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Abstract. Kleptoparasitism, the stealing of food items, is a common biolog-
ical phenomenon that has been studied mostly with the help of deterministic
dynamics for infinite populations. The infinite population assumption takes
the models far from the biological reality. In this paper we provide a review
of the main theoretical works on kleptoparasitism and then focus on the sto-
chastic dynamics of kleptoparasitic individuals in finite populations. We solve
the dynamics analytically for populations of 2 and 3 individuals. With the
help of numerical solution of the dynamics, we were able to conclude that the
behavior of the uptake rate in the population is mostly determined by the
uptake rates at populations of 2 and 3 individuals. If the individuals do better
in a pair, then the uptake rate is a decreasing function of the population size.
If the individuals do better in a triplet than in a pair, then the uptake rate
is a zigzag function with lows for even population sizes and ups for uneven
population sizes.

1. Introduction

Kleptoparasitism is a behavior in which one organism steals food or other re-
sources that another organism has caught, killed, or otherwise prepared for its own
use. This process occurs across a great diversity of taxa, with recent observations
from large carnivorous mammals [10], seabirds [12], scavenging bird guilds [3], in-
sects [22], fish [13], lizards [11], snails [16] and spiders [26, 27, 1, 17].

When considering kleptoparasitism we must ask, why would a species evolve
this behavior? From an evolutionary standpoint the answer to this is quite logical:
in order for a behavior to evolve in a population through natural selection, the
individuals who follow this behavior must enjoy greater reproductive success (higher
fitness) compared to others in the population, and this trait must be passed on to
their future offspring. Since not all species that seem capable of kleptoparasitism
show it, and since there is strong variation between and within species in the extent
to which this tactic is used, there is a need for a predictive theoretical basis to
explain this variation. Hence there has been a considerable body of theory aimed
a predicting the evolutionarily stable use of kleptoparasitism in different ecological
circumstances.

In this paper we first review seminal theoretical papers focused on intraspecific
kleptoparasitism, and then study the stochastic model introduced in [28] with a
special focus on small population sizes. Almost all models developed to date are
deterministic, based on a certain system of ordinary differential equations (ODEs).
Consequently, these models assume a very large population size. On the other hand,
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the majority of model organisms that exhibit kleptoparasitism are birds, mammals
and fish, with relatively small populations that are likely to violate assumptions of
infinite population size models. To our knowledge, only two papers to date [21] and
[28] proposed stochastic models for finite and thus potentially small populations.
Moreover, [21] deal with a model that differs from the mainstream deterministic
models and [28] focuses on situation for medium population sizes. Hence, models
that can accurately describe kleptoparasitism in smaller population sizes are needed.

2. Deterministic models of kleptoparasitism

In this section, we provide an overview of the main models and summarize the
major assumptions and conclusions of each.

2.1. Holmgren 1995. One of the first models focused on intraspecific kleptopar-
asitism was developed in [15] and it used foraging interference as its basis. In this
model, an individual’s behavior was deterministic, always fighting whenever an in-
dividual encountered another individual who had a food item. The model also had
individuals encountered each other randomly but at a constant rate. Because in-
dividuals were distinct, it allowed for one to examine the effect of a given type of
individuals who differed in their dominance over each other. But the model was
very complex and only allowed for a numerical, but not analytical, solution.

2.2. Stillman et al 1997. In [25], the authors extended the existing behavior-
based foraging interference models to kleptoparasitism. In their model, an individ-
ual could engage in one of four behaviors: searching, handling, fighting or avoiding.
Their model had three key components:

• the response of an individual to a competitor was not fixed,
• individuals did not move randomly, and
• that time was not the only currency by introducing prey as another form

of currency.

The authors applied the model to data collected on foraging shorebirds including
oystercatchers, curlew, and knots. They found the model to be robust, accurately
predicting interference 85% of the time. The authors suggested that future models
should incorporate the idea that an individual follows optimal decision rules when
deciding their behavior. Two major limitations of this paper include the assump-
tions that prey items were identical, and that the handler always defended the
prey.

