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Weierstrass Places

Assume K perfect and let P be a place of degree one of F/K.

The Weierstrass semigroup for P is the additive semisubgroup
of ZZ0 defined by

W(P) = {—vp(f)| f € F* with vo(f) > 0 for all Q # P}

Theorem. There is a semisubgroup W of Z=0 such that
W= W(P)

for almost all P. Moreover, #(Z=°\W(P)) = g in general

and ZZO\W(P) = {1,..., g} if char(F) = 0.

If W(P) # W then P is called Weierstrass place of F/K.

Theorem. There exist Weierstrass places if and only if g > 2.
Their number is between 2g + 2 and (g — 1)g(g + 1) for
char(F) = 0 and in O(g3) in general.

24



Algorithmics of
Function Fields

3 Geometry

Mathematical
Background
Computation of
Weierstrass
Placs

Mathematical
Background
Computation of
Isomorphisms

Applications

Sketch

Let W denote a canonical divisor. The first observation is
L(nP) # L((n—1)P) iff L(W —nP)=L(W —(n—1)P).

Thus can/need to study zero and poles of function in L(W) for
all P. This can be done using the following tools and objects:

» Higher Derivatives of algebraic functions,
» Wronskian Determinant associated to L( W),

» Invariant divisor.

The Weierstrass places are then the places in the support of
this invariant divisor.



Algorithmics of
Function Fields

3 Geometry

Mathematical
Background
Computation of
Weierstrass
Placs

Mathematical
Background

Isomorphisms

Applications

Sketch - Essential Idea

Roughly speaking, if f € F has a zero of order n # 0 at a place
P of degree one, then its i-th derivative D()(f) with i < n has
a zero of order n — i at P.

Let f1,...,fy be a basis of L(W) and suppose P ¢ supp(WV).

The existence or non-existence of functions in L(W) with
prescribed zero orders ¢; at a P can be cast as the linear
independece of the vectors

(DE(AR)(P),..., DED(F)(P)).

Places P where linear independence does not hold are precisely
the zeros of the Wronskian determinant

det ((D(Ei)(’ﬂ')) i,j) :
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Higher Derivatives - Example*

We begin by way of example.

Suppose f € C[x]. Then also f € C[t][x] and we can write
deg(f) .
F=> X()x—1)
i=0
with \; € C[t]. The i-th derivative () of f then satisfies
F () = i Mi(2).

We wish to generalise this to arbitrary function fields and
characteristic.

Note that if p = char(F) > 0 then uninterestingly f(P)(t) =

so we will take the A; as higher derivatives of f.

01

6
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Local Expansions*

Let P be a place of degree one and 7 a local uniformizer of P,
so vp(m) = 1.

For every f € F and n € Z there are uniquely determined
m € Z and A\; € K such that

n
vp f—Z)\m" >n+ 1.
i=m

This leads to a K-algebra monomorphism
F — K((t))

into the ring of Laurent series over K which maps 7 to t.
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Generic Place®

Let x be a separating element of F/K and y € F such that
F=K(x,y).

Denote F' = K(x,y') an isomorphic copy of F and let FF'/F’
be the constant field extension.

There is place P of degree one of FF’/F’ which is the unique
common zero of x — x’ and y — y’. Moreover, x — x" is a local
uniformizer of P.

This place P is called generic place of F/K.

The generic place is independently of the choice of x and y
generated by the set of f — f' for f € F.
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Higher Derivatives*

For every f € F it holds that vp(f) > 0. Via local expansions
we obtain the monomorphism

¢: F — F[[]],

and we define the D)gi)(f) by

o(f) = DI(F)(x — ).
i=0

Then D)(f)(f) is called i-th derivative of f with respect to x.
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Higher Derivatives and
Local Expansions at Places*

A local uniformizer 7 is also a separating element of F/K.

If vp(f) > 0 then DY) (£)(P) is the i-th coefficient of the
power series expansion of f at P in .

The element m — 7’ € FF' is also a local uniformizer of the
generic place of F/K. Thus the D7(r')(f) can be expressed in
terms of the D{”(f) and vice versa.

This is used to define the invariant divisor (under change of x)
mentioned above.
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Isomorphisms

Let F1)/K and F(3)/K be two function fields over K.

A homomorphism ¢ from F(;)/K to F»)/K is a K-algebra
homomorphism F(1) — F(2), which is necessarily injective.

If ¢ is surjective it is called an isomorphism.

A homomorphism ¢ is defined by its images in F(3) on
generators of F(1) over K.

Theorem. Suppose F(5)/¢(F(1)) is separable and g(;) > 2.

Then ¢ is an isomorphism if and only if g1) = g(2).-

12 /24
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Automorphisms

An isomorphism ¢ of F/K with itself is called an automorphism
of F/K. They form a group which is denoted by Aut(F/K).

Theorem. The automorphism group Aut(F/K) is finite. If in
particular char(F) = 0 then

#Aut(F/K) < 84(g —1).

In general, #Aut(F/K) is roughly bounded by 16g*.

13 /24



Algorithmics of Computation of Isomorphisms

Function Fields

3 Geometry
e We assume that g(;) = g(2) > 2 and K is the exact constant
;“IHJ . field of F3)/K and F5)/K, for otherwise they are not
Placa ™ isomorphic. All this can be checked beforehand.

There are different (better) techniques for g =0or g =1 and
Mathematical . . . .
Background for hyperelliptic function fields.

Computation of
Isomorphisms

Applications

We compute isomorphisms of complete regular curves C with a
distinguished point by computing defining equations for C that
are almost uniquely determined.

