
Algorithmic Number Theory in Function Fields

Practice Problems

Renate Scheidler

Most of these questions are facts stated (but not proved) during the lectures. Questions with one or
more asterisks reinforce the material covered in the lectures. The number of asterisks indicates the
importance of a problem to the material in my (and in some cases the other instructors’) lectures. A
higher number of asterisks indicates a higher degree of importance. Note that the level of di�culty
of a problem has no bearing in its number of asterisks.

Valuations and Places

1. ⇤⇤ (Simple properties of valuations)

Prove the following properties of a valuation v on a field F :

(a) v(1) = 0, v(�1) = 0, v(a) = v(�a) for all a 2 F , v(a�1) = �v(a) for all a 2 F ⇤.

(b) (Strict triangle inequality): if v(a) 6= v(b), then v(a+ b) = min{v(a), v(b)}.
(c) Suppose that v is discrete. Prove that v is normalized if and only if it is surjective.

2. ⇤⇤⇤ (Examples of valuations)

(a) Let F be any field. For any a 2 F , define v(a) = 1 when a = 0 and v(a) = 0 otherwise.
Prove that v is a valuation on F . Determine O

v

, P
v

and F
v

.

(b) Let p 2 N be a fixed prime. For r 2 Q⇤, write r = pna/b with a, b, n 2 Z, b 6= 0 and
p - ab. Define v

p

(r) = n. Prove that v
p

is a discrete valuation on Q with uniformizer p,
discrete valuation ring

O
v

p

= {r 2 Q | r = a/b with gcd(a, b) = 1 and p - b} ,

corresponding place

P
v

p

= {r 2 Q | r = a/b with gcd(a, b) = 1, p | a, p - b} ,

and residue field F
v

p

= F
p

.

(c) Let K be a field and p(x) 2 K[x] a fixed monic irreducible polynomial. For r(x) 2
K(x) non-zero, write r(x) = p(x)na(x)/b(x) with a(x), b(x) 2 K[x], b(x) 6= 0 and
p(x) - a(x)b(x). Define v

p(x)(r(x)) = n. Prove that v
p(x) is a valuation on K(x) with

uniformizer p(x), discrete valuation ring

O
v

p(x)
= {r(x) 2 K(x) | r(x) = a(x)/b(x) with gcd(a, b) = 1 and p(x) - b(x)} ,
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corresponding place

P
v

p(x)
= {r(x) 2 K(x) | (x) = a(x)/b(x) with gcd(a, b) = 1, p(x) | f(x), and p(x) - g(x)} ,

and residue field F
v

p(x)
= K[x]/(p(x)), where (p(x)) is the K[x]-ideal generated by p(x).

(d) Let K be a field. For r(x) = a(x)/b(x) 2 K(x)⇤ with a(x), b(x) 2 K[x] and b(x) 6= 0,
define v1(r(x)) = deg(b)�deg(a) Prove that v1 is a valuation on K(x) with uniformizer
x�1, discrete valuation ring

O
v1 = {r(x) 2 K(x) | r(x) = a(x)/b(x) with deg(a)  deg(b)} ,

corresponding place

P
v1 = {r(x) 2 K(x) | (x) = a(x)/b(x) with deg(a) < deg(b)} ,

and residue field F
v1 = K.

3. (Properties of valuation rings)

Let v be a discrete normalized valuation on some field F . Prove the following properties:

(a) O
v

is an integral domain.

(b) O
v

is a discrete valuation ring, i.e. O
v

$ F and for a 2 F ⇤, we have a 2 O
v

or a�1 2 O
v

.

(c) O⇤
v

is the unit group of O
v

, i.e. the set of invertible elements in O
v

.

(d) P
v

is the unique maximal ideal of O
v

.

