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Abstract Queens of the honey bee, Apis mellifera (L.), exhibit extreme polyandry,

mating with up to forty-five different males (drones). This increases the genetic di-

versity of their colonies and consequently their fitness. After copulation, drones leave

a mating sign in the genital opening of the queen which has been shown to promote

additional mating of the queen. On one hand, this signing behavior is beneficial for

the drone because it increases the genetic diversity of the resulting colony. On the

other hand, it decreases the proportion of the drone’s personal offspring among colony

members which is detrimental to the drone. We analyze the adaptiveness and evolu-

tionary stability of this drone’s behavior with a game-theoretical model. We find that

theoretically both the strategy of leaving a mating sign and the strategy of not leaving

a mating sign can be evolutionary stable, depending on natural parameters. However,

for most scenarios, including all biologically plausible ones, based on empirical data the

signing strategy is not favored. We conclude that leaving a sign is not in the interest of

the drone unless it serves biological functions other than increasing subsequent queen

mating chances.
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1 Introduction

The mating patterns of animals are highly variable, and in many species one or both

sexes mate with multiple partners. Polyandry, males mating with only one female but

females mating with several males, is relatively rare among insects. However, some so-

cial insects, such as leaf cutter ants, army ants, harvester ants form notable exceptions

[3,27,15]. Honey bees provide probably the most striking case because queens of several

species in their genus Apis can mate with over forty different males (drones) during

a very short time at the beginning of their lives [5,26]. Honey bee queens and drones

mature for about one week in their parental colony before they leave for mating flights

[30,22]. On these mating flights both sexes fly to mating arenas, called drone congre-

gation areas (DCAs), where mate location and mating takes place [16]. Although, the

mating behavior is therefore difficult to observe, tethered-queen studies have shown

that the queens are usually located by vision and scent by drones, pursued by several

drones, and mated consecutively by one of them in flight [13].

During copulation, the drone inserts his endophallus and transfers sperm into the

oviduct. In the process, the male copulatory organs sever from the drone to be left

in the genital opening of the queen as a so-called mating sign, while the drone dies

shortly after copulation [31]. The sperm persists in the oviduct and migrates later to

the spermatheca for long-term storage. The mating sign blocks the genital opening and

thus needs to be removed by the next drone before mating. However, it has empirically

been demonstrated that the mating sign increases the number of subsequent matings:

in a choice test, drones mated more with queens with a mating sign than unsigned ones

by a factor of 1.7 [11]. At the end of the mating flight, queens return to their hives with

the last mating sign in place which is removed by the workers in the hive. Therefore,

beekeepers can use the mating sign to identify queens that return successfully from

mating flights.

The mating sign of the honey bee is an example of the more general phenomenon

of males clogging the genital opening of their mate with a mating plug after copulation

[8]. However, in contrast to the honey bee, in most species this leads to decreased

subsequent copulation chances of the female. The mating plug can serve as a signal or

as a physical barrier to prevent successful future mating [8]. This increases the plugging

male’s fitness by preventing sperm competition or complete removal of his sperm by any

successor, thus maximizing his paternity among the female’s offspring [8]. In contrast,

mating plugs may disadvantage females by decreasing the overall genetic diversity

among her offspring and the potential to select her offspring’s paternity. For example,

multiple mating confers a selective advantage to bumble bee (Bombus terrestris) queens

due to lower pathogen loads among the descendent colony [1]. However, this species

is usually singly-mated which is attributed to an efficient mating plug that increases

drone fitness [2]. Thus, male and female interests diverge, resulting in an evolutionary

arms race between the sexes [8].

In honey bees, the ancestral mating scenario may have resembled that of bumble

bees but the finding that drone mating signs enhance the number of subsequent matings

[11] radically alters the interpretation of this behavior. It is possible that the ancestral

behavior persists because of evolutionary inertia and drones leave the mating sign

because it used to be adaptive by preventing other drones from mating with the queen.

