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Introduction

The Discrete Logarithm Problem

Definition
Let G be a finite cyclic group with generator g. Given h € G, the discrete
logarithm problem (DLP) is to find x mod |G| with h = g*.

Examples:
e For G =7Z/nZ, the DLP is easy (modular inversion)

@ For G = [y, number field sieve (g prime) and function field sieve
(g = 2") solve the DLP in subexponential time.

What about G = CI°(F)?
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Introduction

s the DLP Hard in CI°(F)?

For function fields of genus 1 or 2 best-known attacks are generic (except
for special cases).

@ Thus, as hard as possible — +/|CI9(F)| ~ g&8/2 operations.

o Consequence: can use small finite field (eg. elliptic curve F =, with
q ~ 22 gives the same security as F; with p ~ 23072)

Two basic approaches to solving the DLP:
@ solve it in the given group (via generic or specific algorithm),

@ find an explicit isomorphism between the given group and a group
with easier DLP (like Z/nZ).
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Generic Methods Pollard-rho

Generic Methods

Obvious upper bound for group of order N is O(N).

Generic algorithms (like Pollard-rho) yield a slightly better but still
exponential run-time.

Pollard-rho: expected run-time O(v/N) based on birthday paradox.
Works for any group.

Also Pollard-)\ (kangaroo) variant, which makes use of upper and lower
bounds on the discrete logarithm x.

/ 18
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Generic Methods Pollard-rho

Pollard-rho

Given P, Q € G, assume @ = xP.

Construct a random walk in the group f : G — G :
@ Compute Py = agP + by Q for ag, by € Z.

@ Define a partition of G into sets S; (should be 20 sets) and
M; = a;P + b;Q for fixed aj, b; € Z.
@ Set f(R):R—i-MJ' ifRESj.

For i > 1, define P,' = f(Pi—l)-
@ Note that if Pi_; = u;_1P +vi_1Q € 5; then
Pi = (uj—1 + aj)P + (vie1 + bj)Q.
e Can maintain the (u;, v;) modulo |G].
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Generic Methods Pollard-rho

Pollard-rho, cont.

Compute and store the P; and (u;, v;) until P; = P; for some i # j. Then:
uiP +v;Q = uJ'P + VJQ
(vi — )P = (v —vi)Q = (vj = vi)xQ .

This implies
ui—uj = x(vj—v;) (mod |G|)

and if gcd(vj — v;, |G|) = 1 we have

x = (uj — uj)(vj —vi)"t (mod |G]) .
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Generic Methods Pollard-rho

Improvements

Low memory variant: only store (P;, P»;), compute until P; = P,;. Only
required to store 2 points on the curve.

Parallelization: m processors yields speed-up of m

Automorphisms: if G has an efficiently computable automorphism of
order ¢, then we can speed up by a factor of /7. Idea:

@ perform random walk on equivalence classes with respect to the
automorphism

o effectively reduces size of the group by a factor of £ — DLP requires

O(\/|G|/¢) operations.

If G has such an automorphism, it must be chosen larger to compensate
for this attack.
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Generic Methods Pohlig-Hellman

Pohlig-Hellman

Assume that |G| =[], pi", p; distinct primes.
Idea:

@ solve the DLP modulo each pie’, use CRT to compute x.

@ run-time bounded by O((log|G|)\/Pmax) group operations where
Pmax is the largest prime dividing |G]|.

Point is that |G| should be prime or almost prime to resist this attack.
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Generic Methods Pohlig-Hellman

Pohlig-Hellman: ldea

Let @ = xP and observe that
X=2zy+ z1pi + zzp,-2 4+ + ze,_lpf"_l (mod pf7) .
Compute z; given zp, ..., zj_1 by solving DLP in a subgroup of order p;.

To compute zj :

@ Solve the DLP for Py = (|G|/pi)P and Qo = (|G|/pi) Q.
@ The order of Py and Qg in (P) is p;, so

Qo = 20P

and we can compute z in O(,/p;) operations.
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Generic Methods Pohlig-Hellman

Computing z; given z

Compute P; = |§2‘(Q — zgP) and solve Q; = z1 Py (order p; subgroup).

i

Works because

G

Q= |p-2‘ (Q — zP)
G

= |p-2| (x — z)P

G
= (20 + z21pi — 20) <|p2‘P>

2(2)
pi

=P .
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Generic Methods Pohlig-Hellman

Computing z; given zy, ..., Zzj1

Compute z; by solving Q; = zjPy (again in a group of order p;) where

G i—
Q= ;Jl (@—2P—2piP —2pPP — - = 717 'P)
G
:<X—Zo—21Pi—22Pi2— T - lpj >/L+|1

(2 sz)l’ﬁ'l

:ZJ'PO .