4. ⇤⇤ (Uniformizers of rational function fields)

LetK(x) be a rational function field, and let v = v
p(x) with p(x) 2 K[x] monic and irreducible,

or v = v1. In the former case, set u = p(x); in the latter case, put u = x�1. Prove the
following properties:

(a) Every non-zero a 2 K(x) has a unique representation a = ✏un with ✏ 2 O⇤
v

and n =
v(a) 2 Z.

(b) P
v

is a principal ideal generated by u.

(c) O
v

is a principal ideal domain whose ideals are generated by the non-negative powers
of u.

5. ⇤ (More properties of valuation rings of Q and K(x))

(a) For any prime p 2 N, let v
p

denote the corresponding p-adic valuation on Q. Prove thatT
p

O
v

p

= Z,
T

p

O⇤
v

p

= {±1}, and
T

p

P
v

p

= {0}.
(b) Let K(x) be a rational function field.

i. Prove that
\

p(x)

O
v

p(x)
= K[x] and

\

p(x)

O
v

p(x)
\O

v1 = K.

ii. Conclude that
X

P2P(K(x))

v
P

(z) = 0 for all non-zero z 2 K(x).
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6. (Correspondence of valuations and places)

Recall that a discrete valuation ring in a field F is a proper sub-ring O of K such that a 2 O
or a�1 2 O for all a 2 F ⇤. Prove the Correspondence Theorem:

There is a one-to-one correspondence between the set of normalized discrete valu-
ations on F and the set P(F ) of places of F , as follows:

• If v is a normalized discrete valuation on F , then P
v

2 P(F ) is the unique
maximal ideal in the discrete valuation ring O

v

.
• If P is a place of F , i.e. the unique maximal ideal in some discrete valuation
ring O ⇢ K, then P defines a discrete normalized valuation on F as follows: if
u is any generator of P , then every element a 2 F ⇤ has a unique representation
a = ✏un with n 2 Z and ✏ a unit in O, and we define v(a) = n and v(0) = 1.
Note that u is a uniformizer for v.

Constant Fields

7. ⇤ (Exact constant fields)

Let F/K be a function field with exact constant field K̃. Show that K ✓ K̃ $ F , and every
element in F \ K̃ is transcendental over K.

8. ⇤⇤ (Examples of geometric extensions)

Let K be a field.

(a) Show that every rational function field K(x) is geometric.

(b) Show that if K is algebraically closed, then then every function field F/K is geometric.

(c) Show that a function field K(x, y) is geometric if and only if the minimal polynomial of
y over K(x) is absolutely irreducible, i.e. irreducible over K(x) where K is the algebraic
closure of K.

9. (An example of a non-geometric extension)

Suppose �1 is not a square in K (e.g. K = R or K = F
q

with q ⌘ 3 (mod 4)), and let
F = K(x, y) where x2 + y4 = 0. Prove that K̃ = K(i) where i /2 K is a square root of �1.
So F/K is not geometric.

10. ⇤ (All places contain the exact constant field)

Let F/K be a function field and P a place of F , i.e. P is the unique maximal ideal in a
discrete valuation ring O = O

P

in F . Prove that K̃ ( O
P

.

Hint: Let z 2 K̃. Then z 2 O
P

or z�1 2 O
P

. In the latter case, show that z 2 O
P

[z�1] ⇢ O
P

.

Divisors and Class Groups

11. ⇤ (Rational function fields have class number one)

Let F = K(x) be a rational function field.
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(a) Let p(x) 2 K[x] be monic and irreducible. Prove that the zero divisor of div(p(x)) is
P
p(x) (the place of K(x) with uniformizer p(x)) and the pole divisor of div(p(x)) is P1

(the infinite place of K(x)). In other words, div(p(x)) = P
p(x) � deg(p(x))P1.

(b) Let f(x) 2 K[x] \K, and let f(x) = ap1(x)
n1p2(x)

n2 · · · p
r

(x)nr be the factorization of
f(x) into distinct powers of monic irreducible polynomials p

i

(x) 2 K[x] (with a 2 K⇤).
Prove that

div(f(x)) =

rX

i=1

n
i

P
p

i

(x) �
 

rX

i=1

n
i

deg(p
i

(x))

!
P1

(c) Prove that every divisor of K(x) is principal; in other words, K(x) has class number
one.