An alternative explanation is that the mating sign fulfills important physiological roles

in mating, such as retention of the sperm in the female genital tract during flight [29],

or aiding the sperm migration into the spermatheca [28]. Finally, selection for multiple
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mating in honey bees may be sufficiently strong to select for cooperation among all

concerned parties to facilitate female multiple mating, thus leading to a mating sign

that enhances a queen’s subsequent mating chance [14]. In this case, the increase in

colony performing would have to outweigh not only the costs of multiple mating to the

queen, but also the cost of the signing behavior to the drone, including the dilution of

his sperm contribution to the next generation.

This study aims to analyze the adaptiveness and evolutionary stability of the

drone’s signing strategy in a game-theoretical framework. In this context, the fitness

benefit for an individual drone to leave a mating sign or not is dependent on the pop-

ulation frequency of drones leaving a mating sign, the function connecting the number

of matings and queen fitness, and other factors that determine average mating number

of queens, such as the time a queen spends in the DCA (total mating time), the time it

takes for a drone mate to find the queen, and the decrease in that time due to a mating

sign. We analyze the fitness functions for the queen and each drone to determine con-

ditions under which the strategy ”to sign“ or ”not to sign“ is an evolutionary stable

strategy (ESS). An ESS is a strategy such that, if all the members of a population

adopt it, no mutant strategy can invade [18].

In Section 2, we develop our model by introducing fitness functions for the queen

and each drone and we analyze the fitness for the average drone. In Section 3 we state

the conditions for different strategies to be ESSs. In Section 4, we state our main

results. Finally, in Section 5, we provide the conclusion and discussion of our results.

2 Methods

2.1 Mathematical model of honey bee mating mating behavior

For modeling purposes, we consider the following idealization. A queen flies into the

drone congregation area and remains there for time T . A drone mates with the queen in

a negligible amount of time. After mating, the drone does or does not sign the queen. A

drone that leaves a sign will be called a Signer and a drone that never leaves a sign will

be called an Unsigner because he removes any potential previous mating sign without

replacing it. Drones die after the mating but there is a large number of drones in the

congregation area and we may thus assume that the density of drones remains constant

over time. We assume that the time needed for a queen to be found (and mated) by a

drone follow the exponential distribution with means σ−1 (for signed queen) and υ−1

(for unsigned queen). Leaving a sign increases the likelihood that a subsequent drone

will find the queen, meaning

υ < σ. (1)

2.2 Queen fitness function and drone fitness function

The queen fitness, Fq(n), is a function of the number of drones the queen mates with.

Each drone is thought to contribute an equal amount of sperm to the queen [28] and

thus has an equal share of the paternity of the brood. Therefore, the fitness function

for a drone, given the queen mated n times, is

Fd(n) =
Fq(n)

n
. (2)
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Fig. 1 An example of a queen fitness function and a demonstration that once Fq(15) ≈ 5Fq(1),
the maximal drone fitness has to occur for less than 5 mates. Note that the drone fitness Fd(x)
corresponds to the slope of the line connecting the origin with the point [x,Fq(x)]. The function
Fd attains its maximum at exactly one point Dopt.

There is empirical evidence that the queen fitness is generally an increasing function

of n with diminishing returns [6,9]. Therefore, we may idealize the fitness function to

be a smooth, positive, increasing and concave-down function Fq(x) on [1,∞). Hence

F ′

d(x) =

(

Fq(x)

x

)

′

=
F ′

q(x)x − Fq(x)

x2
(3)

and since
(

F ′

q(x)x − Fq(x)
)

′

= F ′′

q (x)x < 0 (4)

we get F ′

d(x) = 0 for at most one value of x. Consequently, there is a unique Dopt ∈

[1,∞] such that

Fd is increasing on (1, Dopt), and (5)

Fd decreasing on (Dopt,∞). (6)

As we will see later, the above observation on Dopt plays a crucial role in the

analysis of optimality of drone’s behavior.

