

Introduction

Let *p* be a prime. Every positive integer can be written as a finite base-*p* expansion. For example the base 5 expansion of 1776 is

$$2 \cdot 5^4 + 4 \cdot 5^3 + 1 \cdot 5^2 + 0 \cdot 5^1 + 1 \cdot 5^0$$

A *p* -adic number is an infinite base *p* expansion that may include finitely many negative powers of p. The collection of all p-adic numbers is denoted \mathbb{Q}_p . The *p* -adic valuation $v_p(n)$ is the lowest exponent of *p* in the base *p* expansion of *n*. For example $v_5(1776) = 0$. On the other hand, $v_5(400) = 2$ because $400 = 1 \cdot 5^2 + 3 \cdot 5^3$.

A monic polynomial of degree *n* has the form

 $\varphi(x) = x^{n} + c_{n-1}x^{n-1} + c_{n-2}x^{n-2} + \dots + c_{1}x + c_{0}$ A root of $\varphi(x)$ is a number *r* such that $\varphi(r) = 0$. For example, the quadratic formula gives the roots of the polynomial $x^2 + bx + c$ in terms of *b* and *c*:

$$\frac{-b \pm \sqrt{b^2 - 4c}}{2}$$

The **discriminant** of a polynomial is the product of all the differences of its roots. For instance the discriminant of the quadratic $x^2 + bx + c$ is $b^2 - 4c$.

For a polynomial φ of degree *n* with coefficients in \mathbb{Q}_p , its *j* -invariant is defined by

$$v_p(\operatorname{disc}(\varphi)) = n + j - 1$$

There are only finitely many distinct polynomials with *p*-adic coefficients of a given degree. This project studied an invariant of degree p^2 polynomials over \mathbb{Q}_p for an odd prime p.

Ramification Polygons

The Newton polygon of

$$\varphi(x) = x^n + c_{n-1}x^{n-1} + c_{n-2}x^{n-2} + \dots + c_1x + c_0$$

is the lower convex hull of the set of points $(i, v(c_i))$.

Let r be a root of φ . The **ramification polygon** of φ is the Newton

polygon of the ramification polynomial $\rho(x) = r^{-n}\varphi(rx+r)$

For example, consider the polynomial $\varphi(x) = x^8 - 2$ over the field \mathbb{Q}_2 . The associated ramification polynomial is

 $\rho(x) = x^8 + 8x^7 + 28x^6 + 56x^5 + 70x^4 + 56x^3 + 28x^2 + 8x + 1$ Original Graph of all points **Ramification Polygon**

Enumerating Ramification Polygons of Degree p^2 Juan E. Quiroa¹ Alex Jenny²

¹University of North Carolina at Greensboro ²Midwestern State University

Research and Methods

In the case of degree p^2 extensions of \mathbb{Q}_p , there are the two possible shapes that a ramification polygon can have.

We defined a function n(j) that returns the number of distinct ramification polygons for a given *j*-value. In addition we found the total number of distinct ramification polygons over all possible *j*-values.

The Function n(j)

Let $j = a_2p^2 + a_1p + a_0$ be the base *p* expansion of *j*. Then n(j) is defined by

$$n(j) = \begin{cases} a_1 + \delta & \text{if } j < p^2 \\ p & \text{if } p^2 < j < \\ 1 & \text{if } j \ge p(p + p) \\ p - a_1 & \text{if } j > p(p + p) \end{cases}$$

where $\delta = 0$ if $a_0 < a_1$ and $\delta = 1$ otherwise.

Visualization of n(j)

In the graphs below, "# Ram. Pgons" refers to the number of distinct ramification polygons.

p(p+1)(+1) and $p \mid j$ (+1) and $p \nmid j$

Classification And Implications

Let \mathcal{R}_i denote the complete set of all distinct ramification polygons for a given *j*-value. As before let $j = a_2p^2 + a_1p + a_0$ be the base *p* expansion of *j* and set $\delta = 0$ if $a_0 < a_1$ and $\delta = 1$ otherwise. The table below provides a classification of all possible ramification polygons for possible *j*-values.

j	
$1 \le j < p^2$	$\{\{(1,j)$
$p^2 < j < p(p+1)$	{{(1
$p(p+1) \leq j \leq 2p^2$ and $p \mid j$	
$p(p+1) < j < 2p^2 \text{ and } p \nmid j$	

Observe that $n(j) = |\mathcal{R}_j|$. Consequently the following hold:

- 1. $|\mathcal{R}_i| \in \{1, 2, ..., p\}.$
- summarized below.
 - ▶ $|\mathcal{R}_i| = 1$ for 3p 2 different *j*-values.
 - ▶ $|\mathcal{R}_i| = p$ for *p* different *j*-values.
 - *j*-values.
- 3. The total number of distinct ramification polygons is

Impact And Future Research

We observed that the number of non-isomorphic generating polynomials for a given *j*-value, could be expressed as

References

- [1] Shigeru Amano. Eisenstein equations of degree *p* in a p-adic field. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 18:1–21, 1971.
- [2] Chad Awtrey and Nick Hadgis. Totally ramified *p*-adic fields of degree 2*p*. submitted

$$\begin{split} \mathcal{R}_{j} \\ \hline , (p^{2},0) \} \} \cup \{\{(1,j),(p,pc),(p^{2},0)\} : 1 \leq c < a_{1} + \delta\} \\ \hline , j),(p^{2},0) \} \} \cup \{\{(1,j),(p,pc),(p^{2},0)\} : 1 \leq c < p\} \\ \hline \{\{(1,j),(p,j-p^{2}),(p^{2},0)\}\} \\ \hline \{\{(1,j),(p,pc),(p^{2},0)\} : a_{1} < c \leq p\} \end{split}$$

2. The number of distinct ramification polygons for a given *j*-value is

For each $k \in \{2, 3, \dots, p-1\}$, $|\mathcal{R}_j| = k$ for 2p - 1 different

$$p^3 - \frac{p^2 - 3p}{2} - 1.$$

While there are only finitely many polynomials of given degree with *p*-adic coefficients, a complete classification of these polynomials and their invariants has not been completed in generality. Polynomials of degree p and 2p were classified by Amano [1] and Awtrey-Hadgis [2], respectively. For all other degrees divisible by p, the only known cases are when the degree ≤ 15 . So nothing is known for degree p^2 beyond p = 3.

 $(p-1) + (n(j) - 1)(p-1)^2.$

This work was supported in part by NSA grant # H98230-18-1-0012.

