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Lecture 1. Introduction to modular forms

1.1. The goal of these lectures is to explain how to compute effectively with classical
holomorphic modular forms. The main approach is the modular symbol method, due to work
of Birch, Manin, Mazur, Merel, and Cremona. In this first lecture, we give an overview of
classical holomorphic modular forms of weights k ≥ 2 and give some of their applications.
For further reading, you might consult [8, 12–14,16–18,20].

1.2. Definitions and notation. Let

H = upper halfplane = {z ∈ C : Im(z) > 0}

SL2(Z) =

{
γ =

[
a b
c d

]
: a, b, c, d ∈ Z, det(γ) = 1

}
.

Then SL2(Z) acts on H by fractional-linear transformations:

z 7−→ az + b

cz + d
.

For each weight k ≥ 2, we get an action on functions f : H→ C called the slash operator :

(f
∣∣
k
γ)(z) = f

(
az + b

cz + d

)
(cz + d)−k, γ =

[
a b
c d

]
∈ SL2(Z).

1.3. Definition. A function f : H→ C is a modular form of weight k if

(a) f is holomorphic
(b) (f

∣∣
k
γ) = f for all γ ∈ SL2(Z)

(c) f is holomorphic “at infinity”, which means as Im(z)→∞, |f(z)| is majorized by a
polynomial in max{1, Im(z)−1}

In particular, (c) implies that |f(z)| cannot grow too rapidly as Im(z)→∞. Let Mk denote
the C-vector space of weight k modular forms.
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We get the notion of a cuspform by imposing stronger growth conditions, namely f decays
very rapidly as Im(z) → ∞. More precisely, replace condition (c) by (c)′: |f | is majorized
by Im(z)−k/2 as Im(z)→∞. Let Sk ⊂Mk be the subspace of cuspforms.

1.4. Fact. The space of weight k modular forms Mk is finite-dimensional.

1.5. Fourier expansion of f . Let T =

[
1 1
0 1

]
Observe f

∣∣
k
γ = f means f is invariant

under z 7→ z + 1. Thus f has a Fourier expansion

f(z) =
∑
n∈Z

ane
2πinz, an ∈ C.

Usually we put q = e2πinz and write this as a q-expansion of f :

f(q) =
∑
n∈Z

anq
n.

One can show that the growth conditions (c) and (c)′ are equivalent to

an = 0 for all n < 0 ⇐⇒ f ∈Mk,

an = 0 for all n ≤ 0 ⇐⇒ f ∈ Sk.

Under the change of coordinates z 7→ q = e2πiz, the upper halfplane maps to the unit
disk {q ∈ C : |q| < 1}. The point at i∞ gets taken to the origin in the disk. In these
new coordinates, saying f ∈ Mk means f is bounded as q → 0 in the disk, and can thus be
extended to a function defined on the disk. Similarly, saying f ∈ Sk means that f extends
to a function vanishing at 0 on the disk.

1.6. Why do we study modular forms? As we shall see, sometimes we have a sequence

{αn : n ∈ Z≥0} ⊂ C

arising naturally. For instance, we might have αn ∈ Z, and they may count something.
Combinatoricists use a generating function

∑
αnx

n to organize these numbers. Number
theorists, on the other hand, replace x by q and make a q-series. Replacing x by q is trivial,
but nevertheless suggestive. One can ask: Is the resulting series the q-expansion of a weight
k modular form?

If this is true, then f ∈ Mk, and the latter is a vector space of rather small dimension
(roughly k/12). We can then take a basis of Mk and can express the function f in terms of
this basis; this typically already leads to nontrivial information about the coefficients of f .
Another typical phenomenon is that we may have other sequences g1, g2, . . . giving rise to
modular forms in Mk coming from quite different settings. Since Mk has small dimension, as
soon as we have enough modular forms they can’t all be linearly independent, and thus we
obtain nontrivial relations among f and the gi, relations that are usually not at all obvious
from the sources of these series.

This is best understood through examples, as we now illustrate. This also gives us the
chance to introduce some key players in the theory.

1.7. Example (Eisenstein series). The simplest way to try to make a modular form is by
averaging: we can average over SL2(Z) to force invariance under the slash action. Put k ≥ 4,
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and define

Ek(z) :=
(k − 1)!

2(2πi)k

∑′

m,n∈Z

(mz + n)−k

(the normalizing factor is used for convenience). This sum is absolutely convergent if k ≥ 4,
and we get a modular form Ek ∈ Mk, called the holomorphic weight k Eisenstein series.
Note Ek vanishes identically for odd k. When k = 2 the series doesn’t converge absolutely,
but there is a standard way to sum the series conditionally (Hecke’s trick). In this case the
result is not a modular form, but it’s almost one.

