
ON THE EXPONENTIAL FUNCTION

ROBERT GOVE AND JAN RYCHTÁŘ

Abstract. The natural exponential function is one of the most

important functions students should learn in calculus classes. The

applications range from mathematics, statistics, natural sciences,

and economics. Despite its wide use and importance, instructors

often struggle with the proper definition. The purpose of this note

is to provide a short, self-contained exposition on the natural ex-

ponential function exp(x) starting from an accessible definition to

the derivation of all of its properties. We will also discuss other

common definitions of the exponential function and show its ap-

plication in natural sciences.

1. Definitions of the exponential function

There are many available definitions of exp(x). Wikipedia, see [7],

lists the following 5 definitions.

(D1) exp(x)
def
= lim

n→∞

(

1 +
x

n

)

n

.

(D2) exp(x) is the inverse to ln x
def
=

∫

x

1

1

s
ds.

(D3) exp(x)
def
=

∞
∑

n=0

xn

n!
.
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(D4) exp(x) is the only continuous function f(x) satisfying f(a+b) =

f(a)f(b) for all a, b ∈ R and f(1) =
∑

∞

n=0
1
n!

.

(D5) exp(x) is the solution of the differential equation y′ = y satis-

fying y(0) = 1.

We can choose any definition from the above, and as soon as we

choose one, the others become properties of the function. So the ques-

tion is which definition should we choose.

The definition (D1) contains the most primitive terms. Theoretically,

we could introduce the exponential function using this definition as

early as possible. The drawback of this definition is that derivation of

other properties from it is too technical, see [4, pages 51, and 133].

In calculus classes, the exponential function is usually defined by

(D2), see e.g. [6, p. 425], [1, p. 428], [8, p. 331]. This approach

requires waiting till the definite integral is introduced.

The definition (D3) is often used in real analysis classes, see [5, p.

178]. This is one of the most universal definitions since it allows us

to use the same approach to define other functions (like sin x
def
=

∞
∑

n=0

x2n+1

(2n + 1)!
, or cos x

def
=

∞
∑

n=0

x2n

(2n)!
). The formula can also be used

to define exponentials of matrices (and linear operators in general), see

[3]. But since the formula requires the knowledge of series, it is not

used in any early classes.

The property exp(a + b) = exp(a) exp(b), which is the core of the

definition (D4), is one of the reasons why exp(x) is an important func-

tion. The definition (D4) is probably the most abstract definition of

the exponential function. Although probably the most beautiful of all
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of the definitions, it is “too far” from calculus to be used in calculus at

all.

The property exp(x)′ = exp(x) is the core of definition (D5). It is this

property that makes the exponential function important for calculus.

It is also the reason why students like to differentiate the exponen-

tial function. Although the definition implicitly contains a differential

equation and thus seems to be a highly advanced definition, it could

be explained to students as soon as they learn what a derivative is.

In the rest of the paper we will advocate why we should choose (D5)

for the definition of the exponential function.

2. Definition of exp(x) as a unique solution of

y′ = y, y(0) = 1

Let us start from the beginning.

Definition. The natural exponential function exp(x) is defined to be

the only function y = y(x) that satisfies the following two conditions

(E1) y′(x) = y(x), for all x ∈ (−∞,∞), and

(E2) y(0) = 1.

There is only one problem with the above mathematical definition:

there is no guarantee that such a function exists and is unique. How-

ever, both the existence and the uniqueness are guaranteed by Picard’s

theorem [2, p. 110]. The general version of the theorem is quite ad-

vanced and this is probably the reason why the above definition is not

widely spread in calculus classes. However, it is enough to have the

following weaker version.
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Theorem 1 (Picard). For any numbers k and c0 there exists a unique

function y(x) satisfying

• y′(x) = ky(x), for all x ∈ (−∞,∞), and

• y(0) = c0.