We assume that K is perfect.
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e e Sketch of Steps of Computation

3 Geometry

1. Compute suitable place P(;) of degree one of F;)/K and
a corresponding (small) set of places S of F(5)/K such
that any isomorphism would map P(y) inside S.

Mathematical
Background

2. Compute almost unique generators and defining equations
for F1)/K at P(1) and for Fo)/K at P(y) for all Py € S.

A 3. Coefficientwise comparison leads (under some assumptions
Background . . .

Computation o that always hold if char(F) is zero or big) to a system of
Apaesinie equations in two variables which is easily solved.

4. This yields all isomorphisms ¢ : F(1y — F(3) with
¢(P(1)) = P(2), defined by their images of the computed
generators.

The set S can consist of Weierstrass places or places of lowest
degree.
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Computation of > In general bounded by O(g3).

Weierstrass
Placs

» Thus using Weierstrass places P(;) and P2 can lead to
O(g) up to O(g®) comparisons.

Mathematical
Background

Compuiationof - Number of places of degree one for K = [Fy:
B > Is g + 1+ t with |t| < 2gq"/2.
» Thus roughly up to O(max{gq, gg'/?}) comparisons.

Bound for the number of isomorphisms:

» 84(g — 1) in char(k) = 0 and roughly O(g*) for
char(k) > 0.

16

» Between 2g +2 and (g — 1)g(g + 1) in characteristic zero.
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Applications

Testing for isomorphism and the computation of automorphism
groups are basic algorithmic problems.

Some applications:

v

v

v

Tables of function fields and curves.

Representations of automorphism groups on

Riemann-Roch spaces and spaces of differentials.

Monopole computations in physics.
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Some more details*

If F(1) and F(3) are isomorphic then:
> A place P(y) is mapped to a place P(y).
We have deg(P(1)) = deg(P(2))-
L(nP(1)), L(nP2)) and W(P(1)), W(P(2)) are isomorphic.
There is a bijection between the sets of Weierstrass places.

There is a bijection between the sets of places of smallest
degree.

v

v

v

v

The sets of Weierstrass places are finite. If K is finite, the sets
of places of smallest degree are also finite.

If P(1) is taken from such a set then there are only finitely
many possibilities for its image P(,).

Goal: Turn these necessary conditions for the existence of an
isomorphism into a sufficient condition!

18 /24
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Special Generators*

Suppose ¢ is an isomorphism of F(1)/K to F(3)/K such that
P(1) is mapped to P5) and assume deg(P(a)) =1.

We define some special pole numbers:
> Let mo =0 and m; = s > 0 be minimal in W(P,)).

» Furthermore, let m; be minimal in W(P(,)) such that
m; Z m; mod s forall 0 < j < /.

» This yields m; up to i = s, and the m; are generators of
W(P(a))-

19 /24
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v

Special Generators*

define some corresponding elements of F(,):
X(a),i S L(m,'P(a))\L((m,- — 1)P(a)).
Then
1, X(a),2, X(O[)’37 ce 7X(O[)7s
are a reduced integral basis of CI(K[x(q)1], F(a))-

The relation ideal of the X(4) 1, X(a),25 - - - » X(a),s 1S
generated by polynomials of the form

t,'tj—)\( )i, (t1) Z)\(a),,jytlt (2<i,j<s)

In other words, these are the defining polynomials of the
corresponding affine regular curve.

20 /24
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e Theorem. Assume further that s is coprime to char(F), if the
ifé?’c'i;‘f;li‘f” © latter is not zero. Then F(;)/K and F)/K are isomorphic and

the isomorphism maps P() to P(y) if and only if there are

i Xa) 1o+ X(a),s
Ifompm;mmv of
Applications as above and ¢, d € K with ¢ # 0 such that

¢(X(1)71) = CSX(2)71 +d and (;S(X(l)’,-) = CSX(2)’,- fori>2.
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Computing Isomorphisms*

These x(4),i can be computed independently of each other and
of ¢ by some rather technical trickery:

» The n-th root of x() 1 is chosen as a local uniformiser 7,
at P(y). This is depends only of two parameters ¢ and d.

> The X(q),; are written as Laurent series in 7(y).

» Using Gaussian elimination, as many as possible

coefficients are reduced to zero. This leads to the new
X(a),i like in the theorem.

> A coefficientwise comparison of the defining polynomials
on slide 20 gives equations for ¢ and d which can easily be
solved.
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Variations*

There is no P,y with deg(P(,)) = 1:
» Use constant field extension wrt K;/K and K; = K(P(a

» Test, whether isomorphisms over Kj are defined over K.

))-

There is no P(,) with deg(P(,)) =1 and gcd{s,char(K)} = 1:
> Replace P, by suitable D,y with dim(D(,)) = 1 in the

computation of ().

> Helps sometimes, but not always ...
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Need to compute with isomorphisms. Write generators of one
field in the generators of the other field ...

1. X(a),i are represented in generators of F(,), this gives

L(a) . k(X(a),lv c. 7X(a),s) — F(a)-

2. Represent generators of F(q) in K(X(a).15- -5 X(a),s)-

» Grobner basis approach bad, better use linear algebra.
> Let fio) € F(E). Then there is d > 0 such that
L(rP(a)) N fL(rP(a)) 75 {O} Then h; = f(a)hQ with
hi € L(rP())\{0} and h; is a polynomial in the x(, ;.
> Apply this to generators of F(,)/K, gives

-1 .
L(a) : F(a) — K(X(a)717 s 7X(a),s)‘

24 /24
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