12. ⇤⇤ (E↵ective divisors of degree 0 and 1)

Let F/K be a function field. A divisor D 2 Div(F ) is e↵ective if v
P

(D) � 0 for all P 2 P(F ).

(a) Characterize all e↵ective degree zero divisors of F .

(b) Characterize all e↵ective degree one divisors of F .

13. ⇤ (Properties of principal divisors)

Let F/K be a function field.

(a) Let z 2 F ⇤. Show that div(z) = 0 if and only if z 2 K⇤.

(b) Conclude that
\

P2P(F )

O
P

= K.

(c) Prove that the map div : F ⇤ ! Prin(F ) via z 7! div(z) is a surjective homomorphism
with kernel K⇤.

14. Show that linear equivalence is an equivalence relation on the set of divisors of a function
field.

15. ⇤⇤⇤ (Embedding degree one places into the class group)

Let F/K be a non-rational function field that has a rational place, denoted Q.

(a) Prove that the map �
Q

: P1(F ) ! Cl0(F ) via P 7! [P � Q] is injective. Here, [D]
denotes the divisor class of D in Cl(F ).

Hint: Use that fact that [F : K(x)] = deg(div(x)0) for all x 2 F \K.

(b) Explain how the injection �
Q

can be used to impose a group structure on P1(F ). What
is the group identity? (Note that this group structure is not canonical as it depends on
the choice of Q.)

Genus and Riemann-Roch

16. ⇤⇤ (Properties of Riemann-Roch spaces)

Let F/K be a function field and D,D0 2 Div(F ). Prove the following:

(a) x 2 L(D) if and only if v
P

(x) � �v
P

(D) for all P 2 P(F ).

4



(b) L(D) is a K-vector space.

(c) If [D] = [D0], then L(D) and L(D0) are isomorphic as K-vector spaces.

(d) L(0) = K, where 0 is the trivial divisor.

(e) If deg(D) < 0 or D 2 Div0(F ) \ Prin(F ), then L(D) = {0}.
(f) L(D) 6= {0} if and only if the class [D] contains an e↵ective divisor.

17. ⇤⇤ (Examples of Riemann-Roch spaces)

(a) Let K(x) be a rational function field.

i. Prove that if D = �3P
x�1 + 2P

x�2 + 4P
x�7, then

L(D) =

⇢
(x� 1)3

(x� 2)2(x� 7)4
r(x) | r(x) 2 K(x), deg(r)  3

�
.

ii. Prove that L(nP1) = {f(x) 2 K[x] | deg(f)  n} for all n � 0.

(b) Let F/K be any function field and P 2 P(F ). Prove that

L(nP ) \ L((n� 1)P ) = {x 2 F | div(x)1 = nP}

for all n 2 N.

18. ⇤ (Consequences of the Riemann-Roch Theorem)

Let F/K be a function field. Prove the following:

(a) deg(W ) = 2g � 2 and `(W ) = g for any canonical divisor W of F .

Hint: Apply the Riemann-Roch Theorem first to D = 0 and then to D = W .

(b) If D 2 Div(F ) with deg(D) � 2g � 1, then `(D) = deg(D)� g + 1.

Hint: Apply the Riemann-Roch Theorem first to D�W were W is any canonical divisor,
and then to D.

19. ⇤ (Rational function fields have genus zero)

(a) Let F = K(x) be a rational function field and n � 0. Prove that {1, x, x2, . . . , xn} is a
basis of L(nP1), so `(nP1) = n+ 1.

Hint: Part (a) ii of Problem 17.

(b) Prove that every rational function field has genus zero.

Hint: Part (a), and part (b) of Problem 18.

20. (Genus zero function fields have class number one)

Let F/K be a function field of genus 0 and D 2 Div0(F ).

