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Introduction
A polynomial is an expression containing algebraic terms of the form

f (x) = a0 + a1x + a2x2 + · · · + anxn

A root is a number r such that f (r) = 0. As an example, consider the
polynomial x2 + ax + b. Its roots are given by the quadratic formula:
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Whether these roots “exist” depends on which number system we are
using. In the real numbers, the roots exist only when a2 − 4b ≥ 0. In the
rational numbers, the roots exist only when a2 − 4b is a perfect square. If
the roots do not exist, we can extend our number system to include the
roots. In general, we can extend any number system by adjoining a root of
a polynomial. If the polynomial is irreducible, we call the degree of the
extension the highest power of x in the polynomial. By adjoining a root of
a polynomial, we obtain a number system in which the polynomial has at
least one root. In the extension, the number of roots of the generating
polynomial is the order of the automorphism group.

We are interested in the extensions of a number system called the p-adic
numbers, or Qp, where p is prime. A p-adic number is a (potentially
infinite) sum of powers of p, so that we can easily keep track of
divisibility by p. Qp contains the rational numbers, but it also contains
some irrational numbers. Since primes are the building blocks of all
numbers, studying Qp and its extensions has important applications across
all of mathematics, including number theory and cryptography. We can
even do calculus over Qp, so understanding it will have consequences for
both analysis and number theory.

Our Research
Qp has only finitely many extensions of a given degree and the
polynomials that generate these extensions have integer coefficients.
Consequently, it is possible to classify all extensions of a given degree by
making a complete list of generating polynomials. Degree p and 2p
extensions of Qp were classified by Amano [1] and Awtrey-Hadgis [2],
respectively. For all other degrees n divisible by p, the only complete
results are when n ≤ 15. The goal of this project was to classify all
extensions of degree mp, where p does not divide m.

We produced a list of polynomials that generate all extensions of degree
mp where p > m and gcd(m, p− 1) = 1, along with their automorphism
group sizes. With Panayi’s Algorithm, we proved that the proposed
polynomials define distinct extensions and verified that we indeed found
all of the extensions and their automorphism sizes. Furthermore, we
determined the number of distinct extensions for each possible j value.

Panayi’s Algorithm

To prove our results, we used an algorithm developed by Panayi [3]. Let φ, ψ be two
irreducible polynomials. Let π be a root of φ. The algorithm sequentially generates
polynomials based on ψ to find the roots of ψ in Qp(π). ψ generates the same extension
as Qp(π) if and only if ψ has a root in Qp(π). So, with the algorithm we can determine
if ψ and φ generate distinct extensions. Furthermore, if φ = ψ, then the algorithm tells
us how many roots of φ we get by adjoining π, or the order of the automorphism group.

Algorithm. (Panayi’s Algorithm)
Input: Qp(π), where π is the root of a polynomial, and a polynomial φ.
Output: A set G of approximations of the roots of φ(x) over Qp(π).
Let φ] = φ/πω, where ω is the highest power of π that divides all the terms of φ.
• Set C← {(φ](x), 0, 0)}.
• Set G← {}.
• While C is not empty:
• For all (ψ(x), δ, s) in C:
• C← C\{(ψ(x), δ, s)}.
• R← {β|β is a root of ψ(x) modulo p}.
• For all β in R:
• Set ψ(x)← ψ(πx + β).
• Replace ψ(x)← ψ](x).
• If degψ = 1, then G← G ∪ {δ + πsβ}.
• If degψ > 1, then C← C ∪ {(ψ(x), δ + πsβ, s + 1)}.

• Return G.

Panayi’s Algorithm for automorphism group sizes of degree 3p extensions, where gcd(3, p− 1) = 1. Starting at the top, each
node of the tree shows the reduced polynomial φ] modulo p at that step. a is defined as in the table, and the branches with r

represent p branches, one for each r ∈ {0, . . . , p− 1}.

Theorem
Let p > m, gcd(m, p− 1) = 1. The polynomials in the following table
uniquely define all totally ramified degree mp extensions of Qp. There are
pm+1 + pm − p total extensions.

j Defining Polynomials #Aut #Extensions

0 < j < p− 1 xmp + paxj + p 1 p− 1

p− 1
xmp + paxj + p 1

2p− 2
xmp + pb1xj+1 + pζ1xj + p p

p < j < 2p− 2 xmp + pb1xj+1 + paxj + p 1 p2 − p

2p− 2
xmp + pb1xj+1 + paxj + p 1

2p2 − 2p
xmp + pb2xj+2 + pb1xj+1 + pζ2xj + p p

2p− 1 xmp + pb1xj+2 + paxj + p 1 p2 − p

(k − 1)p < j < k(p− 1) xmp +
∑k−1

i=1 pbixj+i + paxj + p 1 pk − pk−1

k(p− 1)
xmp +

∑k−1
i=1 pbixj+i + paxj + p 1

2pk − 2pk−1

xmp +
∑k

i=1 pbixj+i + pζkxj + p p

k(p− 1) < j < kp xmp +
∑k−1

i=1 pbixj+i+δi,j,k + paxj + p 1 pk − pk−1

(m− 1)p < j < m(p− 1) xmp +
∑m−1

i=1 pbixj+i + paxj + p 1 pm − pm−1

m(p− 1)
xmp +

∑m−1
i=1 pbixj+i + paxj + p 1

2pm − 2pm−1

xmp +
∑m−1

i=1 pbixj+i + pζmxj + p + p2bm p

m(p− 1) < j < mp xmp +
∑m−1

i=1 pεi,jbixj+i+δi,j,k + paxj + p 1 pm − pm−1

mp xmp +
∑m

i=1 p2bixi + p 1 pm

Table 1: Degree mp extensions of Qp, where gcd(m, p− 1) = 1. Here 1 ≤ a ≤ p− 1, 0 ≤ b ≤ p− 1,
2 ≤ k ≤ m− 1, ζk =

−m
k mod p, δi,j,k = 1 if i + j ≥ kp, k < m, δi,j,k = 1− mp if i + j ≥ mp, and 0 otherwise,

εi,j = p if i + j ≥ mp, and 1 otherwise.

Future Research
We have completely verified the generating polynomials and
automorphism sizes of the extensions of degree mp when p > m and
gcd(m, p− 1) = 1. Future research will focus on constructing and
verifying the characteristics of the polynomials for the case when m > p
and when gcd(m, p− 1) > 1. A natural continuation of this work is to
compute the Galois groups of degree mp polynomials over Qp.
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