2.3 Estimating Dopt

The properties of Fq allow us to estimate Dopt even when we do not know the function

Fq explicitly. Just knowing the approximate values of Fq(1) and Fq(k), for some (gen-

erally large) mating number k, such as those in [17], can give us a very useful estimate

for Dopt (see Figure 1).

If Fq(k) < kFq(1), in other words, if Fd(k) < Fd(1), then

Dopt ≤
Fq(k)

Fq(1)
. (7)
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Indeed, since Fd(k) < Fd(1) there is x0 < k such that F ′

d(x0) < 0 and consequently,

by (6), F ′

d(x) < 0 for all x > x0. Thus, Dopt < x0 < k. If we assume, for the contrary,

Dopt >
Fq(k)
Fq(1)

, then since Fq is increasing, we get

Fd(Dopt) ≥ Fd(1) (8)

Fq(Dopt) ≥
Fq(1)

1
· Dopt >

Fq(1)

1
·
Fq(k)

Fq(1)
= Fq(k) (9)

Dopt > k, (10)

a contradiction.

2.4 Approximating the expected drone’s fitness

Let F xY
d be the expected fitness of a drone using strategy x - s(signer) or u(unsigner)

- if other drones in the population use a strategy Y - S(signer) or U(unsigner). Then

FxY
d =

∞
∑

n=1

πxY
n

F (n)

n
(11)

where πxY
n is the probability the queen mated n times during the time T given that

she mated with the focal drone.

The probabilities πxY
n and consequently F xY

d can be calculated explicitly (see Ap-

pendix). However, the formulas did not allow us any further analytical progress. We

therefore used the approximation

∞
∑

n=1

πxY
n

Fq(n)

n
≈

Fq

(

∑

∞

n=1 nπxY
n

)

∑

∞

n=1 nπxY
n

(12)

which yields

FxY
d ≈

Fq

(

NxY
)

NxY
= Fd

(

NxY
)

(13)

where NxY is the average number of drones the queen mates with during time T in

the population of Y if she mates with the focal drone using strategy x. We can easily

evaluate all values of NxY (see Appendix).

In order to check the approximation (12) we run simulations based on Gillespie’s

algorithm [7]. In most cases, the results from the simulations were consistent with

the approximations. This is a consequence of the function Fd being almost linear or

even almost constant as long as it is considered only on [1, Dopt] or on [Dopt,∞).

The approximation were indeed worst when the expected number of mates was around

Dopt, yet even then there was no more than 5% relative difference between simulated

and approximated values.
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3 Conditions on ESSs

A signer strategy is an ESS if the expected fitness for a single unsigner in a population

of signers is lower than the expected fitness of an average drone in the population and

vice-versa. Based on (13), a signer strategy is an ESS if

Fd(NsS) > Fd(NuS) (14)

and similarly, an unsigner strategy is an ESS if

Fd(NuU ) > Fd(NsU ). (15)

Since we can evaluate all of NxY explicitly, we can formulate (14) and (15) in terms

of σ, υ, T , and Fd(x). We note that for most of the analysis, it is not the values N sS

and NuS , but rather the difference NsS − NuS that is important. It follows that

NsS
− NuS =

(σ

υ
− 1
)

(

1 −
1 − e−υT

υT

)

> 0 (16)

and thus, by (14), signer is ESS if and only if

NsS < Dsigner
crit (17)

where Dsigner
crit is the unique value such that

Fd(Dsigner
crit ) = Fd

(

Dsigner
crit −

(σ

υ
− 1
)

(

1 −
1 − e−υT

υT

))

(18)

This is illustrated in Figure 2. A similar condition can be formulated for unsigner to

be an ESS.

However, it is hard to practically evaluate Dsigner
crit as it depends too much on the

shape of the function Fd(x) = Fq(x)/x, which was never been empirically determined.

Thus, we formulate sufficient conditions for signer and unsigner to be an ESS in terms

of Dopt which we can estimate.