(a) Prove that L(D) = K.

Hint: Part (b) of Problem 18.

(b) Prove that D is principal.

Hint: Part (e) of Problem 16.
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Extensions

Throughout, let K be a perfect field.

21. (Extensions and constant fields)

Let F/K and F 0/K 0 be geometric function fields with F ✓ F 0 and K ✓ K 0. Prove hat K 0/K
is algebraic, F \ K 0 = K, and F 0/K 0 is a finite geometric extension of the composite field
FK 0/K 0.

22. ⇤⇤ (Degree in extensions, norm and co-norm)

Let F/K and F 0/K 0 be geometric function fields with F ✓ F 0 and K ✓ K 0. Prove the
following:

(a) deg(P 0) =
f(P 0|P )

[K 0 : K]
deg(P ) for all P 2 P(F ), P 0 2 P(F 0) with P 0|P .

(b) deg(Con
F

0
/F

(D)) =
[F 0 : F ]

[K 0 : K]
deg(D) for all D 2 Div(F ).

(c) N
F

0
/F

(Con
F

0
/F

(D)) = [F 0 : F ]D for all D 2 Div(F ).

23. ⇤ (Finite places as prime ideals)

Let F/K be a function field, and let x 2 F be transcendental over K, so F/K(x) is finite
algebraic. A place P 0 of F is finite if it lies above a finite place of K(x) and infinite otherwise.
Let y 2 F and suppose that y is integral over K[x], i.e. the minimal polynomial of y has
coe�cients in K[x].

(a) Prove that v
P

0(y) > 0 for all finite places P 0 of F .

(b) Conclude that
\

P

02P(F ) finite

O
P

0 ◆ K[x, y].

(c) Let P 0 2 P(F ) be finite and set p = P 0\K[x, y]. Prove that p is a prime ideal of K[x, y].

Quadratic Extensions

Throughout, let K be a perfect field.

24. (Characterization of hyperelliptic function fields)

(a) Prove that every hyperelliptic function field F/K has a divisor D 2 Div(F ) with
deg(D) = 2 and `(D) � 2.

Hint: let x 2 F with [F : K(x)] = 2 and put D = div(x)0.

(b) Prove that if a function field F/K of genus g � 2 has a divisor D 2 Div(F ) with
deg(D) = 2 and `(D) � 2, then F/K is hyperelliptic.

Hint: Let E be an e↵ective divisor that is linearly equivalent to D (why does such a
divisor exist?), and consider x 2 L(E) \K.

(c) Prove that every genus 2 function field is hyperelliptic.

Hint: consider a canonical divisor.
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25. ⇤⇤⇤ (Decomposition of places)

Let K have characteristic di↵erent from 2, and let F = K(x, y) where x 2 F is transcendental
over K and y2 = f(x) with f(x) 2 K[x] \ K square-free. In this problem, you will use
Kummer’s Theorem to establish a simple characterization of the decomposition of places of
K(x) in F .

(a) Let p(x) 2 K[x] be monic and irreducible, and denote by P
p(x) the place of K(x) with

uniformizer p(x).

i. Prove that �
y

(T ) 2 O
P

p(x)
[T ] and {1, y} is a basis of O

Pp(x).

ii. Prove that if p(x) divides f(x), then P
p(x) is totally ramified in F .

iii. Prove that if f(x) is a non-zero square modulo p(x), then P
p(x) splits completely

in F .

iv. Prove that if f(x) is a not a square modulo p(x), then P
p(x) is inert in F .

(b) Let P1 denote the infinite place of K(x). Put k = ddeg(f)/2e, let s be the coe�cient
of x2k in f(x) (note that s = 0 when deg(f) is odd), and set z = y/xk.

i. Prove that the minimal polynomial of z over K(x) is �
z

(T ) = T 2 � f(x)/x2k.

ii. Prove that �
z

(T ) 2 O
P1 [T ] and {1, z} is a basis of O

P1 .

iii. Prove that if deg(f) is odd, then P1 is totally ramified in F .

iv. Prove that if deg(f) is even and s is a square in K⇤, then P1 splits completely in F .

v. Prove that if deg(f) is even and s is not a square in K⇤, then P1 is inert in F .