2.3. Ruxton and Moody 1997. In [24], authors took the advice given in [25] and
used a functional response model to bridge the gap between an individual’s behavior
and the evolution of a population. Their approach allowed for an analytical solution
of the model, not just a numerical one. In this model, individuals in the population
were engaged in one of the following behaviors:

• searching for a food item,
• handling a food item,
• winning a contest over a food item,
• losing a contest over a food item.

The fight over a food item resulted when a searcher found a handler. The model
examines an individual’s behavior over varying densities of prey and competitors
and when there is more than one patch of food. It predicts that the proportion
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Figure 1. Schematics of the deterministic dynamics model.

of individuals wanting to forage in the best patch will always be greater than the
proportion of prey available. It also predicts that an individual’s decision to forage
in a given patch is dependent on two things: the proportion of food in that patch and
the distribution of food between other patches in the area. Two major limitations
of this model were that: 1) individuals have equal competitive ability, and 2) any
time a forager encountered an individual handling a prey item, it would attempt
kleptoparasitism.

2.4. Broom and Ruxton 1998. In [8], authors take a different tack than [24].
They divide the individuals in the population into three mutually exclusive groups:

• searching for a food item or for a handler,
• handling a food item,
• fighting over the food item.

They assumed that individuals can adopt different strategies (to steal or not to
steal) and they examined what strategies can be evolutionarily stable. An evolu-
tionary stable strategy (ESS) is a strategy which if adopted by a population cannot
be invaded by any competing alternative strategy, [19].

The situation can be described by the diagram on Figure 1.
It should be noted that the model assumes that a food is a shell type (see 2.6),

i.e. handled for an exponentially distributed time; and that the fights last for an
exponentially distributed time.

There are two main advantages to assuming the exponentially distributed time
for handling.

1) One can use ODEs in the model,
2) The food item has always the same value until eaten.

The latter is a consequence of the fact that the conditional expectation for an
exponentially distributed random variable is the same as the original expectations.
Once a handling starts, the expected time to finish handling is defined as Th.
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Provided the individual did not finish handling in the time t0, then at time t0, the
expected time to finish handling is again Th. This means, in particular, that the
individuals can fight over the food item as long and as many times as they choose,
yet the winner always get the same food item as it would get by finding it by itself.

Using a functional response framework, the model predicts an individual’s be-
havior under varying prey densities. If food is plentiful, the model predicts that
no kleptoparasitism will take place. Once the food density drops below a critical
threshold, kleptoparasitism will occur whenever the opportunity arises.

The model assumes that the behavior of an individual is deterministic; individ-
uals either always steal or never steal, and which strategy they employ depends on
either food availability or the time (length) of the encounter. The model predicts
that individuals will cross a threshold level where stealing is optimal when fights
are not costly and when food is hard to find. One peripheral assumption of the
model, that a food item requires a specific handling time prior to receiving the
energy reward, is further explored in subsequent models.

The paper [8] is a foundation for a vast majority of subsequent papers.

2.5. Ruxton and Broom 1999. The model in [23] examined the trade off between
investing time (or energy) in finding food on their own or by kleptoparasitizing
from others. Specifically, they examined the assumption that the time of a contest
over a food item is fixed. Their model suggests that the ESS will be the result of a
combination of the length of time an individual is willing to compete for a food item,
paired with the probability of engaging in a contest over a food item. As in [8], they
assume individuals in a population can be doing one of three mutually exclusive
behaviors: searching, handling, or fighting. The model shows that individuals
should engage in a fight over a food for the same amount of time as, on average,
it takes that individual to find a food by itself. It also predicts that, in a situation
where there is a trade-off between food finding ability and the opportunity to engage
in kleptoparasitism, an individual should never kleptoparasitize. In essence, in
this situation, kleptoparasitism is not an ESS. The paper, though, introduces the
opportunity to test some of the explicit predictions.

2.6. Broom and Ruxton 2003. In [9], the authors introduce a variant to [8] and
[23] by introducing three food types:

• shells
• oranges
• apples

The shell type is a classical food model used in all previous papers and discussed
in details in 2.4. In short, a shell has to be broken in order to eat the food. If the
shell is not broken, the expected time to break it is always the same, no matter
how long one tried to open it beforehand.