If we are teaching calculus for application-oriented students, we may

use the following example on uninhibited growth which also turns out

to be useful in visualizing some of the properties of the exponential

function.

Visual example - uninhibited growth. (Compare e.g. [1, p.605])

Assume a cell splits every T = ln 2 into two new cells and that there

are originally c0 cells at time t = 0. Then c0 exp(x) is the number of

cells at time t = x.

So now we have the definition of the natural exponential function.

It remains to prove its properties.

3. Properties of exp(x).

Let us start by proving the properties (D1)-(D4) from the beginning

of the paper.

Fact 2. exp(x) = lim
n→∞

(

1 +
x

n

)

n

.
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Proof. Denote y(x) = lim
n→∞

(

1 +
x

n

)

n

. Then we have

y′(x) =
d

dx

(

lim
n→∞

(

1 +
x

n

)

n
)

= lim
n→∞

d

dx

(

1 +
x

n

)

n

= lim
n→∞

n ·
(

1 +
x

n

)

n−1

·
1

n

= lim
n→∞

(

1 +
x

n

)

n−1

= lim
n→∞

(

1 +
x

n

)

n

·
(

1 +
x

n

)

−1

= lim
n→∞

(

1 +
x

n

)

n

· lim
n→∞

(

1 +
x

n

)

−1

= y(x).

The second equality (where we interchanged the limit and differen-

tiation) follows by [5, Theorem 7.17]. Thus, we have y′(x) = y(x).

Moreover,

y(0) = lim
n→∞

(

1 +
0

n

)

n

= 1.

Hence, by the uniqueness of the exponential function, y(x) = exp(x)

which is exactly what we wanted to prove. �

Fact 3. exp(x) is an inverse to ln x
def
=

∫

x

1

1

s
ds.

Proof. Let y(x) denote the inverse to ln x. By the fundamental theorem

of calculus, [1, p. 403],

d

dx
ln(x) =

1

x
.

Thus, by the theorem on differentiation of inverse functions, [1, p. 249],

y′(x) =
1
1

y(x)

= y(x).

Because ln 1 = 0 we get y(0) = 1 and thus, by the uniqueness of the

exponential function, y(x) = exp(x) which we wanted to prove. �

Fact 4. exp(x) =

∞
∑

n=0

xn

n!
.
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Proof. Denote y(x) =
∞
∑

n=0

xn

n!
. Then we have

y′(x) =
d

dx

(

∞
∑

n=0

xn

n!

)

=

∞
∑

n=0

d

dx

(

xn

n!

)

=

∞
∑

n=0

n ·
xn−1

n!

=
∞
∑

n=1

xn−1

(n − 1)!
= y(x)

where the second equality holds because of the theorem on differenti-

ation of the power series, [1, p. 704]. Thus, y′(x) = y(x); and since

y(0) =

∞
∑

n=0

0n

n!
= 1, we must have, by the uniqueness of the exponential

function, y(x) = exp(x). �

Fact 5. exp(a + b) = exp(a) exp(b) for all a, b ∈ (−∞,∞).

Proof. Instead of a rigorous proof, we will demonstrate this fact using

the example on an uninhibited growth of cells.

Consider the following “experiment”. First, let a colony of initially

c0 cells grow for time t = a. At time t = a, the colony will consist

of c0 exp(a) cells. Next, divide the colony into exp(a) colonies, each

one of them consisting of c0 cells. Finally, let all colonies grow for

an additional time t = b. After that time, each such a colony will

consist of c0 exp(b) cells. Together, after time t = a + b, there will be

c0 exp(a) exp(b) cells.

On the other hand, based on what we assumed about the cell growth,

the division of the colony at time t = a did not have any effect on

individual cells, so after the time t = a + b there are c0 exp(a + b) cells.

By matching the two numbers we have

c0 exp(a + b) = c0 exp(a) exp(b),
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which is exactly what we wanted to prove. �

Remark. For simplicity, we assumed that exp(a) is an integer, but

this was only in order to make the example really visual. We also as-

sumed that the division of the original colony at time t = a did not

have any effect on the cell growth. The mathematical counterpart of

this idea is the Picard’s theorem.