26. ⇤⇤ (Genus and di↵erent degree)

Let F/K have characteristic 6= 2, and let x 2 F with [F : K(x)] = 2. Write F = K(x, y)
where y2 = f(x) with f(x) 2 K[x] \K square-free.

(a) Prove that F has genus g = b(deg(f)� 1)/2c.
(b) Conclude that deg(f) = 2g + 1 or 2g + 2, and hence deg(Di↵(F/K(x)) = 2g + 2.

27. (An example of a non-rational genus 0 function field)

Let K be a field that does not contain a square root of �1, and let F = K(x, y) where x and
y are transcendental over K with x2 + y2 = �1.

(a) Prove that F is a quadratic extension of K(x)]. Conclude that F has genus 0.

(b) Prove that F/K is geometric (i.e. has full constant field K).

(c) Prove that every place of K(x) is inert in F .

(d) Conclude that no place of F is rational, and hence F/K is not rational.

28. (An example of a non-elliptic genus 1 function field)

Let K be a field that does not contain a square root of �1, and let F = K(x, y) where x and
y are transcendental over K with x4 + y2 = �1.

(a) Prove that F is a quadratic extension of K(x)]. Conclude that F has genus 1.

(b) Prove that F/K is geometric (i.e. has full constant field K).
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(c) Prove that every place of K(x) is inert in F .

(d) Conclude that no place of F is rational, and hence F/K is not elliptic.

29. Set of rational places of an elliptic function field as a group)

Let F/K be an elliptic function field and Q a rational place of F . Prove that the injection
�
Q

: P1(F ) ! Cl0(F ) via P 7! [P �Q] of Problem 15 is a bijection.

Hint: Let [D] 2 Cl0(F ). Prove that `(D +Q) = 1. Conclude that the class [D +Q] contains
a prime divisor that gives rise to a rational place P 2 P1(F ) with �

Q

(P ) = [D].

30. ⇤⇤ (Bijection between rational points and finite rational places)

Let K be a field of characteristic di↵erent from 2, and let F = K(x, y) where x 2 F is
transcendental over K and C : y2 = f(x) with f(x) 2 K[x] square-free.

(a) Let (x0, y0) 2 K⇥K be a point on C. Let P
x�x0 2 P1(K(x)) be the place corresponding

to x� x0, and P 0 a place of F lying above P
x�x0 .

Suppose first that y0 = 0.

i. Show that P
x�x0 ramifies as 2P 0 in F .

ii. Show that v
P

0(y) = 1.

iii. Prove that P 0 2 P1(F ) is the unique place Q0 of F with v
Q

0(x � x0) > 0 and
v
Q

0(y � y0) = v
Q

0(y) > 0.

Suppose now that y0 6= 0.

i. Show that P
x�x0 splits in F .

ii. Prove that there exists again a unique finite place Q0 2 P1(F ) with v
Q

0(x� x0) > 0
and v

Q

0(y � y0) > 0, namely P 0 or the other place of F lying above P
x�x0 .

(b) Conversely, let P 0 be any rational finite place of F .

i. Show that P 0 \ K(x) is a finite rational place of K(x), so P 0 \ K(x) = P
x�x0 for

some x0 2 K.

ii. If f(x0) = 0, show that (x0, 0) is a point on C and v
P

0(y) = 1.

iii. Suppose f(x0) 6= 0. Prove that there is a unique y0 2 K⇤ such that v
P

0(y� y0) > 0.

iv. Let y0 be as in part iii. Prove that (x0, y0) is a point on C.

(c) Prove that the above correspondence is a bijection between the points (x0, y0) 2 K ⇥K
on C and the finite rational places of F .

