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Motivation: Other Models

Elliptic Curves in Weierstrass Model

E:y?=x3—5xoverQ
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Motivation: Other Models

Some Other Elliptic Curve Models

Other elliptic curve models with faster arithmetic:
o Hessians: x3 +y3 —3dxy =1
o Edwards models: x? 4 y? = c?(1 4 dx?y?) (g odd) and variations
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Motivation: Other Models

Split Representations of Hyperelliptic Function Fields

Two infinite places coy and co_, both of degree 1.

r
Divisor class epresentation: Z Pi —roo_ + n(ocoy —oo_), r<g
i=1
No restrictions on n: many reduced divisors in each class (= ¢¢)

n = 0: infrastructures (misses a few divisor classes)

n ~ g: unique representatives, multiply/reduce plus adjustment steps
(Paulus/Riick 1999)

n = [g/2]: balanced representation, unique and generally no
adjustment steps (Galbraith/Harrison/Mireles Morales 2008)

Computations (discrete logarithms, invariants) are polynomially equivalent.
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Motivation: Other Models

Example: Odd Degree (Ramified) Hyperelliptic Curve

H:y?=x>—-5x3+4x —1over Q, genus g =2
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Motivation: Other Models

Example: Even Degree (Split) Models

y? + h(x)y = f(x), deg(f)=2g+2, deg(h) =g + 1 if char(K) = 2.
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y2:X4—6X2+X+6 y2:x6—13x4+44x2—4x—1
(g=1) (g=2)
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Motivation: Other Models

Why Consider Split Representations?

Main advantage: more general than ramified representations

@ split representation always exists, whereas a ramified or inert one may
only exist over a larger base field

@ Can always transform a ramified to split model over K, but the
reverse direction may require an extension of K.

@ Some constructions (eg. pairing-friendly curves in cryptography)
frequently generate split models which are traditionally just discarded.

Disadvantages:

@ Split representations are more complicated than ramified ones.

@ Research into efficient arithmetic on real models is far less advanced
(i.e. slower, but catching up!)
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Infrastructure

Almost-Reduction

Let a = [u, v + y] be a primitive non-reduced ideal. Set

vV=—vmodu, o=

f— (V)2
u
Properties:
o o/ = [,V +y]is a primitive ideal.
e o/ = (z)awithz= (v +y)/ue F* sod is equivalent to a.
o deg(u') < deg(u) — 2.
o |(deg(u) — g)/2] applications of the operation a — a’ produces a
reduced or almost reduced ideal equivalent to a.

In particular, if a was obtained as the primitive product of two
reduced ideals, then this number is |g/2] .
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Infrastructure

Reduction

Suppose K = Fg is a finite field and a = [u, v + y] is almost reduced.

o If Py is ramified in F, then one more iteration a — a’ produces the
unique reduced ideal equivalent to a.

@ If Py isinert in F, then Artin provided a simple iterative procedure
for finding the other g almost reduced ideals equivalent to a.

o If Py splitsin F, then “perturbing” the reduction operation on v from

to

yields the entire infrastructure of a. (Note that y € Fy((x1)).)
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Infrastructure

Infrastructures as Ordered Sets

Suppose Py splits in F and let a; be a fixed reduced Fg[x, y]-ideal.

The perturbed reduction operation repeatedly applied to a; cyclically
generates the entire infrastructure {a;,az,...,...a,}:

Vit1 T Y
u; '

a; = [u,vi+y] and i1 =(z)a; with z =

Fix a place P, of F lying above P, and define the relative distances
o(ajt1,ai) = —vpy (zi) =g +1—deg(aj) > 1.

i i

0ip1 = 0(ajy1,01) = > 6(ajy1,0) = i(g+1)— ) deg(ar) .

j=1 j=1

This imposes an order on the infrastructure according to distance from aj.
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Infrastructure

Properties of Infrastructures

o

Properties:
d(aipr,ai) > 1;
0(ajr1,a;) < g unless a; = K[x, y], in which case é(a;+1,a;) =g + 1;

8i+1

dp+1 = RF, the regulator of Of (degree of fundamental unit);

deg(a;) = g almost always and hence 6(a;;1,0a1) ~ /.
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Infrastructure

Infrastructures as Structured Sets

Let a, b be reduced ideals with b principal, and let a « b denote the first
reduced ideal obtained by applying reduction to the primitive part of ab.

Note that a * b is equivalent to a.

0<d(axb,a)—d(b,OF) < 2g.

For any reduced principal ideal t, write 6(t) = d(t, Of) for brevity.

Special case: a is also principal. Then é(a*b,a) = d(axb) — d(a), so:

Corollary (a, b principal)
O0(axb)=09(a)+d(b)—d with 0<d<2g.
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Infrastructure

Principal Infrastructure

Distances are “almost” additive on the principal infrastructure.

