) = P

(

C ≥ B
(

1 − Rn

2n

)

d

)

= P

(

Rn

n
≤ 2 − 2Ccd

B

)

.

Letting

Ωn =
Rn

n
be the real fraction of incompatible drones the queen mated with, we can interpret

Θ = 2

(

1 − Ccd

B

)

as the tolerance level. Thus we measure the colony fitness as a probability that
the queen did not encounter more incompatible drones than what she is able to
tolerate.

4.2. Binomial distribution for Rn. Queen bees mate with drones in the drone
congregation areas (areas with very high drone density: Baudry et al. 1998). After
mating, queens store drones’ semen in an organ called the spermatheca. A drone
always dies after mating once. After a queen has mated with as many drones
as she wanted (or could), she returns to the hive and begins to lay eggs. A full
spermatheca holds 5.4 to 5.7 million sperm which is much more than the number
of eggs the queen lays (Winston 1987). We assume that each drone contributes an
equal amount of sperm.

We need to calculate Ωn, the proportion of incompatible drones the queen mated
with if she mated with n drones in total. Definitely, Ωn depends on the real propor-
tion of incompatible drones in the population, which we denote by Ψ. If A is the
number of alleles in the csd locus (A is estimated between 11 and 19, Hasselmann
and Beye 2004), then

(4.3) Ψ =
2

A
.

Queen bears 2 different alleles, drone bears only one. For incompatible individuals,
the likelihood is high that the drone’s allele matches one of the queen’s alleles.
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Given the high number of drones in the drone congregation area and the ran-
domness of their origin, we may assume that the probability the queen mated with
r incompatible drones, provided it mated with n drones in total, is given by the
binomial distribution with parameters n and Ψ, i.e. by

(4.4)

(

n

r

)

Ψr(1 − Ψ)n−r.

This in turn means that Ωn is a random variable attaining values r

n
; 0 ≤ r ≤ n,

with probability
(

n

r

)

Ψr(1 − Ψ)n−r.

4.3. Formulas for Colony Fitness. Putting the preliminary calculations to-
gether yields the fitness as a function of n,Ψ and Θ, specifically,

F (n,Ψ,Θ) = P (Ωn ≤ Θ) = P (Rn ≤ nΘ)

=

bnΘc
∑

r=0

(

n

r

)

Ψr(1 − Ψ)n−r(4.5)

We also consider the function

(4.6) G(n,Ψ,Θ) =

{

F (1,Ψ,Θ), n = 1,
1
3

∑1
i=−1 F (n+ i,Ψ,Θ), n > 1.

The equation (4.6) is a special case of a more general form

(4.7) G(n,Ψ,Θ) =

∞
∑

i=1

p
(n)
i
F (i,Ψ,Θ)

where p
(n)
i

∈ [0, 1] and
∞
∑

i=1

ip
(n)
i

= n.

The introduction of this function G is justified by the fact that often the queen
(aims) for n mates but practically can achieve any number of mates. If she aims

for n, she achieves i with probability p
(n)
i

and achieves n “on average”. This is a
biologically reasonable model since honey bee queen presumably do not count the
number of mates exactly but likely can implement some mechanism to be able to
“count” approximately (Tarpy and Page 2000).

We study in details only the function G given by (4.6). The more general fitness

given by (4.7) yields comparable results as long as the distribution given by p
(n)
i

is
biologically meaningful, i.e. the probable number of mates are somehow centered
around the targeted number of mates.

5. Math only formulation - guessing game

Recall that our main goal is to maximize the fitness function

F (n,Ψ,Θ) =

bnΘc
∑

r=0

(

n

r

)

Ψr(1 − Ψ)n−r,

that is, for any given Ψ and Θ, find n such that the value of F (n,Ψ,Θ) is maximal.
Additionally, we are interested in finding n (possibly different from above) such
that the value of G(n,Ψ,Θ), given by (4.6), is maximal.
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Figure 1. a) F (n, 0.2, 0.25), b) G(n, 0.2, 0.25), c) bn · 0.25c
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Figure 2. a) F (n, 0.1, 0.15), b) G(n, 0.1, 0.15), c) bn · 0.15c
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Figure 3. a) F (n, 0.02, 0.05), b) G(n, 0.02, 0.05), c) bn · 0.05c
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Figure 4. a) F (n, 0.45, 0.4), b) G(n, 0.45, 0.4), c) bn · 0.4c