The Eisenstein series Ek has Fourier expansion

Ek(q) =
1

2
ζ(1− k) +

∑
n≥1

σk−1(n)qn,

where σr is the rth power divisor sum

σr(n) :=
∑
d|n

dr.

Note
1

2
ζ(1− k) = −Bk

2k
,

where Bk is the kth Bernoulli number. The first few q-expansions are

E4 =
1

240
+ q + 9q2 + 28q3 + . . . ,(1)

E6 = − 1

504
+ q + 33q2 + 244q3 + . . . ,(2)

E8 =
1

480
+ q + 129q2 + 2188q3 + . . . .(3)

Now the direct sum of all the spaces of modular forms

M∗ =
⊕
k

Mk

forms a graded ring, where the weight gives the grading: if f has weight k and g has weight
l, then fg is a modular form of weight k + l. One can prove

(4) M∗ ' C[E4, E6].

Thus any weight k modular form can be written as a (weighted) homogeneous polynomial
in the Eisenstein series E4, E6, which allows one to easily compute the dimension of Mk.
Immediately we can get a nontrivial identity: one can check dim(M4) = dim(M8) = 1, which
means E2

4 must be a multiple of E8. Checking constant terms of Fourier expansions, we see

120E2
4 = E8.

Now look at the Fourier coefficients. We get

(5) σ7(n) = σ3(n) + 120
n−1∑
m=1

σ3(m)σ3(n−m),

which is not obvious.
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There is a Hermitian inner product defined on (most of) Mk, called the Petersson product :

〈f, g〉 =

∫
D

ykfḡ dA

where D is a fundamental domain for SL2(Z) in H and dA = dx dy/y2 is hyperbolic measure.
What do we mean by most of ? Unfortunately we can’t compute the inner product of two
Eisenstein series (the integral doesn’t converge), but we can compute the inner product of
an Eisenstein series and any cuspform, or of two cuspforms. Using the Petersson product
it’s possible to prove

Mk ' CEk ⊕ Sk
is an orthogonal decomposition. Thus given any modular form f , we can always subtract off
a suitable multiple of an Eisenstein series to obtain a cuspform.

1.8. Exercise. Verify some cases of the divisor sum identity (5). Can you prove it without
using modular forms?

1.9. Example (Delta function). The first weight with Sk 6= 0 is k = 12: M12 is spanned by
E3

4 , E
2
6 , and these are not equal. The difference

(6) ∆(q) := 8000E3
4 − 147E2

6 = q − 24q2 + 252q3 + . . .

has no constant term and is thus a cuspform.1 The coefficients of the q-expansion give the
values of Ramanujan’s τ -function:

∆(q) =
∑

τ(n)qn.

Thus our expression in terms of Eisenstein series gives a way to compute τ(n) using sums of
powers of divisors of n. But ∆ has even more structure. One can prove that ∆ satisfies an
infinite product formula

∆(q) = q
∏
n≥1

(1− qn)24;

most modular forms, of course, have no such product structure. This shows that ∆ = η(q)24,
where η is Dedekind’s eta-function.

1.10. Example (Theta series of even, unimodular lattices). Now we have an arithmetic
application. Let L be an even, unimodular lattice in Rn. This means

(1) L ⊂ Rn is a discrete, cocompact subgroup,
(2) the inner product in Rn is Z-valued when restricted to L,
(3) L has a Z-basis {v1, . . . , vn} such that the Gram matrix (vi · vj) has determinant 1

(unimodular), and
(4) v · v ∈ 2Z for all v ∈ L (even).

It is known that even, unimodular lattices exist in Rn if and only if n ≡ 0 mod 8. There
are finitely many up to rotation. In general, the number of such lattices is unknown except
for small values of n (cf. Table 1).

Define

rL(m) = #
{
x ∈ L :

x · x
2

= m
}
,

1This is correct although it looks quite ugly. Another typical normalization of the Eisenstein series puts
the constant terms to be 1, i.e. Ẽ4 = 240E4, Ẽ6 = −504E6, . . . . With this convention, the expression (6)

becomes ∆ = (Ẽ3
4 − Ẽ2

6)/1728, which is much more attractive.
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Table 1. Even unimodular lattices in Rn.

n #L Name

8 1 The root lattice E8

16 2 E8 ⊕ E8 and the root lattice D16

24 24 The 24 Niemeier lattices (includes the Leech lattice)
32 over 1000000000

and form the q-expansion

fL(q) =
∑
m≥0

rL(m)qm.