Since Fd is increasing on [1, Dopt], a sufficient condition for a signer strategy to be

an ESS is

NsS < Dopt, (19)

and, similarly, since Fd is decreasing on [Dopt,∞), a sufficient condition for an unsigner

to be ESS is

NuU > Dopt. (20)

Conversely, a sufficient condition for a signer not to be an ESS is

NuS > Dopt (21)

as then Dopt < NuS < NsS and thus Fd(NuS) > Fd(NsS), i.e. a single unsigner does

better in the population of signers than the average signer. Note that, by (16), (21)

holds if

NsS > Dopt +
σ

υ
− 1 (22)
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Fd(1)

10 Dopt
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σ
υ
− 1

)

(

1− 1−e−υT

υT

)

signer is ESS signer is not ESS

observed number of mates
among signers

Fd

D
signer
crit

individual
drone’s
fitness

Fig. 2 Regions where signer is and is not ESS. If we know σ, υ, T , and mainly the function
Fd(x) = Fq(x)/x, we can tell whether the drones behave optimally or not based on the observed
number of mates.

4 Non-optimality of signing behavior

The inequalities (19) and (22) both contain only

– NsS , an experimentally observable average number of mates,

– σ/υ which can be experimentally measured, and

– Dopt, that can be estimated, by (7), by experimentally measuring Fq at two suffi-

ciently distinct values.

Note that we do not really need an estimate for T . This is favorable because such

estimates are available but highly variable [28,30,24,12,10]. Thus, we can now use our

analysis and available data to test whether drones behave optimally.

Empirical data suggest that a queen mates with 12 drones on average [25], and

thus

NsS
≈ 12. (23)

Using data from [17], we get Fq(1) ≈ 19 and Fq(15) ≈ 72; the numbers correspond

to colony growth in terms of the number of thousands of bees in colonies (at the end

of the study) whose queen mated with 1 and 15 drones respectively. We consider this

measure to be proportional to the queen fitness. Thus, by (7), we may estimate

Dopt <
Fq(15)

Fq(1)
=

72

19
≈ 3.8. (24)

Even if the estimates from [17] were to change by 25% in any direction, we still get as

an upper estimate

Dopt <
1.25Fq(15)

0.75Fq (1)
< 6.4. (25)

Moreover, as can be seen from Figure 1, the estimate for Dopt is usually inflated and

thus, Dopt is likely significantly smaller than 6. Also, by [11],

σ/υ ≈ 1.73 < 2. (26)

We thus have

NsS > Dopt +
σ

υ
− 1, (27)
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which, by (22), means that signer is not ESS. In this biologically plausible scenario,

drones do not gain any fitness from leaving the mating sign to increase subsequent

mating chances. Note that we have enough room for making N sS smaller and σ/υ

bigger and still not violating (22) which means that signer is not ESS even if the

experimental data used here were not nearly exact.

5 Conclusion and discussion

In contrast to the general functions of mating plugs [7], the honey bee mating sign has

been shown to promote additional matings by the female [11]. While this may be a

case for male-female cooperation to promote their common long-term fitness interests

through a genetically diverse colony [14] the signing behavior results in immediate

death of the male drone [31] and thus bears a fitness cost. This cost may be small

if the chances of another mating opportunity are negligible [2] but promoting future

matings also dilutes the focal drone’s contribution to the queen’s offspring, reducing

his fitness. Through our game theoretical analysis, enabled by parameter values from

empirical studies, we show that the signing behavior is not an ESS [29] and in fact mal-

adaptive for a broad range of parameter values. Thus, we conclude that the function to

promote additional matings by the queen can not explain the evolutionary maintenance

of honey bee mating signs.

Several non-mutually exclusive alternative explanations exists for the prevalence of

mating signs in Apis mellifera and several other species in this genus [20]. Foremost,

the mating signs may present a physical barrier that aids sperm retention in the oviduct

by preventing back flow out of the queen after mating is completed in full flight [14].

Second, the mating process itself requires an effective, physical coupling mechanism,

which may be best provided by the drone copulatory organs that remain in the queen,

separating from the drone. In addition, the male accessory gland products may play

other important roles in aiding sperm migration to the spermatheca and surviving the

queen physiological environment, include her immune system [8].