In this subsection, we reintroduce the problem and state it in a mathematical
setting. For that, we need to consider the following game.
Guessing game The game is played in rounds. During each round, a player has to
answer a yes/no question and then decide whether to continue or to quit the game.
If he continues, he plays another round of the game. If he quits (or continues
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Figure 5. a) F (n, 0.25, 0.19), b) G(n, 0.25, 0.19), c) bn · 0.19c

indefinitely), he receives a payoff of 1 provided he answered less than Θ · 100% of
questions incorrectly and receives a payoff of 0 otherwise.

Provided a player does not know the answers and can only guess (with the proba-
bility of making wrong guess Ψ), the player’s strategy consists of the choice of n,
the number of rounds he will play the game. For a fixed n, the expected player’s
payoff F (n,Ψ,Θ) is given exactly by (4.5). The question is, what strategy should
the choose to maximize the payoff.

We also introduce the following variant of the Guessing game, call it Bounded

guessing game, with the additional restriction that the player has to stop no later
than at a given round N (determined at the beginning of the game). If we wish to
specify the number N , we refer to it as N -bounded guessing game.

6. Qualitative analysis - behavior for large n

For large n, we can derive relevant properties and behaviors of the functions
F (n,Ψ,Θ) and G(n,Ψ,Θ) without using the explicit formulas (4.5) and (4.6). In-
deed, since Rn is binomially distributed and Ωn = Rn

n
, it follows from the standard

properties of binomial distribution that

(6.8) E(Ωn) = E

(

Rn

n

)

=
E(Rn)

n
= Ψ

and

(6.9) var(Ωn) = var

(

Rn

n

)

=
var(Rn)

n2
=

Ψ(1 − Ψ)

n
.

Moreover, using Hölder inequality, (6.8) and (6.9), we have

E
∣

∣Ωn − Ψ
∣

∣ = E
∣

∣

∣
Ωn −E(Ωn)

∣

∣

∣
≤
√

E

[

(

Ωn −E(Ωn)
)2
]

=
√

var(Ωn) =

√

Ψ(1 − Ψ)

n
.

Hence

(6.10) lim
n→∞

E
∣

∣Ωn − Ψ
∣

∣ = 0.

Consequently, since

E
∣

∣Ωn − Ψ
∣

∣ ≥ εP
(

∣

∣Ωn − Ψ
∣

∣ ≥ ε
)
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we have, for every ε > 0,

(6.11) lim
n→∞

P
(

∣

∣Ωn − Ψ
∣

∣ ≥ ε
)

= 0.

The equation (6.11) proves the following:

Theorem 1. For any ε > 0 and any threshold probability π0 < 1, there exists n0

such that |Ωn − Ψ| < ε with probability at least π0, for all n > n0.

Corollary 2.

lim
n→∞

F (n,Ψ,Θ) =











1, if Ψ > Θ,

0, if Ψ < Θ,

0.5, if Ψ = Θ.

Same is true for G(n,Ψ,Θ).

Proof. The first two cases follow directly from the Theorem 1. The case when
Ψ = Θ, is an easy consequence of the fact that Rn has a binomial distribution and
thus its median is one of the following three numbers {bnpc−1, bnpc, bnpc+1}. �

7. Quantitative analysis - behavior for small n

The conclusion of Corollary 2 for a queen bee is that if Ψ < Θ, i.e. when there
is less incompatible drones than she can tolerate, she should mate with a very high
number of drones. However, neither this result quantifies this “high number” nor
it provides with any idea as to what the queen should do if Ψ ≤ Θ. It only says
that if Ψ ≤ Θ, then mating with a large number of drones may decrease the fitness
to almost 0.

From the proof of the Theorem 1, one could get a quantitative estimate on n0,
the number of mates that would guarantee the probability of |Ωn − Ψ| < ε being
as close to 1 as needed. Yet, n0 would be so large that it would be practically
impossible for a queen to mate with so many drones. In this section, we try to
investigate some properties of F (n,Ψ,Θ) in order for us to predict what a queen
should do to maximize the fitness while mating with only finite (relatively small
and realistic) number of mates.