Then one can prove the following:

1.11. Fact. Let L ⊂ Rn be an even unimodular lattice. Then fL(q) is a modular form of
weight n/2.

Here are two applications of this fact. First, consider the root lattice of type E8 (don’t
confuse this notation with the Eisenstein series!). By definition this is the set of points
(x1, . . . , x8) ∈ R8 such that

• all the coordinates are integers or all the coordinates are half-integers (a mixture of
integers and half-integers is not allowed), and
• the sum of the eight coordinates is an even integer.

This is an even unimodular lattice. Thus fE8(q) ∈ M4, which we know is spanned by the
Eisenstein series E4. Comparing constant terms, we find fE8 = 240E4. This implies

(7) rE8(m) = 240σ3(m).

1.12. Exercise. Check (7) for as many values of m as you can using a computer. Can you
prove (7) without using modular forms?

Next consider n = 16. There are two even unimodular lattices in this dimension, L1 =
E8 ⊕ E8 and a new one L2, which is the root lattice D16. Now fL1(q) and fL2(q) are both
weight 8 modular forms with constant coefficient 1. Since the space of weight 8 modular
forms is one-dimensional and is spanned by the Eisenstein series E8(q) (don’t mix this up
with the root lattice E8!), both these modular forms must be equal. (In fact by (3) they
equal 480E8(q)).

Thus these two lattices have the property the number of vectors of a given length is the
same for both. This is relevant to a famous problem in differential geometry, which asks
Can you hear the shape of a manifold? Precisely, the question means Does the spectrum
of the Laplacian on a Riemannian manifold uniquely determine it, up to isometry?. The
answer, as observed by Milnor, is no. The lattices determine two 16-dimensional flat tori
T1 = R16/L1 and T2 = R16/L2. If Λ ⊂ Rn is a lattice with associated flat torus T = Rn/Λ,
then the eigenfunctions for the Laplacian have the form

fλ∗(x) := e2π
√
−1(λ∗·x),

where λ∗ is any point in the dual of Λ (by definition the dual of Λ is all λ∗ such that λ∗ ·λ ∈ Z
for all λ ∈ Λ). Furthermore, the eigenvalue of fλ∗(x) is 4π2|λ∗|2. The lattices Li are self-dual,
so the sequence of Laplacian eigenvalues is essentially what’s encoded by the q-expansions
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fLi
(q). Thus fL1(q) = fL2(q) implies that T1 and T2 are isospectral. On the other hand, T1

and T2 are non-isometric (there is no isometry of R16 taking L1 into L2).

1.13. Exercise. Find how to express the theta series for the Leech lattice in terms of
modular forms, and for some of the Niemeier lattices. You will only need the Eisenstein
series E12 and the cuspform ∆ to do this. (The answer is known and can be found online,
say at the OEIS [19]. But don’t cheat! This way you can learn how to compute with these
lattices.)

1.14. Level structure. For arithmetic applications, one needs modular forms with level.
To define these we need congruence subgroups.

1.15. Definition. Fix N ∈ Z>0. The principal congruence subgroup Γ(N) is defined by

Γ(N) = {γ ∈ SL2(Z) : γ ≡ I mod N}.
A subgroup Γ ⊂ SL2(Z) is called a congruence subgroup if Γ contains Γ(N) for some N . The
minimal such N is called the level.

The principal congruence subgroup Γ(N) has finite index in SL2(Z); indeed, one can show
that Γ(N) fits into an exact sequence

1 −→ Γ(N) −→ SL2(Z) −→ SL2(Z/NZ) −→ 1

(the tricky part is the surjectivity onto SL2(Z/NZ)). Thus every congruence subgroup also
has finite index. The converse, however, is not true: not every finite index subgroup of
SL2(Z) is a congruence subgroup. The groups Γ(N) are torsion-free when N ≥ 3.

The most important congruence subgroups besides Γ(N) are the Hecke congruence sub-
groups :

Γ0(N) =

{
γ ∈ SL2(Z) : γ ≡

[
∗ ∗
0 ∗

]
mod N

}
,

Γ1(N) =

{
γ ∈ SL2(Z) : γ ≡

[
1 ∗
0 1

]
mod N

}
.

1.16. Definition. Suppose Γ is a congruence subgroup. We say f : H → C is a weight k
modular form on Γ if

(a) f is holomorphic,
(b) f

∣∣
k
γ = f for all γ ∈ Γ, and

(c) the previous growth condition now holds for f
∣∣
k
γ for any γ ∈ SL2(Z).