The orange type of food needs to be peeled and then it can be eaten constantly.
The major difference between the shell and an orange is that the orange increases
in value the more it is peeled (whereas the value of an unopened shell is constant).
Hence, it pays off more to try to kleptoparasitize an almost peeled orange than
an unpeeled orange. Consequently, one should kleptoparasitize when the original
handler is almost done. In this case, kleptoparasitism should decrease as foraging
density increases.
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The apple type of food can be eaten the moment it is found. The longer one eats
the apple, the lower will be the value, and it is assumed that the value continuously
decreases to 0. Consequently, it is better to attach early in the handling time and
kleptoparasitism should increase as foraging density increases.

2.7. Luther and Broom 2004. In all of the previous papers, it was assumed
that the population can achieve an equilibrium, i.e. almost constant densities of
individuals in various states. In [18] the authors examined this assumption and
they found that:

1) at low densities, the population reaches equilibrium quickly,
2) at high densities the rate at which the population reaches equilibrium is

influenced by the value of the handling time, and
3) when the behavioral state of kleptoparasitism is added it severely compli-

cates model (by adding a nonlinearity to the system of ODE) but that
equilibrium is eventually reached.

The addition of other behavioral states (such as resting/recovering) only increases
the time of convergence to the equilibrium by a factor that is dependent on the
number of behavioral states. Another important conclusion [18] draw is that the
speed of convergence depends upon two key variables: the size of the transition
rate and the pattern for transition between behavioral states. In any case, the
convergence was shown to be exponentially fast and thus this paper justifies the
studying the kleptoparasitic population in equilibrium.

2.8. Broom, Luther and Ruxton 2004. In [6], the generality of the original
model of [8] was expanded in two ways:

• allowing flexibility in the likelihood that an attacker will be able to suc-
cessfully steal a prey item from a handler (originally, the likelihood was
0.5),

• allowing attacked individuals the flexibility to surrender items without a
time-consuming contest.

Depending on the biological parameters of the model, three different types of ESSs
were possible: one where individuals both attacked others for food items and re-
sisted attacks from others (Hawk), one where individuals attacked but did not
resist (Marauder), and one where individuals did not attack, but would resist if
themselves attacked (Retaliator). Further, in some circumstances, more than one
of these alternate ESSs was possible, depending on the history of the system as
well as its current parameter values. The Marauder ESS is particularly interesting
ecologically, giving an economic explanation for one individual to surrender a valu-
able food item without a fight to another individual in the absence of dominance
hierarchies or intrinsic asymmetries in competitive abilities between individuals.

2.9. Recent development. In [7] the authors used the underlying adaptive dy-
namics model, [20] to show how and under what conditions the different strategies
of Hawk, Marauder, Retaliator and Dove studied in [6] could evolve.

In all previous papers it was assumed that the population consists of the same
type of individual, i.e. every individual adopts the same strategy as anybody else.
This assumption was relaxed in [5] where authors introduce a model where individ-
uals can adopt any stealing/defending strategy.
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Also, until now it has been assumed that the fights over the food items are
happening only between a pair of individuals. This assumption is not valid for
a variety of animals (e.g. seagulls) and a model that allows fights between many
individuals was developed and studied in [5].

3. Stochastic models of kleptoparasitism

Unlike the case of infinite populations, there are only two papers on kleptopar-
asitism in finite populations, [21] and [28].

In [21], the authors investigate a population in which contests occur not only over
the food items but also between any two individuals who are engaged in searching.
This can be justified by territorial behavior of certain animals; in [21] they focused
on shorecrabs Carcinus maenas, feeding on mussels Mytilus edulis. Their model
predicts a zigzag type of functional response, with relatively low intake rates when
the number of predators is even and high intake rates with an uneven number of
predators.

In [28], the authors take the classical model [24, 8] and modify it for finite
populations. They were able to find numerical solutions to their model as well as
derive a normal approximation method that can be used when the population size
is not too small.

In the subsequent sections we introduce and study this stochastic model in detail
and derive new results.

4. Stochastic dynamics in finite populations

We consider a population of n individuals. We follow the standard model as
introduced in [8] and adapted to finite population in [28]. Each of the n individuals
can be in one of the following states

• searching for a food item or a handler,
• handling the food item,
• fighting over the food item with another individual.

