
Algorithmics of
Function Fields

3 Geometry

Weierstrass
Places

Mathematical
Background

Computation of
Weierstrass
Placs

Isomorphisms
and Automor-
phisms

Mathematical
Background

Computation of
Isomorphisms

Applications

Lecture 3

Algorithmic Geometry

for Function Fields

Summer School UNCG 2016

Florian Hess

1 / 24



Algorithmics of
Function Fields

3 Geometry

Weierstrass
Places

Mathematical
Background

Computation of
Weierstrass
Placs

Isomorphisms
and Automor-
phisms

Mathematical
Background

Computation of
Isomorphisms

Applications

Weierstrass Places

First Part

2 / 24



Algorithmics of
Function Fields

3 Geometry

Weierstrass
Places

Mathematical
Background

Computation of
Weierstrass
Placs

Isomorphisms
and Automor-
phisms

Mathematical
Background

Computation of
Isomorphisms

Applications

Weierstrass Places

Assume K perfect and let P be a place of degree one of F/K .

The Weierstrass semigroup for P is the additive semisubgroup
of Z≥0 defined by

W (P) = {−vP(f ) | f ∈ F× with vQ(f ) ≥ 0 for all Q 6= P}

Theorem. There is a semisubgroup W of Z≥0 such that

W = W (P)

for almost all P. Moreover, #(Z≥0\W (P)) = g in general
and Z≥0\W (P) = {1, . . . , g} if char(F ) = 0.

If W (P) 6= W then P is called Weierstrass place of F/K .

Theorem. There exist Weierstrass places if and only if g ≥ 2.
Their number is between 2g + 2 and (g − 1)g(g + 1) for
char(F ) = 0 and in O(g3) in general.
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Sketch

Let W denote a canonical divisor. The first observation is

L(nP) 6= L((n − 1)P) iff L(W − nP) = L(W − (n − 1)P).

Thus can/need to study zero and poles of function in L(W ) for
all P. This can be done using the following tools and objects:

I Higher Derivatives of algebraic functions,

I Wronskian Determinant associated to L(W ),

I Invariant divisor.

The Weierstrass places are then the places in the support of
this invariant divisor.
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Sketch - Essential Idea

Roughly speaking, if f ∈ F has a zero of order n 6= 0 at a place
P of degree one, then its i-th derivative D(i)(f ) with i ≤ n has
a zero of order n − i at P.

Let f1, . . . , fg be a basis of L(W ) and suppose P 6∈ supp(W ).

The existence or non-existence of functions in L(W ) with
prescribed zero orders εi at a P can be cast as the linear
independece of the vectors

(D(εi )(f1)(P), . . . ,D(εi )(fg )(P)).

Places P where linear independence does not hold are precisely
the zeros of the Wronskian determinant

det
((

D(εi )(fj)
)
i ,j

)
.
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Higher Derivatives - Example∗

We begin by way of example.

Suppose f ∈ C[x ]. Then also f ∈ C [t][x ] and we can write

f =

deg(f )∑
i=0

λi (t)(x − t)i

with λi ∈ C [t]. The i-th derivative f (i) of f then satisfies

f (i)(t) = i ! · λi (t).

We wish to generalise this to arbitrary function fields and
characteristic.

Note that if p = char(F ) > 0 then uninterestingly f (p)(t) = 0,
so we will take the λi as higher derivatives of f .
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Local Expansions∗

Let P be a place of degree one and π a local uniformizer of P,
so vp(π) = 1.

For every f ∈ F and n ∈ Z there are uniquely determined
m ∈ Z and λi ∈ K such that

vP

(
f −

n∑
i=m

λiπ
i

)
≥ n + 1.

This leads to a K -algebra monomorphism

F → K ((t))

into the ring of Laurent series over K which maps π to t.
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Generic Place∗

Let x be a separating element of F/K and y ∈ F such that
F = K (x , y).

Denote F ′ = K (x ′, y ′) an isomorphic copy of F and let FF ′/F ′

be the constant field extension.

