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Abstract 
 
π  is one of the longest-studied irrational constants, with one of the first rigorous studies due to 
Archimedes in the third century BCE when he was able to approximate π  with arbitrary accuracy using 
regular polygons and the method of exhaustion. In more recent history, and in particular thanks to the 
development of Calculus in the seventeenth century AD, π  has been calculated to more than 1.24 trillion 
digits; however it is still unknown if π  is normal in any base. We look at a new approach to the problem 
of normality which involves chaotic dynamics, as well as possible implications if it were normal. We also 
discuss known properties of π  and their proofs, in particular the properties of transcendency and 
irrationality. We introduce and examine some of the varied methods for calculatingπ , including the 
recent BBP formula which may have a connection to the question of normality. Furthermore, we examine 
some of these formulas using the Maple software package in order to determine the rates of convergence 
and, more importantly, the efficiency of these formulas for long approximations of π  on modern 
computers. In conclusion, we present an answer to the question of why we need to compute long 
approximations ofπ . 
 
 
Introduction 
 
This article is the outcome of an independent research project suggested by my professor, Dr. Jan 
Rychtář. Originally, the goal was to do general research on what is known about π , but the project 
expanded to include original research on a few of the methods for computing π  in order to become 
familiar with computer algebra systems in preparation for solving mathematics-related biological 
problems in a math-biology research fellowship. Specifically, this original research was conducted using 
the Maple software package to compare the convergence and efficiency of various formulas forπ . 
 
During the general research, I also found some amusing trivia such as the field of piphilology, which is 
the study of mnemonic techniques for remembering approximations ofπ . If one counts the number of 
letters in each word, the following example will give π  to 14 decimals: 
  

“How I need a drink, alcoholic of course, after the heavy lectures  
involving quantum mechanics.” 

 
 
History of Computing π  
 
Perhaps the first person to be able to compute π  with arbitrary precision was Archimedes in the 3rd 
century BCE. By inscribing a regular polygon inside a circle and by circumscribing a regular polygon 
with the same number of sides outside the circle, one can set an upper and lower bound for the 
circumference of the circle, and therefore also an upper and lower bound for π  (see Figure 1). By  
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increasing the number of sides, one is able to more closely approximateπ . With this method Archimedes 
was also able to place an upper and lower bound onπ , stating that it is between 223/71 and 22/7 (see 
Eymard and Lafon, 2004). 
 

 
Figure 1 

 
The next leap in computing π  came after the development of the Maclaurin series for the ( )xarctan  
function during the 17th century AD (see Table 1). Although one can use the identity  

( )1arctan
4
=

π
 

with the Maclaurin series to compute π  with arbitrary precision, the series converges so slowly that it is 
useless on its own. However, in 1706 John Machin developed a variation on the formula by using the 
tangent double angle and tangent difference identities (see Table 1 and Baker, 1975, Chapter 1, Theorem 
1.4). By taking only five terms of the series for this new formula, one is able to get eight correct digits for 
π  (it converges on average at a rate of roughly 1.4 correct digits per iteration). 
 
In 1996, David Bailey, Peter Borwein, and Simon Plouffe published a new formula for computing digits 
of π , which they dubbed the BBP formula (see Table 1). This formula can be used to compute any digit 
of π  in hexadecimal base directly, without computing any of the previous digits. There is no known 
equivalent formula for base 10. For more information on the method of calculation, see Bailey et. al, 
1997. 
 
Other interesting formulas were developed by Madhava of Sangamagrama, who discovered the formula  
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1arctan6π  

in the 15th century AD. Other Machin-like formulae were developed by L.K. Schulz von Strassnitzky in 
1844 and Carl Friedrich Gauss in 1863. Strassnitzky’s formula converges to π  somewhat slower than 
Machin’s original formula, and Gauss’s formula converges remarkably faster.  
 