Let Mk(Γ) denote the C-vector space of weight k modular forms on Γ. If Γ = Γ0(N), we
usually just write Mk(N) etc.

The last condition is a generalization of holomorphic at∞. It is more complicated because
there is more than one way to go to infinity, and by requiring the growth condition to hold
for f

∣∣
k
γ for all γ ∈ SL2(Z), we are holomorphic at infinity for all possible cases. We will say

more about this about this later.
Let Mk(Γ) be the space of modular forms on Γ. As before this is a finite-dimensional

complex vector space, and there is a distinguished subspace Sk(Γ) of cuspforms. Just like the
case of full level, f is a cuspform if f

∣∣
k
γ decays rapidly to zero as Im z goes to infinity, where

γ varies over all of SL2(Z). The Petersson product makes sense (just use the same definition
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but integrate over a fundamental domain for Γ), and the complement of the cuspforms in
Mk(Γ) is the subspace of Eisenstein series Eisk(Γ). We have

Mk(Γ) = Sk(Γ)⊕ Eisk(Γ),

an orthogonal decomposition with respect to the Petersson inner product.
So far everything looks the same, but there are some differences. First of all, in general

there are Eisenstein series of weight 2. Secone, unlike the case of full level, it is not true
in general that M∗(Γ) is a polynomial ring over a fixed set of Eisenstein series. In fact,
the Eisenstein series usually aren’t sufficient to generate M∗(Γ) as a graded ring; some
cuspforms must be taken too. And once one has a set of generators, there are usually
nontrivial relations among them. However, it is still true that the ring of modular forms is
always finitely presented, just like the case of full level.

There is a close connection between the groups Γ0(N) and Γ1(N), and in fact one can
investigate modular forms on Γ1(N) by enlarging the scope of objects considered on Γ0(N).
Let χ : Z → C be a Dirichlet character of level N . This means χ(n + N) = χ(n); χ(n) = 0
if and only if (n,N) > 1; and χ(mn) = χ(m)χ(n). Thus χ induces a map

χ : Z/NZ→ C

that is nonzero exactly on (Z/NZ)×, and when nonzero takes values in the roots of unity.
We have

(8) Γ0(N)/Γ1(N) ' (Z/NZ)×

by [
a b
c d

]
7−→ d mod N.

Hence we can understand modularity with respect to Γ1(N) by incorporating a character χ

into the action of Γ0(N). More precisely, for γ =

[
a b
c d

]
∈ Γ0(N), put

(f
∣∣
k,χ
γ)(z) = χ(d)(cz + d)−kf(γz).

We can define the space Mk(N,χ) by replacing the condition f
∣∣
k
γ = f with f

∣∣
k,χ

= f . This

leads to the vector space Mk(N,χ), which is called the space of weight k modular forms of
level N and nebentype χ. By (8) we have

Mk(Γ1(N)) '
⊕
χ

Mk(N,χ).

1.17. Hecke operators. The space of modular forms Mk admits a huge collection of com-
muting linear operators, the Hecke operators. Moreover, they are Hermitian with respect
to the natural inner product on Mk. Thus we can look for simultaneous eigenclasses. It is
these eigenclasses and their eigenvalues that reveal the hidden arithmetic information in the
modular forms. They are crucial for arithmetic applications, and motivate the main goal of
our lectures: how to effectively compute spaces of modular forms and the Hecke action on
them.
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For now, we just define the Hecke operators; later we will see how to compute them. Let
n be a fixed positive integer. Define a subset Xn ⊂M2(Z) by

Xn =

{[
a b
0 d

]
: a ≥ 1, ad = n, 0 ≤ b < d

}
.

Extend the slash action on functions f : H→ C from matrices in SL2(Z) to GL2(Q) via

(f
∣∣
k
γ)(z) = (det(γ))k−1(cz + d)−kf(γz).

Now we can apply the elements of Xn to modular forms. Suppose f is a weight k modular
form of full level. Then the action of the Hecke operator Tn on f is defined by

(Tnf)(z) :=
∑
γ∈Xn

(f
∣∣
k
γ)(z).

Note that to be pedantic, we really should write fTn (i.e. the Hecke operator should act
on modular forms on the right, since the matrices in Xn are acting by the slash operator,
which is a right action). But as we said, one knows that the Hecke operators commute with
each other. Thus it doesn’t matter whether we write the operators acting on the right or
left.