7.1. Local maxima of F (n,Ψ,Θ). It can be seen from figures (1(a)-5(a)) that
the fitness function F is very jumpy. The function is never increasing or decreasing
on a sufficiently long interval. Yet one can speak about increasing and decreasing
tendencies from the same set of figures. The same is true about function G, figures
(1(b)-5(b)), although the function G is “smoother” than F (one can see from figures
that G has smaller oscillation than F ). Observe that both functions have quickly
diminishing returns.

The local maxima of the function F (unlike G) can be determined analytically.
In fact, we have the following theorem:

Theorem 3. For given Ψ ∈ (0, 1) and Θ ∈ (0, 1), the function F (n,Ψ,Θ) has a
local maxima at n = k if and only if

(7.12) b(k − 1)Θc < bkΘc = b(k + 1)Θc.

Proof. The statement is evident when considering the guessing game. In order to
get a nonzero payoff, the player playing k rounds can make as much as m = bkΘc
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Range for Θ Range for Ψ argmaxn≤20F (n,Ψ,Θ)

(0, 1/15) (0, 1/2] 1
(1/15, 1/3) (Θ − 0.05, 1/2] 1
(1/15, 1/3) (0,Θ − 0.05) q ∈ q(Θ)
(1/3, 1/2] (0, 1/2) q ∈ q(Θ)
(1/3, 1/2) 1/2 1
1/2 1/2 2

Table 1. Location of absolute maxima of F (n,Ψ,Θ) on n ≤ 20;
q(Θ) is a set of integers q ≤ N = 20 for which there is an integer
p such that 0 ≤ Θ − p/q is small.

mistakes. If k satisfies the conditions (7.12), the player can make m − 1 mistakes
in k − 1 rounds, and m mistakes in k + 1 rounds.

Clearly, F (k,Ψ,Θ) > F (k + 1,Ψ,Θ) because whenever one makes only m mis-
takes in k+1 rounds, then he made at most m mistakes in k rounds. The inequality
is strict, because there is a nonzero chance of making a mistake in the k+ 1 round
and thus making actually only m− 1 mistakes in the first k rounds.

Similarly, F (k− 1,Ψ,Θ) < F (k,Ψ,Θ). Indeed, if one manages to make no more
than m− 1 mistakes in k− 1 rounds, one can make a mistake in the kth round and
still not make more than m mistakes in k rounds. Since the probability of making
a mistake in the kth round is less than 1, the inequality is strict. �

7.2. Global behavior. To find an absolute maxima of F (n,Ψ,Θ); n ∈ {1, · · · , N}
for general N,Ψ and Θ is analytically very difficult and we are only able to find
results using computer calculations.

The major difficulty is that even if Ψ < Θ, so that F (n,Ψ,Θ) → 1 as n → ∞,
F may initially have a decreasing tendency (see figures 2(a)-3(a)). Likewise, even
if Ψ > Θ, and thus F (n,Ψ,Θ) → 0 as n → ∞, F may initially have an increasing
tendency (see figure 4(a)).

We used Maple to calculate F (n,Ψ,Θ) and G(n,Ψ,Θ) for n ∈ {1, . . . , 20}, and
Ψ,Θ ∈ {i/100; i = 1, . . . , 50}. From those data we calculated

argmaxn≤20F (n,Ψ,Θ), and argmaxn≤20G(n,Ψ,Θ)

for all of the above Ψ and Θ. Our results are summarized in the tables below.
The interesting feature (and a complication) is that the value of Θ does not

determine the integer in the set

qε(Θ) =
{

q ∈ {1, . . . , N}; ∃p such that 0 ≤ Θ − p/q < ε
}

uniquely. For example, 1/3 = 2/6 = 3/9 = · · · , i.e. qε(1/3) contains any multiple
of 3 smaller than 20. Moreover, there are many rational numbers close to any
given number. For example, 0.27 is just above 1/4, 4/15 and 5/19, with each of
the fractions having denominator below 20. Thus, the table 1apparently does not
determine the maxima. The appropriate choice of ε and q ∈ qε(Θ) depends on
Θ−Ψ. The larger the quantity Θ− Ψ, the larger q should be. Moreover, ε should
be large enough to ensure qε(Θ) 6= and yet not too large to have too many elements
in qε(Θ). Some results and conjectures regarding the choice of ε are presented in
the subsection 8.
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Range for Θ Range for Ψ argmaxn≤20G(n,Ψ,Θ)

(0, 2/5] (Θ − 0.05, 1/2] 1
(0, 2/5] (0,Θ − 0.05] 20
(2/5, 1/2] (Θ, 1/2] 1
(2/5, 1/2] (0,Θ] 20

Table 2. Location of absolute maxima of G(n,Ψ,Θ).

