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Introduction
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A polynomial over the rational numbers can be written as We generated all totally ramified extensions using a Magma package

J Generating Polynomial Conditions . . . .
Fx) = ap +ayx + G+t a, g written by Brian Sinclair [6] and wrote our own Magma programs to
o n— n / 2 S 0y S ! n S . . . .
where each q; 1s a rational number (a fraction). The roots of f are the Il Tm | e ey & ap + G0+ e n7p remove the 1somorphic extensions and calculate automorphism group
numbers r suz:h that f(r) = 0. The quadratic f(;rmula gives the roots of the j=p -1 ¥+ (p—a—1)px¥ + apx?~) + (bp + 1)p sizes. By inspection, we determined all general forms for the generating
1 12 o c oL SR et n=rp polynomials based on j invariants and the automorphism group size.
polynomial ax“ + bx + ¢ in terms of a, b and c: J p)p X"+ pgj(x) + (p — 1)px m~px’"" 4+ (bp+ 1)p i
NS . : = . . .
—b £+ Vb? — 4ac j=(m+plp—m X +pgj(x) —m™'p*x' + (6,2 1ap + b)p°x" +p . #pl To prove our conjectures, we used Panayi’s Algorithm [5]. For each

2a | general form, we applied the algorithm first to prove the order of the
For example, the roots of x* — 2 are 4-1/2. Note that v/2 is not a rational automorphism group, and then to demonstrate that two polynomials

number because it cannot be expressed as a fraction. However, you can sharing the same general form generate isomorphic extensions if and only
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add v/2 and its multiples into the rationals. When we add the roots of a

if their coefficients are equal. To verify that we had obtained not only the

polynomial to the ratio.nal. numbers we obtain a field extension. The Wa§,’ ; Generating Polynomial £ Exponents proper extensions, but also the correct number of extensions, we summed

the ro.ots of a polynonyal Interact Wlth each other, ca.lled the polynomial’s 5 N the calculated mass for the non-isomorphic polynomials to get the total

Galois group, determines properties of the polynomial. S=P e mass for each j value, which we checked against Krasner’s formula [4].
p<i<pt—p X"+ apx’ + bopx® + p

Leltlp b.e a p?nllle. Thi ﬁeldfo{l p-fadic numbers, denoted Q,, is the () + ap 1 bpx® 1 p I Number of P()lyn()mlals and Masses

collection of all numbers of the form

00 X"+ apx’ + bpx¥ + p

k
E aip X+ f(x) + apx’ + bpx? + p j+1,p*—1],p[l,r— p
k=N I

pP-p<j<p’—1 Aut Size Num. of Gen. Poly j Mass

pp+4_2pp+3_|_pp+2_pp_|_p

k—lp<j<kp  plp—1)

. . . 2 ; p—1
where the p-adic digits a; are elements of {0, 1,...,p — 1}. Note that Q, i=p?—1 X" +apx +p R
. . . . p —p’ +pP—p 2 : 2 420
contains the rational numbers, and 1s a number theoretic analog to the X'+ apx + bpx + p - f(x) + p 1,1 — p] P p—1 pT<J<2p P =)
field of real numbers. :
pr<j<p*+p W+ ap*x' + bp*x + p p* p’ 2p° pr

X+ apx? + p - f(x) + bp3:x' + p t+Lt+p—p+1i#p

The p-adic numbers have implications in cryptography, and polynomials
are used for modeling across multiple disciplines. Our project focuses on
determining when polynomials with p-adic coefficients have certain
arithmetic properties.

p* < j < 2p*—p,

. t+1,t+p+1],i 41+
p’] [ P } + P

Future Research

We have classified the generating polynomials of degree p? extensions of

X +p-f(x)+apx’ +p

pPP4p <j<2p°—p.ptj x +p-f(x)+ap™' + bpx? + p(1 +cp?) |[t+ 1, 1+p+p+w,pti

j=2p"—p W+ p-f(x) + apx' + p(1 + bp) plll e+ 1t +p —1] Q, in complete generality. The next step would be to compute the Galois
Our Research 2 —p<j<2®—1 ¥ +p-fx)+apx +p plL [t +1,p% — 1] group for each generating polynomial.
j=2p"—1 X+ p - f(x) + ap*x + bp*xP + p pll.p— 1]
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