Why is this an action, and why are these interesting operators? Certainly, if you’ve never
seen it before, it’s not clear why this is an action. The main thing to check is that if f is
modular, so is Tnf . The point is that the set Xn is in bijection with a certain subset of
lattices. Namely, we have

Xn ⇐⇒ {L ⊂ Z2 : [Z2 : L] = n},

i.e., Xn is in bijection the set of sublattices of Z2 of index n. The bijection itself is easy to
describe: any such lattice has a basis of the form ae1 + be2, de2, where Z2 = Ze1 ⊕ Ze2.

1.18. Exercise. Draw examples of these sublattices for some small values of n.

Now an alternative perspective on modular forms describes them as certain functions on
lattices in C: to any weight k modular form f we can attach a function F = Ff , where

F : {lattices in C} −→ C

satisfies the homogenity condition

F (λL) = λ−kF (L), for all λ ∈ C×.

For more discussion, see [17, VII.2.2].2 So from this perspective, the effect of the Hecke
operator Tn is to define a new function TnF that averages F over the index n sublattices
of its input [17, VII.5.1]. This is certainly a very natural operation on functions defined on
lattices, although why this reveals the arithmetic information hidden in Mk is less obvious.

The operators satisfy

TnTm = Tnm if (n,m) = 1, and(9)

Tpn = Tpn−1Tp − pk−1Tpn−2 for p prime.(10)

2You should read this book anyway, if you’re interested in number theory. It’s one of the greats.
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These identities follow from the description of Xn in terms of sublattices. We can compute
the operators directly on q-expansions. If f(q) =

∑
anq

n, then

(11) (Tnf)(q) =
∑
m∈Z

( ∑
d≥1

d|(m,n)

dk−1amn/d2

)
qm.

In particular, for p prime (11) becomes

(12) (Tpf)(q) =
∑
m≥0

(amp + pk−1am/p)q
m.

These formulas give an algorithm to compute Hecke operators, although not a very good
one: simply compute q-expansions of a basis of Mk as far as one needs, using (4) and the
q-expansions of the Eisenstein series, then apply (11) and find the action of Tp in terms of
the basis. (What makes this algorithm not great is that computing the coefficient of qm

in Tpf needs the coefficient amp.) In any case, we see that if f is an eigenform, and if we
normalize so that a1 = 1, then the Fourier coefficient an is the eigenvalue of Tn, and from
(9)–(10) the Fourier coefficients satisfy

anam = anm if (n,m) = 1, and(13)

apn = apn−1ap − pk−1apn−2 for p prime.(14)

We can also define Hecke operators for modular forms with level structure N , but we must

be careful if (n,N) 6= 1. For Tp, if p | N then we only use the elements

[
1 a
0 p

]
∈ Xp, in other

words we omit

[
p 0
0 1

]
. The resulting operator is usually denoted Up.

Now that we have level structure and Hecke operators, we can give an example to show
how the operators reveal the arithmetic information hidden in the modular forms. Let E/Q
be an elliptic curve. Concretely, we can consider E to be a nonsingular plane curve defined
by the equation

(15) y2 + a1xy + a3 = x3 + a2x
2 + a4 + a6, ai ∈ Z,

although in doing so we are missing one point (the point at infinity, which serves as the
identity element for the group law on E). The equation (15) can be reduced modulo any
prime p since the ai are integral, and one knows that for almost all p the resulting curve
E(Fp) is nonsingular. Using the finitely many p for which E(Fp) is singular one can define
the conductor of E; it is an integer NE such that E/Fp is nonsingular if and only if p - NE.
In general NE is not squarefree, but there is an explicit algorithm to determine it.

Now we want to attach a Dirichlet series to E. Define a sequence {an} ⊂ Z as follows. If
p - NE, put ap(E) = p + 1−#E(Fp) (this enumeration of points on E mod p also includes
the point at infinity). If p | NE, then one puts ap(E) ∈ {0,±1} depending on the singularity
E acquires mod p. There are two possibilities: E has a cusp or a node mod p. If E has
a cusp mod p we put ap(E) = 0. If E(Fp) has a node mod p, then there are two further
possibilities, depending on the structure of the tangents to the node. We put ap(E) = 1
(respectively, −1) if the slopes of the two tangents to the node lie in Fp (respectively, lie in
Fp2 r Fp.)
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Thus we have a collection of integers ap(E) indexed by the primes p. We extend the
definition from the ap(E) to an(E) with n composite via an Euler product :

(16)
∑

an(E)n−s :=
∏
p-N

(1− ap(E)p−s + p1−2s)−1 ·
∏
p|N

(1− ap(E)p−s).

In particular, the numbers an(E) are computed by expanding the factors on the right of
(16) into geometric series, just as one does to go between the the Euler product for the
Riemann ζ-function and its Dirichlet series:

ζ(s) =
∑

n−s =
∏

(1− p−s)−1.