Notice the surprising result that once Θ ≥ 1/3, Ψ can be even larger than Θ and
still the maximum is attained at n > 1.

Since G does not oscillate as much as F , the results for G does not depend so
heavily on the actual value of Θ, rather they depend more on the size of Θ − Ψ.
The results are summarized in the table 2.

We assumed that the queen cannot mate with more than 20 mates, so 20 actually
means - mate with as many as possible. There are some minor exceptions to the
above table 2.When Θ ≈ 0.25 or Θ ≈ 0.4, the function F oscillates so much that
even the function G oscillates quite a lot and thus the results for F partially holds
for G as well.

Nevertheless, notice that if Θ < Ψ, then the queen should mate with only 1
drone, while if Θ > Ψ, the queen should mate with 20. Thus, these results are in
agreement with the Corollary 2.

8. Guessing game and the geometry of rational numbers

As seen in subsection 7.2, the behavior of F (n,Ψ,Θ) for relatively small n is
governed mostly by Θ. We fix N and consider N -bounded guessing game (or
equivalently, assume that the queen cannot mate with more than N mates). We
want to find an absolute maxima of F for n ≤ N .

The first thing we observe is that once N is fixed, the proportion of mistakes,
Ωn, is in a finite (and thus a discrete) set

S =

{

p

q
, p ≤ q ≤ N

}

.

Moreover, the numbers, p/q, that are below Θ but not too far below from Θ are
of significance since these are the real tolerance level a player can count on. For
example, if the tolerance level is Θ = 0.27 and N ≥ 20, then one can tolerate up to
5 out of 19 mistakes (5/19 ≈ 0.263); if N < 19, one can tolerate only up to 1 out
of 4 mistakes (1/4 = 0.25). In an extreme case, the decrease in the tolerance can
be as high as 1/N . Clearly, smaller the N , higher the decrease in the real tolerance
level.

We can see the example of such big decrease when Θ < 1/N and yet Θ ≈ 1/N .
In this case, one cannot make a single mistake in all of the N possible trials, i.e.
the real tolerance level is 0.

The decrease of the tolerance not only depends on N , it depends on Θ as well.
If the rational numbers from S below Θ are porous (such as we seen is the case of
Θ just below 1/N), the decrease in the tolerance is substantial.

The figures 6 depicts the set S of rational numbers with denominators less then
N , for N = 20, 50 and 100. We can see that the regions with low density (white
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a) 0.1 0.2 0.3 0.4 0.5

b) 0.1 0.2 0.3 0.4 0.5

c) 0.1 0.2 0.3 0.4 0.5

Figure 6. Rational numbers p/q for q ≤ N in [0, 0.5] (in [0.5, 1]
is the situation symmetrical). a) N ≤ 20, b) N ≤ 50, c) N ≤ 100.

spots) are exactly the tolerance values Θ for which we encountered surprising re-
sults.

We conjecture that the best strategy for the bounded guessing game is incom-
patible to the geometry of rational numbers.

9. Normal approximation

We have seen that using binomial distribution for Rn yields surprising results
but also makes our analysis very difficult. In this section we try to approximate the
binomial distribution by normal distribution as is often done in biological setting.
We approximate by a normal distribution with mean nψ and variance nΨ(1 − Ψ)
(i.e. the same mean and variance as the binomial distribution). This gives, exactly
as in (6.8) and (6.9),

Enormal(Ωn) = Enormal

(

Rn

n

)

=
Enormal(Rn)

n
= Ψ

and

varnormal(Ωn) = varnormal

(

Rn

n

)

=
varnormal(Rn)

n2
=

Ψ(1− Ψ)

n
.