Once a food item is found (which is happening with an average speed νff),
the individual starts to handle it, i.e. preparing to eat it. The handling time
is exponentially distributed, with mean Th. Once the item is properly handled,
the item is eaten instantly and the individual returns to searching. If a searcher
encounters a handler (which is happening at rate νhH , where H is the number of
handlers), these two individuals engage in a fight over the food item. The fight time
is exponentially distributed with mean Tc. At the end of the fight, one individual
emerges as a winner and starts handling the item, the other individuals will be
searching. The summary of model parameters and notation is given in Table 1.

It is assumed that the searchers are looking for both food and handlers at the
same time. If the food is found first, the searcher becomes a handler. If the handler
is found first, the searcher engages with the handler in a fight over the food item.

We are interested in the proportion of handlers in the population, since this has
been shown to be proportional to the uptake rate, [8].

We model the dynamics as a continuous time Markov chain. The state of the
population can be described by a pair (a, b) where a is the number of searchers and
b is the number of handlers. Since there are n individuals in total, the number of
individuals engaged in the fight is given by n − (a + b). Sometimes we refer to the
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Notation Meaning
n number of individuals in the population
νff rate that food items are found
1/Th rate that food items are handled
1/Tc rate that fights are resolved
νh rate that handlers are found

S number of searchers
H number of handlers
Pa,b(t) probability there are a searcher and b handlers at time t
Pa,b probability there are a searcher and b handlers in equilibrium
SaHbFn−(a+b) state with a searcher and b handlers
f(n) proportion of handlers in the population

Table 1. A summary of model parameters (top section) and no-
tation (bottom section).

state (a, b) by SaHbFn−(a+b). Only states satisfying

0 ≤ a, b, (a + b) ≤ n, , and
n − (a + b) is even(4.1)

are admissible states of the dynamics, no other states can ever be attained.
The scheme of the dynamics with all the transition rates is given at Figure 2.
We denote the probability that the dynamics is in state (a, b) at the time t by

Pa,b(t); in an equilibrium, we denote it just by Pa,b. The probability distributions
follow the following set of Kolmogorov equations:

d

dt
Pa,b(t) =

∑

i,j=±1

(

−Pa,b(t)V(a,b)→(a+i,b+j) + Pa+i,b+j(t)V(a+i)→(b+j)

)

(4.2)

where V(a,b)→(c,d) denotes a transition rate between from a state (a, b) to a state
(c, d). It is assumed that transitions rates to and from non-admissible states are 0.
If all states (a ± 1, b ± 1) are admissible, the dynamics is described by the scheme
on Figure 3 and we have the following equations.

d

dt
Pa,b(t) = −Pa,b(t)

(

b

Th

+ abνh + aνff +
n − (a + b)

2Tc

)

+Pa+1,b−1(t) · (a + 1)νff + Pa−1,b−1(t)
n + 2 − (a + b)

2Tc

+Pa−1,b+1(t)
b + 1

Th

+ Pa+1,b+1(t) · (a + 1)(b + 1)νh

We assume “the boundary conditions” given by

Pa,b(t) = 0, if (a, b) not admissible, i.e. does not satisfy (4.1)
V(a,b)→(c,d) = 0, if (a, b) or (c, d) not admissible(4.3)

The system (4.2) is a system of linear ordinary differential equations. In an
equilibrium, the time derivatives are 0 and we get the following system of linear
equations.
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Figure 2. Scheme of the dynamics.

Sa+1Hb+1Fn−2−(a+b)

(a + 1) · (b + 1) · vh

n−(a+b)
2Tc

(a + 1)vff
b

Th

SaHbFn−(a+b)

a · b · vh

n+2−(a+b)
2Tc

avff b+1
Th

Sa−1Hb+1Fn−(a+b)

Sa+1Hb−1Fn−(a+b)

Sa−1Hb−1Fn+2−(a+b)

Figure 3. Detail of the dynamics.