The Dirichlet series
L(E, s) =

∑
n>0

an(E)/ns

is called the L-function of the elliptic curve E. For instance, if E is defined by the equation
y2 + y = x3 − x, then NE = 37. A small table of the ap(E) is given in Table 2. We have

(17) L(E, s) = 1− 2/2s2− 3/3s + 2/4s − 2/5s + 6/6s − 1/7s + 6/9s + 4/10s − 5/11s

− 6/12s − 2/13s + 2/14s + · · ·+ 32/1024s + · · · − 1024/1048576s + · · ·
The coefficients a2, a3, and a5 are determined by counting points mod p, whereas a1 and a4

are determined using the Euler product (16).

p 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
ap(E) −2 −3 −2 −1 −5 −2 0 0 2 6 −4 −1 −9 2 −9

Table 2. Some ap(E) for the curve E : y2 + y = x3 − x.

1.19. Exercise. Verify Table 2. Do at least some by hand, including p = 37. Verify (17).

Now we have the following amazing theorem. I personally consider myself extremely lucky
to have been mathematically aware when this theorem was proved:

1.20. Theorem. Let E/Q be an elliptic curve of conductor NE and let fE =
∑
an(E)qn,

where the an(E) are defined as above. Then fE is the q-expansion of a Hecke eigenform in
S2(NE).

Why is this so amazing? First, it is a key part of the proof of Fermat’s last theorem.
Indeed, the motivating idea of the proof (due to G. Frey) was to use a purported solution
to the Fermat equation to make an elliptic curve over Q that couldn’t possibly satisfy the
conclusion of Theorem 1.20.3 Second, since the space S2(NE) is finite dimensional, it means
that the numbers ap must satisfy a lot of relations. Third, it means that the L-function
L(E, s) of the elliptic curve equals the L-function L(f, s) of the modular form.4 In particular
L(E, s) inherits all the nice analytic properties of L(f, s), such as analytic continuation to

3Run, don’t walk, and read [4] for a complete presentation of this amazing story (including an excellent
paper by D. Rohrlich about the basics of modular forms).

4This L-function is defined by the Dirichlet series
∑

n an(f)n−s, where the an(f) are the Fourier coef-
ficients from the q-expansion. If f is a Hecke eigenform, then L(f, s) also has an expression as an Euler
product a la (16), although in this case the ap(f) for p | N are the eigenvalues of the Up operators.
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all of C and a functional equation. Finally, although this may not be clear the first time
one comes across these objects, the L-functions L(E, s) and L(f, s) come from completely
different sources. The L-function of f is built from taking the Fourier coefficients of f and
using them in a Dirichlet series, so is fundamentally an analytic object. The L-function of E
is built from arithmetic data, namely counting the solutions to a equation mod p for different
primes p and then forming an Euler product. There is really no reason to expect that they
should have anything to do with each other. In this sense, the identity L(E, s) = L(f, s)
is an example of broad theme in modern number theory, which says roughly that “motivic
L-functions are automorphic L-functions.” There is certainly not the time to go into this
huge business here. For excellent survey articles we recommend [3,10,11]

Lecture 2. Modular symbols

2.1. Modular curves. Our ultimate goal is to explain how to compute with modular forms.
Now that we have defined modular forms, the first step is to learn more about the geometry
of modular curves, which are quotients of H by congruence subgroups. This will also help
us understand the statement of the growth conditions for modular forms on congruence
subgroups.

Let Γ ⊂ SL2(Z) be a congruence subgroup, that is a group containing Γ(N) for some N .
Then Γ\H is an open Riemann surface, in other words topologically is an orientable surface
of some genus with some punctures.

We can canonically compactify Γ ⊂ SL2(Z) by adding cusps. First define

H∗ = H ∪Q ∪ {∞} = H ∪ P1(Q),

where Q ⊂ R ⊂ C and {∞} is considered to be a single point infinitely far up the imaginary
axis.

We need to put a topology on H∗. We do this by first extending the action of SL2(Z) on
H to an action on H∗. There are two ways to think about this:

(1) We can act directly on P1(Q). For z ∈ Q ⊂ P1(Q), we put

z 7−→ az + b

cz + d
,

where we use the convention that z 7→ ∞ if z = −d/c. In other words, we act
directly on fractions where the “fraction” 1/0 is considered to be the point at infinity
in P1(Q).

(2) We can convert to integral vectors and then act: the fraction
m

n
, written in reduced

terms, is converted to the vector

[
m
n

]
∈ Z2, with ∞ corresponding to

[
1
0

]
. Then the

action of SL2(Z) is just by matrix multiplication:[
m
n

]
7−→

[
a b
c d

] [
m
n

]
.