 
Properties of π  
 
The number π  is known to be transcendental (transcendental numbers are ones which are not a root of a 
non-zero polynomial with rational coefficients). Here is a short proof that π  is transcendental: 
 
The Lindemann-Weierstrass theorem states (see Baker, 1975, http://en.wikipedia.org/wiki/Lindemann-
Weierstrass_theorem/): If nαα ,....,1 are distinct algebraic numbers, then their exponentials 

( ) ( n )αα exp,....,exp 1  are linearly independent over the algebraic numbers. 
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First, recall Euler’s formula:  

( ) ( ) ( )xixix sincosexp += . 
If π  were algebraic, i.e. the root of a nontrivial polynomial with rational coefficients, then 2π i would be 
algebraic too (since 2i is algebraic and the product of two algebraic numbers is an algebraic number, see 
Herstein, p. 213). Then by the Lindemann-Weierstrass theorem  

( ){ } { }1,1)2exp(,0exp =πi  
would be linearly independent over the algebraic numbers. This is a contradiction, so π  is transcendental. 
Furthermore, because all transcendental numbers are also irrational, it follows that π  is irrational. 
 
Maclaurin series for arctan(x) 
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Table 1: Formulas for π  
 
 
It is currently unknown if π  is a normal number (i.e. if a string of length m occurs with frequency b-m in 
base b (http://mathworld.wolfram.com/NormalNumber.html/). However, the BBP algorithm may provide 
an answer to the question of π ’s normality. In the step immediately before the hexadecimal result, the 
algorithm yields a result between 0 and 1. The result appears to oscillate erratically, suggesting a link to 
chaotic dynamics. Bailey and Crandall have hypothesized that if this result is evenly distributed, then π  
can be said to be normal to base 2, thus transforming the problem of π ’s normality into one involving 
chaos theory (see Peterson, 2001 for more information). 
 
Computing π  in Maple 
 
One goal of this research was to write a program implementing certain formulas for computing π  in the 
Maple software package in order to compare their convergence and efficiency. The program works on 
formulas which are based on infinite series (such as the formulas in Table 1), and then it determines the 
number of correct digits which were computed. The results are shown in the charts and graphs below. The 
tests were run on a modern-day 3Ghz Pentium 4 computer using Maple v10. 
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One can see immediately that the Gauss formula clearly converges to π  at the fastest rate— in fact, it is 
almost twice as fast as any other formula shown here. Based on the results in the graph Precision vs. 
Iterations, we can derive the table shown below. The Gauss formula clearly wins for convergence toπ : 
one only needs to sum from 0 to 398 in order to get 1000 correct digits ofπ . 
 
Interestingly, even though the BBP formula converges at less than half the rate of the Gauss formula, it is 
by far the most efficient algorithm considered here in terms of correct digits calculated per second. Note 
how after 60 seconds it has correctly computed around 68,600 digits ofπ , whereas the Gauss formula has 
only computed about 37,600 correct digits in the same time. 
 

 
Figure 2 

 

 
Figure 3 

 
 

Correct 
Digits 

Madhava 
sum to… 

Gauss 
sum to…

Strassnitzky 
sum to… 

Machin 
sum to… 

BBP sum 
to… 

1000 2093 398 1659 715 829 
2000 4186 796 3318 1430 1659 

Table 2: The sum required to reach 1000 and 2000 correct digits 
 
Why Should We Care? 
 
The current world record for computed digits of π  is 1.24 trillion digits, set by Yasumasa Kanada of the 
University of Tokyo in 2002 using several Machin-like formulae (http://www.super-

http://www.super-/
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computing.org/pi_current.html). David Bailey pointed out that one only needs about 40 decimals of π  to 
calculate the circumference of something the size of the Milky Way galaxy with an error less than the size 
of a proton (Bailey et. al, 1997). So why should we care to compute so many digits ofπ ? 
 
One possible answer is that these extensive calculations can be used in disclosing computer hardware 
errors. If two independent systems compute the same digits ofπ , it is likely that both systems performed 
the operations flawlessly (Bailey et. al, 1997). 
 
Furthermore, if it can be shown that π  is a normal number, it may be possible to use π  as a pseudo-
random number generator for scientific purposes or computer simulations (Bailey et. al, 1997). 
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