So the principal infrastructure is “almost” an abelian group under "x":
@ identity is OF;
e inverse of [u,v + y]is [u,—v + y];
@ associativity “almost” holds.
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Infrastructure

Principal Infrastructure as a Near-Group

Definition

Let a be a reduced ideal and

n € [0, Rs). Then the ideal closest to
n with respect to a is the unique
reduced ideal b € [a] with

|6(6, a) — n| minimal.

For a pair a, b of reduced principal ideals, define the ideal a ® b to be the
reduced principal ideal closest to d(a) + d(b) with respect to Of.

@ a® b can computed efficiently by a x b (multiplication and reduction)
followed by at most 2g perturbed reduction steps.

Principal infrastructure is almost an abelian group under the operation ®
(small number of elements that for which associativity still fails).
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Infrastructure

Analogy: Cyclic Group

Cyclic group G (order n, generated by g)
e g'is at distance i from 1
@ baby step (multiplication by g) advances distance by exactly 1
o given g' and g/, g'g/ = g’/ (distances are exactly additive)

e for u,v € Z, we have g = g" iff u= v (mod n)

Principal infrastructure ( “order” Rfg)
@ 0(a;) is the distance from Of
@ perturbed reduction step advances distance by 1 in “most” cases
e given a; and aj, a; ® a; yields a, with d(ax) =~ d(a;) + d(a;) (not a
group)
e we have (a) = (0) iff deg(«) = deg(B) (mod Rg)
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Infrastructure

Applications

Invariant computation:
@ ideal class number

@ regulator and fundamental unit

Public-key cryptography:
@ behaves sufficiently like a group that most protocols work as in a
cyclic group — problems only with probability 1/q (assuming K = F)
@ security related to principal ideal problem — given a, compute 4(a)
@ various techniques have been developed to avoid problems

@ improvements to eliminate almost all of the reduction steps
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Infrastructure

Comparison to Jacobian

Mirales Morales (2007): map between class of co; — oo and
infrastructure

@ balanced representations of divisor classes (with n = 0) map to
infrastructure elements

@ classes with balanced reps with n # 0 correspond to problems with
the ® operation (“holes™)

Consequences:

@ principal infrastructure and class of coy — co_ are computationally
equivalent — can compute invariants or do cryptography in either
structure

o Rezai Rad (2016): with the right definition of distance, computations
in both are identical
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Infrastructure

Efficient Ideal Arithmetic in Split Models

Arbitrary Genus
@ Regular multiplication, Harley optimizations work

@ J./van der Poorten (2003), J./Scheidler/Stein (2007): NUCOMP
works, too.

Explicit formulas:

e Erickson/J./Stein (2011): genus 2 (slightly slower than ramified
models)

o Rezai Rad/J./Scheidler: genus 3 (work in progress)

Explicit formulas using the geometric method have not been developed for
split models of any genus.
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Other Models, Other Function Fields, and Beyond

Other Models of Elliptic and Hyperelliptic Curves

Most efficient elliptic curve arithmetic (odd characteristic):
o Edwards models x? + y? = 1 + dx?y? with d € K \ {0, 1}.

Most effient genus 2 hyperelliptic curves arithmetic:

e Gaudry (2007): theta functions on Kummer surfaces (not for all
curves)

@ No Edwards analogues known for g > 2
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Other Models, Other Function Fields, and Beyond

Non-Hyperelliptic Function Fields

Smooth plane quartics (genus 3, non-hyperelliptic)

Cubic Extensions of Fq(x)
e Picard curves: y3 = f(x) € Fy[x] square-free with deg(f) = 4
o general radical extension K = Fy(x,y) with y3 = f(x) with
f(x) € Fq[x] cube-free and characteristic # 3

o Bauer/Webster (2013): certain cubics in characteristic 3

Superelliptic curves: y” = f(x), ramified (Galbraith/Paulus/Smart 2000)
Arbitrary extensions of unit rank 2 (Tang 2011)

Some general arithmetic for arbitrary function fields by Hess and others
e Divisor addition is easy (ideal multiplication)
@ Reduction is generally hard
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Other Models, Other Function Fields, and Beyond

Applications of Geometric Method

C,,b curves:

o y?+ cpoxP + Z cix'y =0 (cj € K)
ia+jb<ab
e Explicit formulas, using geometric method / linear algebra for C3 4
(Salem/Khuri-Makdisi 2006) and C3 5 (Oyono/Thériault 2013)

Jacobian of an arbitrary curve: (Khuri-Makdisi 2004)

Generalization to abelian varieties: (Murty/Sastry ongoing)
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