Now we define a topology on H∗. For a basis of open sets of ∞ we take the sets

Bc := {z ∈ H : Im(z) > c}.
The SL2(Z)-translates are open disks tangent to the rational points of the real axis (cf. Fig-
ure 1). This gives a system of neighborhoods of ∂H∗ = H∗ \ H. This induces a topology
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γBc

Bc

a/b = γ(∞)

Figure 1. Open neighborhoods in the Satake topology on H.

called the Satake topology on Γ\H∗. With this topology, the quotient Γ\H∗ is now a compact
Riemann surface.

2.2. Definition. The Γ-orbits in P1(Q), and their images in the quotient Γ\H∗, are called
cusps.

Why are these points called cusps? The quotient Γ\H is more than just a topological
surface. It has an induced metric, since the standard hyperbolic metric on H is Γ-invariant.
The metric on Γ\H∗ degenerates to 0 as one approaches a cusp, and in fact the surface
appears metrically to be a sharp horn in a neighborhood of a cusp. In other words, a cusp
looks metrically like a cusp!

Now is also a good time to explain the connection between the cusps and the growth
condition for modular forms with level. As we said before, for a general finite-index subgroup
Γ of SL2(Z) there is more than one way to go to infinity on the quotient Γ\H. The different
ways correspond exactly (surprise) to the cusps, and our growth condition is effectively
ensuring that the image of f doesn’t blow up as one approaches a cusp on Γ\H∗. However,
there is a subtlety lurking here: since f is not invariant under the left action of Γ on H, f
does not induce a function on the quotient Γ\H. However, it is the section of a certain line
bundle on Γ\H, so the growth condition guarantees that this section extends over the cusps.

When Γ is one of our special congruence subgroups, we will use the following notation for
its quotients:

Γ Γ\H Γ\H∗

Γ(N) Y (N) X(N)
Γ0(N) Y0(N) X0(N)
Γ1(N) Y1(N) X1(N)

Here are some examples.

2.3. Example.

Y (1) ' P1 \ {pt}, X(1) ' P1,

so there is only one cusp. This is not hard to show directly: one checks that the group
SL2(Z) acts transitively on P1(Q).

2.4. Example.

Y (3) ' P1 \ {4 pts}, X(3) ' P1.

See Figure 2. Note that the four cusps correspond exactly to the four points of P1(F3).
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Figure 2. A fundamental domain for Γ(3) is outlined in red. The four cusps
are the three shown on the real axis and ∞. The edge identifications are the
obvious ones that yield X(3) ' P1.

2.5. Example.

Y (7) ' C3 \ {24 pts}, X(7) ' C3, (a surface of genus 3).

This time there are more cusps than points in P1(F7), which has order 6.

2.6. Example.

Y0(11) = C1 \ {2 pts}, X0(11) ' C1, (surface of genus 1).

2.7. Exercise. Verify all the above examples. Hint: For Γ(N), which is torsion-free, one can
take a fundamental domain in H that is a finite union of the basic ideal hyperbolic triangle
with vertices at 0, 1, and ∞, as in Figure 2. For Γ0(N), which can have torsion, one must
use copies of the standard fundamental domain for SL2(Z), which is the geodesic (partially
ideal) triangle with vertices∞, ρ, ρ2, where ρ = eπi/3. Figure 3 shows a fundamental domain
for Γ0(11) in H. The light green triangle in the middle has vertices ρ, ρ2, and 0.

Figure 3. A fundamental domain for Γ0(11) (created using a C program by H. Verrill)

2.8. Weight 2 modular symbols. Finally, we can start talking about modular symbols.
Let’s focus on weight 2 for now. Suppose f ∈ S2(Γ). Then f is not a function on XΓ, as
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we said before, but f dz is a holomorphic 1-form on XΓ. To see why, first look at how the
product f dz transforms under Γ:

f

(
az + b

cz + d

)
d

(
az + b

cz + d

)
= (cz + d)2f(z)

ad− bc
(cz + d)2

dz = f dz.