Now we will prove some elementary properties of the natural exponen-

tial function.

Fact 6. (i) exp(x) is continuous and differentiable for all x.

(ii) exp(x) > 0 for all x.

(iii) exp(x) is strictly increasing and concave up.

(iv) exp(x) ≥ 1 + x for all x.

(v) lim
x→∞

exp(x) = ∞ and lim
x→−∞

exp(x) = 0.

Proof. (i) Since exp(x) solves an equation y′ = y, it must be differen-

tiable. Moreover, every differentiable function is continuous (see e.g.

[1, p. 184]).

(ii) If there is x such that exp(x) ≤ 0, then, by the intermediate value

theorem, [1, p. 149], there must be x′ such that exp(x′) = 0 (because

exp(0) = 1 > 0). It follows

1 = exp(0) = exp(x′ + (−x′))
Fact 5
= exp(x′) exp(−x′)

= 0 · exp(−x′) = 0,

which is a contradiction. Hence, there is no x such that exp(x) ≤ 0,

i.e. exp(x) > 0 for all x.
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(iii) Since, by the definition and (ii),

(exp(x))′ = exp(x) > 0,

exp(x) is strictly increasing. Since, again by the definition and (ii),

(exp(x))′′ =
(

(exp(x))′
)

′

=
(

exp(x)
)

′

= exp(x) > 0,

exp(x) is concave up.

(iv) The function 1 + x = exp(0) + exp′(0)x is a tangent line to exp(x)

at x = 0. Since, by (iii), exp(x) is concave up, the graph of exp(x)

must be above the tangent line and the inequality follows.

(v) The first part follows directly from (iv). Indeed,

lim
x→∞

exp(x) ≥ lim
x→∞

1 + x = ∞.

For the second part, we know that the limit L = lim
x→−∞

exp(x) exists

(as exp(x) is increasing) and is at least 0 (by (ii)). Since exp(x) is its

own derivative, we also have L = lim
x→−∞

(exp(x))′. We claim that this

is possible only if L = 0.

The proof that L = 0 is by contradiction. Indeed, for a contradiction,

assume L > 0. By the definition of a limit (but without going too much

into ε, δ exercise), we can take a number x0 so that for all x < x0

(a) L ≈ exp(x), and

(b) L ≈ exp′(x).

We will now consider a fraction exp(x)−exp(y)
x−y

and we will estimate it in

two ways.
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First, we show that it has to be almost 0. Take x, y < x0 with |x−y|

large enough so that 4L/|x − y| ≈ 0. Then,

0 ≤

∣

∣

∣

∣

exp(x) − exp(y)

x − y

∣

∣

∣

∣

≤
| exp(x)| + | exp(y)|

|x − y|

≤
4L

|x − y|
≈ 0,

i.e. exp(x)−exp(y)
x−y

≈ 0.

On the other hand, we will show that the fraction should be approx-

imately L. By the mean-value theorem, there exists c between x and

y (thus c < x0 and consequently exp′(c) ≈ L) such that

L ≈ exp′(c) =
exp(x) − exp(y)

x − y
≈ 0.

It means that L should be arbitrarily close to 0. It is possible only

if L = 0, contradicting our assumption L > 0. �

4. Conclusion

We have defined exp(x) in a relatively elementary way as a unique

solution of the initial value problem

y′(x) = y(x),

y(0) = 1

and showed how easily all properties of the exponential function follow.

We have also seen how the exponential function relates to examples

from mathematical biology, namely the uninhibited growth of cells.

We will continue the work to show that the functions cos x and sin x,

respectively, can be defined in a very similar manner: as a real part
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and an imaginary part, respectively, of the unique solution of the initial

value problem

y′(x) = iy(x)

y(0) = 1.
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