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Public-Key Cryptography

Cryptography in Hyperelliptic Function Fields

Public-key cryptography: secret key exchange and digital signatures

Many widely-used protocols use arithmetic in a finite cyclic group G that
should satisfy:

efficient arithmetic (eg. non-adjacent form for exponentiation)

discrete logarithm problem seems difficult

We have seen that G = Cl0(F ) can be a good candidate (especially genus
1 and 2)

efficient arithmetic (eg. non-adjacent form for exponentiation)

discrete logarithm problem seems difficult
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Public-Key Cryptography Key Exchange

Diffie-Hellman Key Exchange

Public system information: generator P of G of prime order n

A computes aP (a random in [1, n − 1|) and sends to B

B computes bP (b random in [1, n − 1]) and sends to A

A and B compute K = a(bP) = b(aP) = abP

Adversary’s goal: find the secret key K given P, aP, bP

Equivalent to Diffie-Hellman problem

DLP in G must be hard (necessary, not known whether this is
sufficient)
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Public-Key Cryptography Key Exchange

Real World Security (2 Examples)

When using elliptic curves, group elements must be verified as being on
the given curve:

Arithmetic on E : y2 = x3 + Ax + B does not require the use of B

Malicious participant in Diffie-Hellman protocol can send a point P ′

with small order on an elliptic curve E : y2 = x3 + Ax + B ′.

Partner’s secret scalar can be computed modulo the order of P ′

exhaustively

aP (respectively bP) must be authenticated as coming from A
(respectively B)

otherwise, man-in-the-middle attack (intercept message, replace with
attacker’s own) completely breaks this
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Public-Key Cryptography Digital Signatures

Digital Signatures

Digital signature: a means by which the recipient of a message can
authenticate the identity of the sender. It should have two properties:

1 Only the sender can produce his signature.

2 Anyone, including an arbitrator, should be easily able to verify the
validity of the signature.

Important application of public-key cryptography:

User generates a pair of keys, one public (known to everyone) and one
private

Use private key to generate signatures (only user can do this!)

Use public key to verify signatures (anyone can do this!)

One example: Digital Signature Algorithm (DSA)
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Public-Key Cryptography Digital Signatures

DSA Signature Generation

Public information:

generator P of elliptic curve E (Fq), n = |E (Fq)|
public cryptographic hash function H (hashes messagese to
[1, . . . , n − 1])

Signer’s input: private key d ∈ [1, n − 1], message m

1 Select k ∈ [1, n − 1] at random.

2 Compute kP = (x1, y1) and convert x1 to an integer x1.

3 Compute r = x1 mod n. If r = 0 go to Step 1.

4 Compute e = H(m).

5 Compute s = k−1(e + dr) mod n. If s = 0 then go to Step 1.

6 Return signature (r , s).
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Public-Key Cryptography Digital Signatures

DSA Signature Verification

Verifier’s input: public key Q = dP, signature (r , s)

1 Verify that r and s are integers in the interval [1, n − 1]. If any
verification fails return “reject.”

2 Compute e = H(m).

3 Compute w = s−1 mod n.

4 Compute u1 = ew mod n and u2 = rw mod n.

5 Compute X = u1P + u2Q.

6 If X =∞ return “reject.”

7 Convert the x-coordinate x1 of X to an integer x1; compute
v = x1 mod n.

8 If v = r return “accept,” otherwise return “reject.”
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Public-Key Cryptography Digital Signatures

Why This Works

Idea of verification: should have X = kP if the signature is valid.

A legitimate signature has s ≡ k−1(e + dr) (mod n). Thus

k ≡ s−1(e + dr) (mod n)

≡ s−1e + s−1dr (mod n)

≡ we + wrd (mod n)

≡ u1 + u2d (mod n)

and thus X = u1P + u2Q = (u1 + u2d)P = kP.
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Public-Key Cryptography Digital Signatures

Security of ECDSA

Adversary should not be able to forge a valid signature for any message.

Necessary (not sufficient!) conditions:

1 intractability of ECDLP,

2 secure hash function

Other issues:

1 k must be unpredictable (can recover private key if k is known)

2 k must never be re-used (can recover private key otherwise)
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Public-Key Cryptography Pairing-Based Cryptography

Bilinear Pairings

Recall Tate-Lichtenbaum pairing: let E be an elliptic curve over Fq such
that E has a point of order n and n | q − 1. There exists an
efficiently-computatable pairing

τn : E (Fq)[n]× E (Fq)/nE (Fq)→ µn ⊆ Fqk

Properties:

bilinear, i.e., τn(aP, bQ) = τn(P,Q)ab

τn(P,P) = ζn ∈ Fqk (primitive nth root of unity)

Many uses in cryptographic protocols. Examples:

Boneh/Franklin (2001): ID-based cryptography

Boneh/Lynn/Shacham (2004): short signatures

many others
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Public-Key Cryptography Pairing-Based Cryptography

E.g. Tripartite Key Exchange

Joux (2000): three participants can obtain a shared secret key in just one
round of communication

Public system information: generator P of E (Fq) of prime order n

Participants A, B, and C each choose random integers a, b, and c
coprime to n and respectively compute and broadcast PA = aP,
Pb = bP, and PC = cP.