0 = −Pa,b

(

b

Th

+ abνh + aνff +
n − (a + b)

2Tc

)

+Pa+1,b−1(a + 1)νff + Pa−1,b−1
n + 2 − (a + b)

2Tc

+Pa−1,b+1
b + 1

Th

+ Pa+1,b+1(a + 1)(b + 1)νh(4.4)
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Figure 4. Uptake rates for kleptoparasitic populations depends
on νh. a) νh = 0.1, b) νh = 1, c) νh = 2.4, d) νh = 5, e) νh = 100.
Other parameter values are νff = 1, Th = 1, Tc = 1.

with the boundary conditions (4.3). The system (4.4) is too large to deal with
explicitly. Indeed, it has of the order of n2/4 equations since there is one equation
for every state of the dynamics; and the states are lattice points filling a triangular
shape that is exactly one half of a square with sides n/

√
2. However, the system

(4.4) can be solved numerically using computer software packages like MAPLE.
The system can be also solved analytically for some special cases.

5. The uptake rate

The proportion of handlers in the population is given by

f(n) =
1

n

n
∑

b=0

b ·
∑

a

Pa,b(5.1)

The function f(n) is a measure of the uptake rate in the population of n in-
dividuals, [8]. After conducting the numerical experiments, we conclude that the
function depends on the following 3 factors only

• the size of the population, n,
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vff
1

Th

S0H1Fn−1

S1H0Fn−1

S0H0Fn

a) b)

Figure 5. Right end of the scheme of the dynamics, a) for odd n;
b) for even n.

• the product (νffTh),
• the product (νhTc).

The second factor corresponds to up-down movement in the diagram (searching food
and eating), the third factor corresponds to left right movement on the diagram
(looking for a handler and the fighting). Consequently, we may restrict ourselves
to fixing Th = 1 and Tc = 1 and changing νff and νh only.

6. Dependence of the uptake rate on νh

Notice that with the increasing νh, the uptake rate becomes sensitive to the
population size being odd or even. When νh is relatively small, then f(n) is a
decreasing function of population size. As νh becomes a bit larger, yet not too
large, f has a local maximum at n = 3 and is decreasing for n ≥ 3. As νh gets
even larger, f starts to have local maxima at n = 3, 5, . . ., and eventually becomes
a monotone function. When νh gets very large, there is a significant dependence of
the uptake rate on the parity of the population size. Figure 4 shows the behavior
of f(n) for a range of values of νh.

6.1. The situation for large νh. When νh is large, then the dynamics is pushed
towards the right hand side of the diagram on Figure 2. The exact shape of the
right hand side depends on the parity of the population size and it is given in the
Figure 5.

When n is even and νh is large, the population is almost always in the state (0, 0),
i.e. all individuals fighting. This means that the uptake rate is approximately 0.

When n is odd and νh large, the population is either in (1, 0) or in (0, 1), i.e.
n− 1 individuals are engaged in fights and the remaining one is either searching or
handling. This yields the following system of linear equations

P0,1 + P1,0 = 1(6.1)

−P1,0νff +
1

Th

· P0,1 = 0(6.2)
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and we also have

f(n) =
1

n
P0,1

The equation (6.2) gives

P0,1 = νff · Th · P0,1

and, by (6.1), we get

f(n) =

{

νf fTh

n(1+νf fTh) , n is odd,

0, otherwise.

6.2. The situation for small νh. When νh ≈ 0, then the individuals stay only in
the left part of the diagram on Figure 2 since there are no fights. Hence, Pa,b 6= 0
only if 0 ≤ a = n − b ≤ n. Consequently, we have to solve the system

0 = −(n − b)νffPn−b,b +
b + 1

Th

Pn−b−1,b+1, b = 0, . . . , n(6.3)

1 =

n
∑

b=0

Pn−b,b(6.4)

Iteratively applying (6.3) yields

(6.5) Pn−b,b =
n!

(n − b)!b!
(νffTh)bPn,0

and, by (6.4) we get

f(n) =
1

n

n
∑

b=0

b · Pn−b,b =
1

n(1 + νffTh)n

n
∑

b=0

b
n!

(n − b)!b!
(νffTh)b

=
νffTh

(1 + νffTh)
.