31. ⇤⇤⇤ (Semi-reduced divisors)

Let F/K be a function field, and let x 2 F be such that [F : K(x)] is algebraic. A divisor of
F is finite if all the places in its support are finite (see Exercise 23). A divisor of F is semi-
reduced if is is finite, e↵ective (see Exercise 12) and co-norm-free, i.e. it cannot be written as
Con

F/K(x)(D) + E0 where D 2 Div(K(x)) and E0 2 Div(F ). Assume that [F : K(x)] = 2.

(a) Let D0 be a finite e↵ective divisor of F . Prove that D0 is semi-reduced if and only if for
all finite places P 0 of F , the following hold:

• If P 0 \K(x) is inert in F , then v
P

0(D0) = 0.
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• If P 0 \K(x) is ramified in F , then v
P

0(D0) = 1.

• If P 0 \K(x) splits in F , say as P 0 +Q0, then v
P

0(D0) = 0 or v
Q

0(D0) = 0.

(b) Recall from Problem 11 that every finite place P
p(x) of K(x) is equivalent to deg(p)P1.

Suppose the infinite place of K(x) ramifies in F , i.e. Con
F/K(x)(P1) = 21. Let P 0 be

a placer of F . Use the fact that the co-norm map preserves principality of divisors to
prove the following:

• If P 0 \K(x) is inert in F , then P 0 � 21 is principal.

• If P 0 \K(x) is ramified in F , then 2P 0 � 21 is principal.

• If P 0 \K(x) splits in F , say as P 0 +Q0, then P 0 +1 is equivalent to �(Q0 +1).

(c) Assume again that the infinite place of K(x) ramifies in F . Prove that every degree
divisor D0 2 Div0(F ) is equivalent to a degree zero divisor of F of the form D0

0 �
deg(D0

0)1 where D0 is semi-reduced.

Models of Quadratic Extensions

Throughout, let K be a perfect field.

32. ⇤⇤ (Weierstrass models of elliptic curves)

If F/K be an elliptic function field and P a rational place of F .

(a) Prove that `(nP ) = n, and conclude that L(P ) = K and L(nP ) ( L((n + 1)P ), for all
n � 0.

(b) Let s 2 L(2P ) \K and t 2 L(3P ) \L(2P ). Prove that 1, s, t, s2, st, s3 have pole divisors
0, 2P, 3P, 4P, 5P, 6P , respectively.

(c) Prove that 1, s, t, s2, st, s3 form a basis of L(6P ).

(d) Prove that t2 2 L(6P ). Conclude that there exist c0, c1, c2, c3, c4, c6 2 K, with c0 6= 0,
such that t2 + c1st+ c3t = c0s

3 + c2s
2 + c4s+ c6.

(e) Put x = c0s and y = c0t. Conclude that there exist a1, a2, a3, a4, a6 2 K such that

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 .

(f) Prove that [F : K(x)] = 2 and [F : K(y)] = 3. Conclude that y /2 K(x) and hence
F = K(x, y).

33. ⇤⇤⇤ (Defining curves in characteristic 6= 2)

Let K have characteristic di↵erent from 2, F/K a function field, and x 2 F such that
[F : K(x)] = 2.

(a) Prove that there exists a square-free polynomial f(x) 2 K[x] such that F = K(x, y)
with y2 = f(x).

(b) Prove that F/K(x) is geometric if and only if the polynomial f(x) of part (a) is non-
constant.

(c) If f(x) is constant, what is K̃?
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34. ⇤⇤ (From ramified to split models and vice versa)

Let F/K be a function field of characteristic 6= 2. and let x 2 F with [F : K(x)] = 2. Write
F = K(x, y) where y2 = f(x) with f(x) 2 [x] square-free and non-constant.