A computes key as
k = τn(Pb,Pc)a = τn(bP, cP)a = τn(P,P)abc = ζabcn

B computes k = τn(Pa,Pc)b

C computes k = τn(Pa,Pb)c
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Public-Key Cryptography Pairing-Based Cryptography

Security

Need the DLP to be hard in both E (Fq) and Fqk

Recent years have seen many advances in solving the DLP in Fqk

Joux/Granger/Kleinjung/Zumbrägel (2014): quasi-polynomial time
for small characteristic

Kim/Barbelescu (2016): advances for Fpk , p a large prime

Consequences:

Can’t use characteristic 2

Security of commonly-used curves in odd characteristic is being
reassessed

May need new curves over bigger fields, and even faster curve/pairing
arithmetic to compensate - on-going research!
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Finding Good Function Fields

Finding Cryptographically-Suitable Function Fields

For DSA, the order of G is required (also for Diffie-Hellman, to check
security properties)

Two approaches:

1 Generate random function fields, compute (and test) class number.

2 Construct function fields with a given class number
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Finding Good Function Fields Class Number Computation

Class Number Computation

Very efficient for elliptic curves (point counting):

p-adic methods (odd char: Satoh 2000, char 2: AGM, Mestre 2000)

SEA algorithm (Schoof 1985, Atkin/Elkies 1990’s) — polynomial-time

Good computation results for special types of more general curves (some
hyperelliptic, Picard, radical cubic, superelliptic, . . . )

Hard in general, especially for odd characteristic (even genus 2!)
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Finding Good Function Fields Class Number Computation

Class Number Computation: Higher Genus

Small characteristic (i.e. p-adic) methods based on Satoh & Mestre

Monsky-Washnitzer cohomology (Kedlaya 2001)

Deformation theory (Lauder 2004, 2006)

Canonical lifts (Satoh 2003)

Some adaptations to medium and larger characteristic

Large characteristic methods based on SEA

Pila 1990, Couveignes 1996, Adleman/Huang 2001

Generic algorithms (baby step giant step, Pollard kangaroo, using Euler
products)

Index calculus methods — compute the class group as well
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Finding Good Function Fields Constructive Methods

Elliptic Curve Constructions over Fq

Curves with prescribed group order over finite fields (Bröker 2007)

heavily use theory of complex multiplication

Pairing-friendly curves (low embedding degree)

Supersingular curves

Constructions for ordinary curves, eg. Barreto/Naehrig (2005),
Miyaji/Nakabayashi/Takano (2001)

Curves with many rational points — Fq setting useful for coding theory
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Finding Good Function Fields Constructive Methods

Rational points on a given elliptic curve in a number field

Theorem (Mordell’s and Mazur’s Theorems)

Let E be an elliptic curve over Q with group of Q-rational points E (Q).

E (Q) is finitely generated (Mordell 1922)

The torsion of E (Q) is isomorphic to Z/nZ with 1 ≤ n ≤ 10 or
n = 12, or Z/2Z⊕ Z/2nZ with 1 ≤ n ≤ 4 (Mazur 1977)

Problems:

Find curves of a given (large?) rank (Birch–Swinnerton-Dyer
conjecture, Elkies 2006 — rank 28)

Find curves with prescribed torsion
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Finding Good Function Fields Constructive Methods

Other Constructions

Hyperelliptic function fields with class groups of large `-rank (Bauer
et al. 2008, Berger et al. 2011, Jacobson et al. 2014, S. Stein 2014)

All degree n function fields of a given Galois group G and
discriminant divisor D (n = p, G = Dp: Weir et al. 2013; n = 3, D
square-free: Jacobson et al. 2014)

Function field tabulation (n = 3, D square-free: Rozenhart et al. 2008,
2009, 2012; n = p, G = Dp: Weir et al. 2013)
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Conclusion

Conclusion

Have now seen a glimpse of some theory, algorithms, applications (crypto)
and on-going research in:

efficient ideal/divisor arithmetic

different curve models

discrete logarithm computation

invariant / class number computation

constructive methods

Plenty more out there (e.g. isogeny and endomorphism ring computation,
cryptography with isogenies, applying isogenies to map DLP to weak
curve)

Lots of open and interesting computational problems!

Lots of work to be done!
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