There is place P of degree one of FF ′/F ′ which is the unique
common zero of x − x ′ and y − y ′. Moreover, x − x ′ is a local
uniformizer of P.

This place P is called generic place of F/K .

The generic place is independently of the choice of x and y
generated by the set of f − f ′ for f ∈ F .
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Higher Derivatives∗

For every f ∈ F it holds that vP(f ) ≥ 0. Via local expansions
we obtain the monomorphism

φ : F → F ′[[t]],

and we define the D
(i)
x (f ) by

φ(f ) =
∞∑
i=0

D
(i)
x (f )(x − x ′)i .

Then D
(i)
x (f ) is called i-th derivative of f with respect to x .
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Higher Derivatives and
Local Expansions at Places∗

A local uniformizer π is also a separating element of F/K .

If vP(f ) ≥ 0 then D
(i)
π (f )(P) is the i-th coefficient of the

power series expansion of f at P in π.

The element π − π′ ∈ FF ′ is also a local uniformizer of the
generic place of F/K . Thus the D

(i)
π (f ) can be expressed in

terms of the D
(i)
x (f ) and vice versa.

This is used to define the invariant divisor (under change of x)
mentioned above.
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Isomorphisms

Let F(1)/K and F(2)/K be two function fields over K .

A homomorphism φ from F(1)/K to F(2)/K is a K -algebra
homomorphism F(1) → F(2), which is necessarily injective.

If φ is surjective it is called an isomorphism.

A homomorphism φ is defined by its images in F(2) on
generators of F(1) over K .

Theorem. Suppose F(2)/φ(F(1)) is separable and g(1) ≥ 2.
Then φ is an isomorphism if and only if g(1) = g(2).
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Automorphisms

An isomorphism φ of F/K with itself is called an automorphism
of F/K . They form a group which is denoted by Aut(F/K ).

Theorem. The automorphism group Aut(F/K ) is finite. If in
particular char(F ) = 0 then

#Aut(F/K ) ≤ 84(g − 1).

In general, #Aut(F/K ) is roughly bounded by 16g4.
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Computation of Isomorphisms

We assume that g(1) = g(2) ≥ 2 and K is the exact constant
field of F(1)/K and F(2)/K , for otherwise they are not
isomorphic. All this can be checked beforehand.

There are different (better) techniques for g = 0 or g = 1 and
for hyperelliptic function fields.

We compute isomorphisms of complete regular curves C with a
distinguished point by computing defining equations for C that
are almost uniquely determined.

We assume that K is perfect.
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Sketch of Steps of Computation

1. Compute suitable place P(1) of degree one of F(1)/K and
a corresponding (small) set of places S of F(2)/K such
that any isomorphism would map P(1) inside S .

2. Compute almost unique generators and defining equations
for F(1)/K at P(1) and for F(2)/K at P(2) for all P(2) ∈ S .

3. Coefficientwise comparison leads (under some assumptions
that always hold if char(F ) is zero or big) to a system of
equations in two variables which is easily solved.

4. This yields all isomorphisms φ : F(1) → F(2) with
φ(P(1)) = P(2), defined by their images of the computed
generators.

The set S can consist of Weierstrass places or places of lowest
degree.
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Complexity Considerations

Number of Weierstrass places:

I Between 2g + 2 and (g − 1)g(g + 1) in characteristic zero.

I In general bounded by O(g3).

I Thus using Weierstrass places P(1) and P(2) can lead to
O(g) up to O(g3) comparisons.

Number of places of degree one for K = Fq:

I Is q + 1 + t with |t| ≤ 2gq1/2.

I Thus roughly up to O(max{q, gq1/2}) comparisons.

Bound for the number of isomorphisms:

I 84(g − 1) in char(k) = 0 and roughly O(g4) for
char(k) > 0.
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Applications

Testing for isomorphism and the computation of automorphism
groups are basic algorithmic problems.

Some applications:

I Tables of function fields and curves.

I Representations of automorphism groups on
Riemann-Roch spaces and spaces of differentials.