(a) Suppose first that deg(f) = 2g + 1 is odd, so the infinite place of K(x) ramifies in F .

i. Show that there exist a monic square-free non-constant polynomial h(x) 2 K[x] of
degree 2g + 1 such that F = K(x, z) with z2 = h(x).

ii. Let a 2 K with f(a) 6= 0 and put t = (x � a)�1 and w = z(x � a)�(g+1). Prove
that F = (t, w) where w2 = m(t) with m(t) 2 K[t] square-free,non-constant and of
degree 2g + 2, and the infinite place of F/K(w) splits in F .

(b) Suppose first that deg(f) = 2g + 2 is even, so the infinite place of K(x) is unramified
in F . Suppose there exists a 2 K with f(a) = 0 (note that this is a much stronger
assumption than that of part (a) (ii)).

i. Show that f 0(a) 6= 0 where f 0(x) is the formal derivative with respect to x.

ii. Put t = (x� a)�1 and w = z(x� a)�(g+1). Prove that F = (t, w) where w2 = m(t)
with m(t) 2 K[t] square-free, non-constant and of degree 2g+1 (so the infinite place
of F/K(w) is ramified in F ).

35. ⇤ (Inert models become split over quadratic constant field extensions)

Let F/K be a function field of characteristic 6= 2, and let x 2 F with [F : K(x)] = 2. Write
F = K(x, y) where y2 = f(x) with f(x) 2 [x] square-free and non-constant. Assume that the
infinite place of K(x) is inert in F , so deg(f) is even and the leading coe�cient sgn(f)of f(x)
is a non-square in K⇤.

Let a /2 K be a square root of sgn(f) in some algebraic closure of K. Put L = K(a) and
E = FL = F (a). Prove that [E : L(x) = 2], E = L(x, y), and the infinite place of L(x) splits
in E.

Divisor Arithmetic in Quadratic Extensions

Throughout, let K be a perfect field.

36. ⇤⇤⇤ (Mumford representation)

Let K be a field of characteristic 6= 2, and let F = K(x, y) where x 2 F is transcendental
over K and y2 = f(x) with f(x) 2 K[x] \K2 square-free.

(a) Let D0 =
P

r

i=1 ni

P 0
i

be a semi-reduced divisor of F . For each P 0
i

, let P
p

i

(x) denote the
place of K(x) lying below P 0

i

, and set u(x) = p1(x)
n1p2(x)

n2 · · · p
r

(x)nr 2 K[x].

i. Let i 2 {1, 2, . . . , r}. Prove that there exists a unique polynomial v
i

(x) 2 K[x] such
that v

P

0
i

(v
i

+ y) > 0.
Hint : by Exercise 25, f(x) is a square (possibly zero) modulo p

i

(x). Now pick a
suitable square root.

ii. Prove that there exists a polynomial v(x) 2 K[x], unique modulo u(x), such that
u(x) divides f(x)� v(x)2 and v

P

0
i

(v
i

(x) + y) > 0 for 1  i  r.

The pair (u(x), v(x) (mod u(x))) us called the Mumford representation of D0.
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(b) Conversely, let u(x), v(x) 2 F
q

[x] with u(x) monic, non-zero, and dividing f(x)� v(x)2.
Let u(x) = p1(x)

n1p2(x)
n2 · · · p

r

(x)nr be the factorization of u(x) into monic irreducible
polynomials in F

q

[x], and let P
p

i

(x) be the place of K(x) corresponding to p
i

(x).

i. Prove that no p
i

(x) is inert.

ii. Prove that for every i, there is a unique place P 0
i

2 P(F ) lying above P
p

i

(x) such
that v

P

0
i

(v + y) > 0.

iii. Put D0 =
P

r

i=1 ni

P 0
i

where the P 0
i

are the unique places determined in part (b)
ii. Prove that D0 is a semi-reduced divisor of F with Mumford representation
(u(x), v(x)).

37. ⇤⇤⇤ (Semi-reduced divisors and K[x, y]-ideals)

Let K be a field of characteristic di↵erent from 2, and let F = K(x, y) where x 2 F is
transcendental over K and y2 = f(x) with f(x) 2 K[x] square-free. Let u(x), v(x) 2 K[x]
with u(x) monic, and consider the K[x]-module M ✓ K[x, y] of rank 2 generated by u(x) and
v(x) + y.