Denote σn = varnormal(Ωn). The fitness is then given by

Fnormal(n,Ψ,Θ) = P (Ωn ≤ Θ)

=

∫ Θ

−∞

1

σn

√
2π

exp

(

(x − Ψ)2

2σ2
n

)

dx.
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Let n < m so that σn > σm. Thus Θ−Ψ
σm

σn + Ψ ≶ Θ whenever Θ ≷ Ψ, and

∫ Θ

−∞

1

σn

√
2π

exp

(

(x− Ψ)2

2σ2
n

)

dx =

∫
Θ−Ψ

σ
′

σn+Ψ

−∞

1

σ′
√

2π
exp

(

(x− Ψ)2

2σ′2

)

dx

≶

∫ Θ

−∞

1

σ′
√

2π
exp

(

(x− Ψ)2

2σ′2

)

dx.

Consequently

(9.13) F (n,Ψ,Θ) ≶ F (m,Ψ,Θ), if n < m and Θ ≷ Ψ.

We just proved the following theorem:

Theorem 4. Assuming the normal distribution for the number of incompatible
drones the queen mated, the queen should mate with as many drones as possible if
Ψ < Θ and with only 1 drone if Ψ > Θ.

This result is generally in agreement with the result for a smoother fitness func-
tion G, as well as with the Corollary 2. We can see that as long as the number
of drones is made somehow fuzzy rather than exact (either directly through the
formula for the fitness function, or indirectly by smoothening the underlying distri-
bution), the queen has only two choices - either to mate with many (if the tolerance
for incompatible drones is high relative to the real occurrence) or with one drone
only.

10. Summary

We proved that on average, the proportion of incompatible drones queen mated
does not depend on the number of drones she mated with; however, the variance
of that proportion goes to 0 as the number of mates increases. We conclude that if
there are less incompatible drones than the queen can tolerate, and if the queen can
mate with many drones, then she should mate with as many as possible. Also, if
there are more incompatible drones than the queen can tolerate, then mating with
too many drones decreases the fitness to 0. However, in this case, we were unable
to provide the number of drones the queen should mate to optimize the fitness.

The computer simulations suggest that if the queen cannot count (which is the
case) and if there are more incompatible drones than she can tolerate, she should
mate with 1 drone only.

Interestingly enough, if the queen could count, and her tolerance to incompatible
drones were greater than roughly 1/7, then she should mate with more than 1 drone
even if her tolerance is less than the real fraction of incompatible drones.

We also introduced, of independent interest,“guessing game” and its variant
“bounded guessing game” which are equivalent to the biologically motivated prob-
lems. With the help of computer simulations, we conjectured that the best strategy
for the bounded guessing game is related to the geometry of rational numbers.

References

[1] Andersson M (1994) Sexual Selection. Princeton University Press, Princeton, NJ.
[2] Baudry E, Solignac M, garnery L, Cornuet JM, Koeniger N (1998) Relatedness among hon-
eybees (Apis mellifera) of a drone congregation. Proceedings of the Royal Society of London
B-Biological Sciences 265:2009-2014.



14 CHHETRI ET AL.

[3] Beye M, Hasselmann M, Fondrk MK, Page RE, Omholt SW (2003) The gene csd is the
primary signal for sexual development in the honeybee and encodes an SR-type protein. Cell
114:419-429.

[4] Boomsma JJ, Fjerdingstad EJ, Frydenberg J (1999) Multiple paternity, relatedness and ge-
netic diversity in Acromyrmex leaf-cutter ants. Proceedings of the Royal Society of London Series
B-Biological Sciences 266:249-254.

[5] Brown MJF, Schmid-Hempel P (2003) The evolution of female multiple mating in social
hymenoptera. Evolution 57:2067-2081.

[6] Camazine S (1991) Self-organization pattern-formation on the combs of honey bee colonies.
Behavioral Ecology and Sociobiology 28 (1): 61-76.

[7] Cole BJ (1983) Multiple Mating and the Evolution of Social-Behavior in the Hymenoptera.
Behavioral Ecology and Sociobiology 12:191-201.

[8] Crozier RH, Fjerdingstad EJ (2001) Polyandry in social Hymenoptera - disunity in diversity?
Annales Zoologici Fennici 38:267-285.

[9] Denny AJ, Franks NR, Powell S, Edwards KJ (2004) Exceptionally high levels of multiple
mating in an army ant. Naturwissenschaften 91:396-399.

[10] Eishchen FA, Rothenbuhler WC, Kolincevic JM (1982) Length of life and dry weight of
worker honeybees reared in colonies with different worker-larva ratios. Journal of Apicultural
Research 21(1): 19-25.

