PROBLEMS ON FUNCTION FIELD ARITHMETIC, DISCRETE LOG COMPUTATION, AND CRYPTOGRAPHY

MIKE JACOBSON, JR.

- (1) Correctness of divisor addition: Prove that the addition formula for divisors on a hyperelliptic curve is correct.
- (2) Simplification of addition formula: Prove that, when adding divisors on a hyperelliptic curve given in Mumford representation, we can replace the expression for v with

$$v = v_2 + U \frac{u_2}{s}$$

where $U \equiv b(v_1 - v_2) + cw_2 \pmod{u_1/s}$.

- (3) **Geometric method**: Given a genus 2 hyperelliptic curve over a field K given by $y^2 = x^5 + f_4x^4 + f_3x^3 + f_2x^2 + f_1x + f_0$, show how to add two divisors $D_1 = (u_1, v_1)$ and $D_2 = (u_2, v_2)$ using the geometric method (i.e., without converting to formal sums of points representations). Your method should involve solving a 2×2 linear system of equations over K to find the coefficients of the degree 3 polynomial $\ell(x)$ that interpolates the finite points in the supports of D_1 and D_2 . For simplicity, you may assume that these supports yield four distint points.
- (4) Infrastructure computation. Consider the split genus two hyperelliptic curve defined by $C: y^2 = x^6 + x^4 + 2x^3 + x^2 + x + 1$ over \mathbb{F}_5 .
 - (a) Enumerate all infrastructure ideals of C (use Mumford representation).
 - (b) Compute the regulator and fundamental unit (product of the z_i obtained from each perturbed reduction step) of the function field of C.
- (5) Computing discrete logarithms
 - (a) Consider the elliptic curve E given by

$$E: y^2 = x^3 + 436743x + 67111$$
 over $\mathbb{F}_{1048583}$.

The number of points on E is 1049580. Find the discrete logarithm $\log_P(Q)$ for P = (169541:556330) and Q = (858751:762468) using the Pohlig-Hellman attack. (Hint: use Sage or Magma to do the curve arithmetic.)

(b) Computing discrete logarithms: Consider the elliptic curve E given by

$$E: y^2 = x^3 + 900410x + 465299$$
 over $\mathbb{F}_{1048583}$

The number of points on this curve is 1049623. Find the discrete log problem $\log_P(Q)$ for P = (815314:582035) and Q = (67861:1005415) using any Pollard-rho. (BONUS: try it with index calculus!).

- (6) **DSA**: In the DSA signature scheme, show why k must be unpredictable (random).
- (7) **DSA**: In the DSA signature scheme, show why k must never be re-used for a second signature.

Date: June 2, 2016.