I Monopole computations in physics.

I ...
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Some more details∗

If F(1) and F(2) are isomorphic then:

I A place P(1) is mapped to a place P(2).

I We have deg(P(1)) = deg(P(2)).

I L(nP(1)), L(nP(2)) and W (P(1)), W (P(2)) are isomorphic.

I There is a bijection between the sets of Weierstrass places.

I There is a bijection between the sets of places of smallest
degree.

The sets of Weierstrass places are finite. If K is finite, the sets
of places of smallest degree are also finite.

If P(1) is taken from such a set then there are only finitely
many possibilities for its image P(2).

Goal: Turn these necessary conditions for the existence of an
isomorphism into a sufficient condition!
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Special Generators∗

Suppose φ is an isomorphism of F(1)/K to F(2)/K such that
P(1) is mapped to P(2) and assume deg(P(α)) = 1.

We define some special pole numbers:

I Let m0 = 0 and m1 = s > 0 be minimal in W (P(α)).

I Furthermore, let mi be minimal in W (P(α)) such that
mi 6≡ mj mod s for all 0 < j < i .

I This yields mi up to i = s, and the mi are generators of
W (P(α)).
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Special Generators∗

We define some corresponding elements of F(α):

I x(α),i ∈ L(miP(α))\L((mi − 1)P(α)).

I Then
1, x(α),2, x(α),3, . . . , x(α),s

are a reduced integral basis of Cl(K [x(α),1],F(α)).

I The relation ideal of the x(α),1, x(α),2, . . . , x(α),s is
generated by polynomials of the form

ti tj − λ(α),i ,j ,1(t1)−
m1∑
ν=2

λ(α),i ,j ,ν(t1)tν (2 ≤ i , j ≤ s)

I In other words, these are the defining polynomials of the
corresponding affine regular curve.
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Very Special Generators∗

Theorem. Assume further that s is coprime to char(F ), if the
latter is not zero. Then F(1)/K and F(2)/K are isomorphic and
the isomorphism maps P(1) to P(2) if and only if there are

x(α),1, . . . , x(α),s

as above and c , d ∈ K with c 6= 0 such that

φ(x(1),1) = csx(2),1 + d and φ(x(1),i ) = csx(2),i for i ≥ 2 .
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Computing Isomorphisms∗

These x(α),i can be computed independently of each other and
of φ by some rather technical trickery:

I The n-th root of x(α),1 is chosen as a local uniformiser π(α)
at P(α). This is depends only of two parameters c and d .

I The x(α),i are written as Laurent series in π(α).

I Using Gaussian elimination, as many as possible
coefficients are reduced to zero. This leads to the new
x(α),i like in the theorem.

I A coefficientwise comparison of the defining polynomials
on slide 20 gives equations for c and d which can easily be
solved.
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Variations∗

There is no P(α) with deg(P(α)) = 1:

I Use constant field extension wrt K1/K and K1 = K (P(α)).

I Test, whether isomorphisms over K1 are defined over K .

There is no P(α) with deg(P(α)) = 1 and gcd{s, char(K )} = 1:

I Replace P(α) by suitable D(α) with dim(D(α)) = 1 in the
computation of π(α).

I Helps sometimes, but not always ...
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Working with Different Generators∗

Need to compute with isomorphisms. Write generators of one
field in the generators of the other field ...

1. x(α),i are represented in generators of F(α), this gives

ι(α) : k(x(α),1, . . . , x(α),s)→ F(α).

2. Represent generators of F(α) in K (x(α),1, . . . , x(α),s).

I Gröbner basis approach bad, better use linear algebra.

I Let f(α) ∈ F×(α). Then there is d ≥ 0 such that

L(rP(α)) ∩ fL(rP(α)) 6= {0}. Then h1 = f(α)h2 with
hi ∈ L(rP(α))\{0} and hi is a polynomial in the x(α),i .

I Apply this to generators of F(α)/K , gives

ι−1(α) : F(α) → K (x(α),1, . . . , x(α),s).
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