[11] Foster KR, Ratnieks FLW (2001) Paternity, reproduction and conflict in vespine wasps: a
model system for testing kin selection predictions. Behavioral Ecology and Sociobiology 50:1-8.

[12] Fukuda H, Ohtani T (1977) Survival and lifespan of drone honeybees. Res. Pop. Ecol. 19:51-
68.

[13] Hasselman M, Beye M (2004) Signatures of selection among sex-determining alleles of the
honey bee. Proceedings of the National Academy of Sciences of the United States of America
101 (14): 4888-4893.

[14] Kronauer DJC, Berghoff SM, Powell S, Denny AJ, Edwards KJ, Franks NR, Boomsma JJ
(2006) A reassessment of the mating system characteristics of the army ant Eciton burchellii.
Naturwissenschaften 93:402-406.

[15] Mackensen O (1951) Viability and sex determination in the honey bee (Apis mellifera L.).
Genetics 36:500-509.

[16] Neumann P, Moritz RFA, van Praagh J (1999) Queen mating frequency in different types
of honey bee mating apiaries. Journal of Apicultural Research 38:11-18.

[17] Oldroyd BP, Fewell JH (2007) Genetic diversity promotes homeostasis in insect colonies.
Trends in Ecology & Evolution 22:408-413.

[18] Page RE (1980) The Evolution of Multiple Mating-Behavior by Honey Bee Queens Apis-
Mellifera L. Genetics 96:263-273.

[19] Palmer KA, Oldroyd BP (2000) Evolution of multiple mating in the genus Apis. Apidologie
31:235-248.

[20] Sakagami SF, Fukuda H (1968) Life tables for worker honeybees. Research in Population
Ecology 10:127-139.

[21] Schluns H, Moritz RFA, Neumann P, Kryger P, Koeniger G (2005) Multiple nuptial flights,
sperm transfer and the evolution of extreme polyandry in honeybee queens. Animal Behaviour
70:125-131.

[22] Seeley TD, Tarpy DR (2007) Queen promiscuity lowers disease within honeybee colonies.
Proceedings of the Royal Society B-Biological Sciences 274:67-72.

[23] Tarpy DR, Gilley DC, Seeley TD (2004) Levels of selection in a social insects: a review
of conflict and cooperation during honey bee (Apis mellifera) queen replacement. Behavioral
Ecology and Sociobiology 55:513-523.

[24] Tarpy DR, Page RE (2002) Sex determination and the evolution of polyandry in honey bees
(Apis mellifera). Behavioral Ecology and Sociobiology 52:143-150.

[25] Tribe GD, Fletcher DJC (1977) Rate of the development of the workers of Apis mellifera
adansonii L. In African bees: their taxonomy, biology, andeconomic use, ed. D.J.C. Fletcher,
pp.115-119. Pretoria, Adimondia.

[26] Wattanachaiyingcharoen W, Oldroyd BP, Wongsiri S, Palmer K, Paar R (2003) A scientific
note on the mating frequency of Apis dorsata. Apidologie 34:85-86.

[27] Wiernasz DC, Perroni CL, Cole BJ (2004) Polyandry and fitness in the western harvester
ant, Pogonomyrmex occidentalis. Molecular Ecology 13:1601-1606.



DIPLOID DRONES AND MULTIPLE MATING IN HONEY BEES 15

[28] Winston ML (1987) The Biology of Honey Bees. First Harvard University Press paperback
edition, 1991, p.55.

[29] Woyke J (1963) What happens to diploid drone larvae in a honey bee colony? J. Apic. Res.
2:73-75.

[30] Woyke J (1973) Reproductive organs of haploid and diploid drone honeybees. J. Apic. Res.
12:35-51.

Department of Mathematics and Statistics, University of North Carolina at Greens-

boro, NC27403, USA

E-mail address: m chhetr@uncg.edu

Department of Statistics, Virginia Tech University, Blacksburg, VA, 24061, USA

E-mail address: nels@vt.edu

Department of Biology, University of North Carolina at Greensboro, NC27403, USA

E-mail address: o ruppel@uncg.edu

Department of Mathematics and Statistics, University of North Carolina at Greens-

boro, NC27402, USA

E-mail address: rychtar@uncg.edu