Another important potential explanation for the occurrence of honey bee mating

signs despite their potentially non-adaptive nature for drones is the hypothesis that

the queens realize their fitness interest of mating many times despite the drones’ effort

to prevent future matings. In this line of argument, our argument that drone signing

behavior to increase subsequent mating chances is non-adaptive could be inverted:

drone signing behavior to decrease subsequent mating chances may be adaptive for a

drone but runs against the queen’s interest. In contrast to mating plugs in the closely

related bumble bee, honey bee mating signs are easily removed [2] and our results

suggest that the question of why honey bee drones are not more effective at hindering

subsequent mating of the queen is as valid as the question whether the mating sign

has evolved to increase subsequent mating chances of the queen. The system has the

potential for an evolutionary arms race between queens and drones because their fitness

interests diverge: the fitness of the average drone is 1/n times the respective queen

fitness (2). For a queen, an optimum number of mating is high, given multiple benefits

and relatively low mating costs [23,10] (and references therein), yet the optimum for

drones is at a much lower mating number. Consequently, adaptations, such as male

mating plugs, and counter-adaptations, such as mechanisms to render plugs ineffective,

are to be expected. The third party in this evolutionary game are the other, unmated

drones and their fitness interests coincide with that of the queen for additional matings.
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However, our game theoretical model was designed for simplicity to focus on the signing

behavior without considering changes in the other players’ strategies.

Even this relatively simple analysis proved to be mathematically involved and de-

pendent on empirical biological values that were difficult to extract from the literature.

Based on current literature, we populated our analysis with the available data and

evaluated the robustness of our conclusions with regard to variation in variables whose

values we had the least confidence in. We found conditions under which signing might

be beneficial. However, for most of the parameter space and the biologically most plau-

sible scenarios, we found a consistent and strong disadvantage for drones to increase

subsequent mating chances for the queen. Thus, we consider ”signing” not an ESS in

the analyzed mating game. This result was robust to a wide variation in mating times

and the shape of queen fitness functions (Figure 1).

Mathematically, the question whether drone signing behavior represents an ESS

or not represents a simple game theoretical problem with the essential twist of the

finite total amount of time available for mating. A more detailed analysis reveals that

there is not a strong selection pressure for unsigners to emerge in the population of

signers. Since σ/υ < 2, by (26), an unsigner would do better, but not much better

than signers. Indeed, NuS > NsS − 1, and thus the queen will mate with almost the

same number of drones. Since the slope of Fd around NsS is really low (see Figure 2),

we get Fd(NuS) − Fd(NsS) positive, yet generally very small.

In conclusion, we corroborate through mathematical analysis the view that the

honey bee mating sign cannot be explained by its function to increase subsequent

mating. Despite a lack of detailed biological data, this conclusion is robust and should

hold for most conceivable evolutionary scenarios.
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6 Appendix

6.1 Exact calculations of F xY
d

To calculate

FxY
d =

∞
∑

n=1

πxY
n

F (n)

n
(28)

we evaluate pn(µ, ν, τ ), the probability a queen mated n times during time τ pro-

vided the queen is initially being found with speed µ and then, after the first and any

subsequent mating, with speed ν.

Since if the queen does not mate at all in time τ , the first drone is expected to

arrive after the time τ ; and since the probability to mate n + 1 times is superposition
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of all cases when the queen mates for the first time at time t and then mates n times

in the remaining time τ − t, it follows that

p0(µ, ν, τ ) =

∫

∞

τ

µe−µt dt = e−µτ (29)

pn+1(µ, ν, τ ) =

∫ τ

0
µe−µtpn(ν, ν, τ − t) dt (30)

By the induction,

pn(µ, µ, τ ) =
(µτ )n

n!
e−µτ (31)

Consequently, for ν 6= µ, the integration by parts yields

pn(µ, ν, τ ) = µνn−1e−ντ





e(ν−µ)τ

(ν − µ)n
−

n−1
∑

j=0

τn−1−j

(ν − µ)j+1(n − 1 − j)!



