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Introduction

The Discrete Logarithm Problem

Definition

Let G be a finite cyclic group with generator g . Given h ∈ G , the discrete
logarithm problem (DLP) is to find x mod |G | with h = g x .

Examples:

For G = Z/nZ, the DLP is easy (modular inversion)

For G = F∗q, number field sieve (q prime) and function field sieve
(q = 2n) solve the DLP in subexponential time.

What about G = Cl0(F )?
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Introduction

Is the DLP Hard in Cl0(F )?

For function fields of genus 1 or 2 best-known attacks are generic (except
for special cases).

Thus, as hard as possible —
√
|Cl0(F )| ≈ qg/2 operations.

Consequence: can use small finite field (eg. elliptic curve F = Fq with
q ≈ 2256 gives the same security as F∗p with p ≈ 23072)

Two basic approaches to solving the DLP:

1 solve it in the given group (via generic or specific algorithm),

2 find an explicit isomorphism between the given group and a group
with easier DLP (like Z/nZ).
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Generic Methods Pollard-rho

Generic Methods

Obvious upper bound for group of order N is O(N).

Generic algorithms (like Pollard-rho) yield a slightly better but still
exponential run-time.

Pollard-rho: expected run-time O(
√
N) based on birthday paradox.

Works for any group.

Also Pollard-λ (kangaroo) variant, which makes use of upper and lower
bounds on the discrete logarithm x .
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Generic Methods Pollard-rho

Pollard-rho

Given P,Q ∈ G , assume Q = xP.

Construct a random walk in the group f : G → G :

Compute P0 = a0P + b0Q for a0, b0 ∈ Z.
Define a partition of G into sets Sj (should be 20 sets) and
Mj = ajP + bjQ for fixed aj , bj ∈ Z.
Set f (R) = R + Mj if R ∈ Sj .

For i ≥ 1, define Pi = f (Pi−1).

Note that if Pi−1 = ui−1P + vi−1Q ∈ Sj then
Pi = (ui−1 + aj)P + (vi−1 + bj)Q.

Can maintain the (ui , vi ) modulo |G |.
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Generic Methods Pollard-rho

Pollard-rho, cont.

Compute and store the Pi and (ui , vi ) until Pi = Pj for some i 6= j . Then:

uiP + viQ = ujP + vjQ

(ui − uj)P = (vj − vi )Q = (vj − vi )xQ .

This implies
ui − uj ≡ x(vj − vi ) (mod |G |)

and if gcd(vj − vi , |G |) = 1 we have

x ≡ (ui − uj)(vj − vi )
−1 (mod |G |) .
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Generic Methods Pollard-rho

Improvements

Low memory variant: only store (Pi ,P2i ), compute until Pi = P2i . Only
required to store 2 points on the curve.

Parallelization: m processors yields speed-up of m

Automorphisms: if G has an efficiently computable automorphism of
order `, then we can speed up by a factor of

√
`. Idea:

perform random walk on equivalence classes with respect to the
automorphism

effectively reduces size of the group by a factor of ` — DLP requires
O(
√
|G |/`) operations.

If G has such an automorphism, it must be chosen larger to compensate
for this attack.
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Generic Methods Pohlig-Hellman

Pohlig-Hellman

Assume that |G | =
∏m

i=1 p
ei
i , pi distinct primes.

Idea:

solve the DLP modulo each peii , use CRT to compute x .

run-time bounded by O((log |G |)√pmax) group operations where
pmax is the largest prime dividing |G |.

Point is that |G | should be prime or almost prime to resist this attack.
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Generic Methods Pohlig-Hellman

Pohlig-Hellman: Idea

Let Q = xP and observe that

x ≡ z0 + z1pi + z2p
2
i + · · ·+ zei−1p

ei−1
i (mod peii ) .

Compute zj given z0, . . . , zj−1 by solving DLP in a subgroup of order pi .

To compute z0 :

Solve the DLP for P0 = (|G |/pi )P and Q0 = (|G |/pi )Q.
The order of P0 and Q0 in 〈P〉 is pi , so

Q0 = z0P0

and we can compute z0 in O(
√
pi ) operations.
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Generic Methods Pohlig-Hellman

Computing z1 given z0

Compute P1 = |G |
p2i

(Q − z0P) and solve Q1 = z1P0 (order pi subgroup).

Works because

Q1 =
|G |
p2i

(Q − z0P)

=
|G |
p2i

(x − z0)P

= (x − z0)

(
|G |
p2i

P

)
= (z0 + z1pi − z0)

(
|G |
p2i

P

)
= z1

(
|G |
pi

P

)
= z1P0 .
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Generic Methods Pohlig-Hellman

Computing zj given z0, . . . , zj−1

Compute zj by solving Qj = zjP0 (again in a group of order pi ) where

Qj =
|G |
pj+1
i

(
Q − z0P − z1piP − z2p

2
i P − · · · − zj−1p

j−1
i P

)
=
(
x − z0 − z1pi − z2p

2
i − · · · − zj−1p

j−1
i

) |G |
pj+1
i

P

= (zjp
j
i )
|G |
pj+1
i

P

= zjP0 .