(a) Prove that M is an ideal in K[x, y] if and only if u(x) divides v(x)2 � f(x).

Hint: Convince yourself that M is an ideal if and only if (v(x) + y)y 2 M .

(b) Prove that the K[x, y]-ideals M of the form described above are in one-to-one correspon-
dence with the semi-reduced divisors of F .1

38. ⇤⇤⇤ (Divisor addition)

Let K be a field of characteristic di↵erent from 2, and let F = K(x, y) where x 2 F is
transcendental over K and y2 = f(x) with f(x) 2 K[x] square-free.

(a) Let D1 = (u1, v1 and D2 = (u2, v2) be two semi-reduced divisors of F in Mumford
representation. Prove that D1+D2 is semi-reduced if and only if gcd(u1, u2, v1+v2) = 1.

(b) Under the assumption of part (a), prove that the Mumford representation of D1+D2 is
(u, v) where

u = u1u2 and v ⌘
(
v1 (mod u1)

v2 (mod u2) .
.

39. ⇤⇤⇤ (Divisor reduction)

Let K be a field of characteristic di↵erent from 2, and let F = K(x, y) have where x 2 F is
transcendental over K and y2 = f(x) with f(x) 2 K[x] square-free. Let g be the genus of F .

Let D = (u, v) be a semi-reduced divisor in Mumford representation. Put

u0 =
f + hv � v2

u
, v ⌘ h� v (mod u0) .

(a) Prove that D0 = (u0, v0) is a semi-reduced divisor in Mumford representation. Prove the
following:

1
In fact, this bijection extends to a group isomorphism from the ideal class group of K[x, y] onto the degree zero

class group of F . More generally, these two groups are isomorphic for any function field F/K for which there exists

x 2 F transcendental over K such that F = K(x, y) and the infinite place of K(x) is totally ramified in F .
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(b) D0 is equivalent to D.

(c) If deg(u) � g + 2, then deg(u0)  deg(u)� 2.

(d) If deg(u) = g + 1, then deg(D)  g.

(e) Starting with D = (u, v), the above substitution (u, v) ! (u0, v0) applied at most
ddeg(u)� g/2e times yields the unique reduced divisor equivalent to D.

Miscellaneous

40. (2-torsion of the class group over an algebraically closed field)

This problem is tangential to the material in the lectures.

Let F be a function field over an an algebraically closed field K, and let x 2 F such that
[F : K(x)] = 2. Write F = K(x, y) where y2 = f(x) with f(x) 2 F

q

[x] square-free and of odd
degree, so f(x) splits into an odd number of distinct linear factors. Recall that the ramified
places of K(x) are the infinite place P1 and the places P

i

, 1  i  deg(f), that correspond
to the linear factors of f(x). Write Con

F/K(x)(P1) = 2P 0
1, Con

F/K(x)(Pi

) = 2P 0
i

, and put

D0
i

= P 0
i

�P 0
1 for 1  i  deg(f). For D0 2 Div0(F ), let [D0] denote the class of D0 in Cl0(F ).

(a) Show that [D0
i

] 6= 0 and 2[D0
i

] = [0] for 1  i  deg(f).

(b) Show that [D0
1] + [D0

2] + · · ·+ [D0
deg(f)] = [0].

(c) Let G be the subgroup of Div0(F ) generated by [D0
1], [D

0
2], . . . , [D

0
deg(f)]. Prove that G

is isomorphic to (Z/2Z)deg(f)�1.

(d) Let Cl0(F )[2] denote the 2-torsion of Cl0(F ), i.e. the collection of divisor classes of order
dividing 2. Prove that Cl0(F )[2] = G, so the number of 2-torsion elements of Cl0(F ) is
2deg(f)�1.
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