 (32)

Now we calculate πuU
n . If the queen mated with a focal drone within time t, it then

had to mate i times (for i = 0, . . . , n − 1) before this drone and n − 1 − i times after

this drone. We thus have

πuU
n =

1

T

∫ T

0

n−1
∑

i=0

pi(υ, υ, t)pn−1−i(υ, υ, T − t) dt (33)

=
1

T

∫ T

0

n−1
∑

i=0

(υt)i

i!
e−υt (υ(T − t))n−1−i

(n − 1 − i)!
e−υ(T−t) dt

=
1

T
e−υT υn−1

∫ T

0

n−1
∑

i=0

ti

i!

(T − t)n−1−i

(n − 1 − i)!
dt

=
1

T
e−υT υn−1

∫ T

0

Tn−1

(n − 1)!
dt

= e−υT (υT )n−1

(n − 1)!
(34)

Notice that the expected number of mates for a queen is

NuU =
∞
∑

n=1

nπuU
n = υT + 1 (35)

One would expect, on average, υT drones during the time T . However, NuU is the

average number of mates for a queen given the focal drone mated with the queen.

Since we assume the mating is happening instantaneously, the queen has still time T

to mate with other drones which yields to υT + 1 mates in total. Calculating other

probabilities is similar to (33)

πsU
n =

1

T

∫ T

0

n−1
∑

i=0

pi(υ, υ, t)pn−1−i(σ, υ, T − t) dt (36)

πsS
n =

1

T

∫ T

0

n−1
∑

i=0

pi(υ, σ, t)pn−1−i(σ, σ, T − t) dt (37)

πuS
n =

1

T

∫ T

0

n−1
∑

i=0

pi(υ, σ, t)pn−1−i(υ, σ, T − t) dt (38)
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6.2 Exact calculations of NxY

Let us first calculate an auxiliary function, Q(µ, ν, τ ), the average number of mates

during time τ provided the queen is initially being found with speed µ and then, after

the first and any subsequent mating, with speed ν.

If drones are searching at speed µ then the expected time for a queen to be found

is µ−1 and thus Q(µ, µ, τ ) = µτ . To calculate Q(µ, ν, τ ), we observe that if a queen is

found at time t ≤ τ with probability µe−µt dt then after mating with the focal drone,

she mates, on average, with Q(ν, ν, (τ − t)) mates in the remaining time. Hence

Q(µ, ν, τ ) =

∫ τ

0
µe−µt(1 + ν(τ − t)) dt

= ντ +

(

1 −
ν

µ

)

(

1 − e−µτ
)

. (39)

Now, consider a population of drones playing only the unsigner strategy. Then the

focal drone finds the queen at time t with probability T−1 dt. Before being found by

the focal drone at time t, the queen mated with other Q(υ, υ, t) drones. Since the focal

drone is unsigner the queen will mate with Q(υ,υ, T − t) drones in the remaining time.

Hence

NuU =
1

T

∫ T

0
[Q(υ, υ, t) + 1 + Q(υ, υ, T − t)] dt

= υT + 1 (40)

Similarly,

NsU =
1

T

∫ T

0
Q(υ, υ, t) + 1 + Q(σ, υ, T − t) dt

= υT + 1 +
(

1 −
υ

σ

)

(

1 −
1 − e−σT

σT

)

(41)

NuS =
1

T

∫ T

0
Q(υ, σ, t) + 1 + Q(υ, σ, T − t) dt

= σT + 1 − 2
(σ

υ
− 1
)

(

1 −
1 − e−υT

υT

)

(42)

NsS =
1

T

∫ T

0
Q(υ, σ, t) + 1 + Q(σ, σ, T − t) dt

= σT + 1 −
(σ

υ
− 1
)

(

1 −
1 − e−υT

υT

)

(43)