In total:

must solve
∑m

i=1 ei ≤ log2 |G | instances of DLPs

complexity of each is bounded by O(
√
pmax) where pmax is the largest

prime dividing |G |.
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Function Fields with Easier DLP

Notation: Subexponential Function

Notation: Lx [α, β] = O(exp(β(log x)α(log log x)1−α)).

Lx [0, β] = O(exp(β log log x)) = O(logβ x)→ polynomial time

Lx [1, β] = O(xβ)→ exponential

0 < α < 1→ subexponential

Example (factoring N):

self-initializing quadatic sieve: LN [1/2, 1] bit operations

number field sieve: LN [1/3, 64/9] bit operations
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Function Fields with Easier DLP

Index Calculus

Define a factor base FB = {p ∈ G | p has some distinguishing property}.
Want FB to generate all of G

Want a significant portion of G to be efficiently expressed as linear
combinations of elements in FB (“smooth” with respect to FB).

Idea:

Apply Pollard-rho random walk, yielding Pi = uiP + viQ ∈ G .

Find m = |FB|+ c smooth Pj =
∑|FB|

i=1 eipi , and record
~vj = (e1, . . . , e|FB|).

Solve M~zT = ~0T where M = [~vT1 | . . . | ~vTM ]

Implies
∑m

j=1 zjPj = 0 : can solve for x after substituting
Pj = ujP + vjQ
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Function Fields with Easier DLP

Index Calculus: Running Time

Can be faster than generic methods provided that:

1 can find a suitable factor base (high smoothness probability),

2 easy way to represent group elements over the factor base.

Examples:

Enge/Gaudry (2002): high-genus hyperelliptic curves with
g � log q): running time LN [1/2, β]

Gaudry/Thomé/Thériault/Diem (2007): Õ(q2−2/g ) (faster than
Pollard-rho for g ≥ 3 as q ←∞)

Doesn’t seem to work for genus 1 and 2
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Function Fields with Easier DLP

Weil and Tate-Lichtenbaum Pairings

If q has order k modulo |G |, then the DLP in Cl0(Fq) reduces to the DLP
in F∗

qk

Menezes/Okamoto/Vanstone (1991, genus 1), Frey/Rück (1994,
genus g hyperelliptic):

complexity Lqk [1/3, β], better than generic if k is small

Eg. Tate-Lichtenbaum pairing: let |G | = n | q − 1 and E be an elliptic
curve over Fq such that E has a point of order n. Then

τn : E (Fq)[n]× E (Fq)/nE (Fq)→ µn ⊆ Fqk

is a non-degenerate Galois-invariant bilinear pairing.

Compute DLP x by computing τn(P,P) and τn(P,Q) = τn(P,P)x ,
and solving DLP in Fqk .

Mike Jacobson (University of Calgary) Discrete Logarithm Computation June 3, 2016 15 / 18



Function Fields with Easier DLP

Weil Descent

Suppose E is a non-supersingular curve defined over a binary field F2m

with m = dl .

Frey (1998), Gaudry/Hess/Smart (2002): map the ECDLP to the DLP in
a Jacobian variety of a curve of larger genus (usually d) defined over F2l .

In some cases, can use subexponential discrete logarithm algorithms
to solve DLP.

J./Menezes/Stein (2001): E.g. for q = 2155 = 25×31, can solve
elliptic curve DLP by reducing to DLP on genus 31 hyperelliptic curve
over F25 .
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Function Fields with Easier DLP

Other Attacks

Anomalous Curves: If F = Fpn and |G | = p, then G ∼= Z+
p

DLP easily solved given an efficiently computable isomorphism

Araki, Satoh, Semaev (1997): polynomial time for genus 1

Rück (1999): polynomial time for genus g

Summation Polynomials:

Semaev (2004): express P = P1 + . . .Pk algebraically, solve
multivariate system of equations to find decompositions of points P

Ongoing work, but does not (yet?) seem to be efficient in practice

Low-degree Ca,b curves

Enge/Gaudry/Thomé (2011) : Lqg [1/3, β] (heuristic) if n ≈ gα and
d ≈ g1−α for α ∈ [1/3, 2/3]
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Function Fields with Easier DLP

Summary

DLP believed hard for groups that are:

large (Pollard-rho),

prime-order (Pohlig-Hellman)

Cl0(F ) of genus 1 or 2 hyperelliptic function fields (index-calculus)

Avoid:

Anomolous curves: defined over Fpn and |G | = p)

MOV/Frey-Rück: small embedding degree (qk ≡ 1 (mod |G |) for
small k), including supersingular curves

Weil descent: q = pm, m composite

genus > 2
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