In total:
e must solve Y, ¢ < log, |G| instances of DLPs

e complexity of each is bounded by O(\/Pmax) Where pmax is the largest
prime dividing |G]|.
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Function Fields with Easier DLP

Notation: Subexponential Function

Notation: Ly[c, 3] = O(exp(B(log x)*(log log x)1~%)).

L.[0, 8] = O(exp(f log log x)) = O(log” x) — polynomial time
L.[1, 8] = O(x”) — exponential

0 < o < 1 — subexponential

Example (factoring N):
e self-initializing quadatic sieve: Ly[1/2,1] bit operations
e number field sieve: Ly[1/3,64/9] bit operations
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Function Fields with Easier DLP

Index Calculus

Define a factor base FB = {p € G | p has some distinguishing property}.
o Want FB to generate all of G

@ Want a significant portion of G to be efficiently expressed as linear
combinations of elements in FB (“smooth” with respect to FB).

Idea:
o Apply Pollard-rho random walk, yielding Pi=uiP+viQ € G.

° F|nd m = |FB| + ¢ smooth P; = Z, 1 e,p,, and record

Vi =(e1,--.,€FB|)-

o Solve MZT =07 where M =[v{ | ... | 7

@ Implies Zj'il zjP; = 0 : can solve for x after substituting
Pj=uP+vQ
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Function Fields with Easier DLP

Index Calculus: Running Time

Can be faster than generic methods provided that:
@ can find a suitable factor base (high smoothness probability),

@ easy way to represent group elements over the factor base.

Examples:
e Enge/Gaudry (2002): high-genus hyperelliptic curves with
g > log q): running time Ly[1/2, §]
o Gaudry/Thomé/Thériault/Diem (2007): O(g?> 2/€) (faster than
Pollard-rho for g > 3 as g + o0)

Doesn’'t seem to work for genus 1 and 2
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Function Fields with Easier DLP

Weil and Tate-Lichtenbaum Pairings

If g has order k modulo |G|, then the DLP in C/°(F,) reduces to the DLP
in F’;k
@ Menezes/Okamoto/Vanstone (1991, genus 1), Frey/Riick (1994,
genus g hyperelliptic):
e complexity L «[1/3, 3], better than generic if k is small

Eg. Tate-Lichtenbaum pairing: let |G| = n| g — 1 and E be an elliptic
curve over g such that E has a point of order n. Then

7o E(Fg)[n] X E(Fq)/nE(Fg) = jin C Fop

is a non-degenerate Galois-invariant bilinear pairing.
e Compute DLP x by computing 7,(P, P) and 7,(P, Q) = 7a(P, P)*,
and solving DLP in F .
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Function Fields with Easier DLP

Weil Descent

Suppose E is a non-supersingular curve defined over a binary field Fom
with m = dl.

Frey (1998), Gaudry/Hess/Smart (2002): map the ECDLP to the DLP in
a Jacobian variety of a curve of larger genus (usually d) defined over Fy.

@ In some cases, can use subexponential discrete logarithm algorithms
to solve DLP.

@ J./Menezes/Stein (2001): E.g. for g = 2195 = 25%31 can solve
elliptic curve DLP by reducing to DLP on genus 31 hyperelliptic curve
over [Fys.
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Function Fields with Easier DLP

Other Attacks

Anomalous Curves: If F =Fp» and |G| = p, then G = Z}
@ DLP easily solved given an efficiently computable isomorphism
@ Araki, Satoh, Semaev (1997): polynomial time for genus 1
@ Riick (1999): polynomial time for genus g

Summation Polynomials:

@ Semaev (2004): express P = P; + ... Py algebraically, solve
multivariate system of equations to find decompositions of points P

@ Ongoing work, but does not (yet?) seem to be efficient in practice

Low-degree C, ; curves

e Enge/Gaudry/Thomé (2011) : Lg[1/3, 8] (heuristic) if n ~ g* and
d =~ gt~ for a € [1/3,2/3]
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Function Fields with Easier DLP

Summary

DLP believed hard for groups that are:
o large (Pollard-rho),
@ prime-order (Pohlig-Hellman)

e CI°(F) of genus 1 or 2 hyperelliptic function fields (index-calculus)

Avoid:
@ Anomolous curves: defined over Fp» and |G| = p)

e MOV /Frey-Riick: small embedding degree (¢¥ =1 (mod |G]|) for
small k), including supersingular curves

@ Weil descent: g = p™, m composite

@ genus > 2
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