The above is actually an expression for the population with no fights as derived
in [14]. Notice that when there are no fights, the proportion of handlers does not
depend on the population size n.

6.3. Population of n = 2 versus n = 3. When n = 1, 2, 3 we can solve the
dynamics (4.4) by hand to get

f(1) =
νffTh

νffTh + 1

f(2) =
νffTh · (1 + νffTh)

2νffTh · νhTc + (1 + νffTh)2

f(3) =
νffTh · (2νffTh · νhTc + (1 + νffTh)2)

(1 + νffTh)(6νffTh · νhTc + (1 + νffTh)2)

Clearly,

f(1) > max{f(2), f(3)}
for any parameter values (there is an equality if νh = 0, i.e. no fights). The
inequality can be seen heuristically from the fact that once there are at least 2
individuals, there is a nonzero chance they will engage in a fight and thus it will
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Figure 6. Uptake rates for kleptoparasitic populations depends
on νff . a) νff = 0.01, b) νff = 0.1, c) νff = 1, d) νff = 1, e)
νf f = 100. Other parameter values are νh = 10, Th = 1, Tc = 1.

lower the uptake rate. After some algebraic manipulation, we get that f(2) > f(3)
whenever

(6.6) νhTc <
(1 + νffTh)2

2νffTh

.

The numerical experiments moreover show that if (6.6) holds, then the uptake rate
is monotonically decreasing.

7. Dependence of the uptake rate on νff

As can be seen already from (6.6), the behavior of the uptake rate depends on
both νhTc and νffTh. The dependence is unfortunately highly nonlinear. Never-
theless, assuming, without loss of generality, Tc = Th = 1, we can derive from (6.6)
the following qualitative behavior. If νff ≈ 0, then (6.6) holds for most of the val-
ues of νh and hence f(n) is a decreasing function of the population size. The same
is true if νff ≈ ∞. For a fixed νh, as νff increases from 0 to a threshold value V ,
the behavior of f(n) changes from decreasing to slightly zigzag (with local maxima
at n = 3, then at n = 3 and n = 5, etc.) to a significantly zigzag functions with
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local minima at even n and local maxima at odd n. As νff gets above the threshold
V , then f starts to flatten out from very zigzag to monotonically decreasing and
eventually becomes almost constant 1 (for very large νf f).

The behavior is demonstrated at the Figure 6.
The threshold value V depends on the value of νh. However, we did not find an

explicit formula for this dependence, partially for we did not quantify the zigzag
behavior (for example by measuring the oscillation of f) explicitly.

8. Conclusions

We have seen that there is a vast literature on mathematical modeling of klep-
toparasitism. We have reviewed significant papers on deterministic models and
have seen that, starting from the paper [8], the model assumptions have become
progressively closer to biological reality by allowing the individuals to exhibit a
wider range of behavior, by varying the food types, and by allowing group fights
over the same food item. Nevertheless, there was one key assumption - infinite pop-
ulation size - that remained untouched until very recently. Currently, there is only
one published paper, [28], and one preprint, [21], that deal with kleptoparasitism
in finite population.

Since actual populations of kleptoparasitic organisms are likely to follow the
dynamics of finite rather than infinite populations, modeling kleptoparasitism in
finite population is an important problem to be addressed and solved theoretically.
In this paper, we have studied the model introduced in [28]. We provided the
analytical solutions for sizes n = 1, 2, 3 and wrote a system of linear equations that
can be solved numerically for any population size. Currently, with Dr. M. Broom
(University of Sussex, UK), we are working on formalizing the methods (detailed
balance conditions for Markov chains) introduced informally in [21] and we hope
that this will yield an analytical solution and further insight in the dynamics.

From the numerical experiments, we could see that the qualitative behavior of
the uptake rate function depends mostly on the situation in populations of 2 and 3
individuals. If the individuals do better in the population of 3 than in 2, it means
that the parameters are set for an old saying: “If two dogs fight for a bone, the third
one runs away with it”, [21]; in which case an uptake rate function has a zigzag
behavior with lows for even population sizes and ups for odd population sizes. It
should be noted, however, that, for any parameter values, the uptake rate function
eventually become a monotonically decreasing function when n is large enough.
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