Thus the modularity of f implies that the differential form f dz is invariant under Γ. One
then needs to see that f dz is actually holomorphic on XΓ. This is a straightforward com-
putation in local coordinates; the only tricky parts are checking what happens at ramified
points of the map H∗ → XΓ. In particular, one can check that f dz is actually holomorphic
at the cusps, which means that any weight two cuspform determines a holomorphic 1-form
on XΓ.5 Conversely, any holomorphic 1-form on XΓ can be written as f(z)dz for f ∈ S2(Γ).
The theory of Riemann surfaces shows that dim(S2(Γ)) = g(XΓ), where g the genus of XΓ

as an orientable topological surface.
Now suppose that α and β are cusps that are equivalent mod Γ. We can use them to

construct a homology class: we take any reasonable oriented path between α and β on H,
say the geodesic directed from α to β, and then take the image mod Γ. Since α and β are
equivalent mod Γ, the image becomes a closed oriented 1-curve on XΓ, i.e. a 1-cycle. Thus
we get a class in H1(XΓ;Z). Let us denote this class by {α, β}. Note that this notation looks
a lot like the set {α, β}, but it’s not: it really represents an ordered pair, since if we change
the roles of α and β we reverse the orientation on the cycle and thus get the opposite class:
{β, α} = −{α, β}. This can be confusing, but the notation is traditional.

Now consider the pairing S2(Γ)×H1(XΓ;Z)→ C given by integration

(18) (f, {α, β}) 7−→ 2πi

∫ β

α

f(z) dz := 〈{α, β}, f〉.

This is independent of the path between α and β since f is holomorphic (essentially this boils
down to Cauchy’s theorem from complex analysis). Note also that f has to be a cuspform
for the integral make sense; if f is nonvanishing at the cusp, say when f is an Eisenstein
series, the integral diverges.

We can extend (18) from integral homology to real homology to get a pairing

S2(Γ)×H1(XΓ;R)→ C.
This is done in the obvious way. First choose an integral basis of H1(XΓ;Z). Any class in
H1(XΓ;R) can be written as a linear combination of this basis with real coefficients, so we
can extend the pairing using linearity.

Now recall that
dimC(S2(Γ)) = g,

from our discussion about weight 2 cuspforms and holomorphic 1-forms. Thus as a real
vector space, we have

dimR(S2(Γ)) = 2g,

which is the same as dimR(H1(XΓ;R)). This is not a coincidence:

2.9. Claim. The pairing S2(Γ)×H1(XΓ;R) → C is perfect, and identifies the dual S2(Γ)∨

of S2(Γ) with H1(XΓ;R).

5It is important to take f to be a cuspform here. In fact, the (omitted) computation in local coordinates
shows that if f is nonzero at a cusp, then the differential form f dz will have a pole of order 1 there. This is
caused by the effect of the nontrivial stabilizer of a cusp in Γ on the local coordinates. See Milne for details.
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In fact, the truth of this claim has nothing to do with modular forms. It’s really a
combination of Poincaré duality and the Hodge theorem. There is a slight subtlety in that
the differentiable structure of XΓ is more complicated at some points, namely those whose
preimages in H∗ have nontrivial stabilizers, but nevertheless everything works out.

Now we want to extend the notation {α, β} to include cusps that aren’t necessarily equiv-
alent mod Γ. This is done by integration: we can still integrate f along the geodesic from α
to β, which produces a number. Thus these two cusps determine a linear form on S2(Γ), and
so define an element of S2(Γ)∨ = H1(XΓ;R). Thus again {α, β} gives a class in H1(XΓ;R).

2.10. Definition. The modular symbol attached to the pair of cusps α, β is the real homology
class {α, β} ∈ H1(XΓ;R).

Here are some basic properties of modular symbols:

(1) {α, β} = −{β, α} (2-term relation)
(2) {α, β} = {α, γ}+ {γ, β} (3-term relation)
(3) {gα, gβ} = {α, β} for all g ∈ Γ (Γ-action)
(4) {α, gα} ∈ H1(XΓ;Z)
(5) {α, gα} = {β, gβ}

These are all easy to verify. The 2-term relation just says that reversing the limits of
integration introduces a minus sign. The 3-term relation says that we can divide an integral
into two integrals by introducing a common new endpoint. Perhaps the last is the most
complicated. It can be proved by considering the square in Figure 4.

gββ gβ

α gα

Figure 4. {α, gα} = {β, gβ}

Properties (4) and (5) imply that we have constructed a map

Γ −→ H1(XΓ;Z)

g 7−→ {α, gα}
that is independent of α.

By the way, our construction of modular symbols means that all we can say a priori is
that {α, β} ∈ H1(XΓ;R), i.e. {α, β} is a real homology class. However, the theorem of
Manin–Drinfeld tells us that this class often lies in the rational homology H1(XΓ;Q) =
H1(XΓ;Z)⊗Q:

2.11. Theorem (Manin–Drinfeld). If Γ is a congruence subgroup, and α, β are cusps of Γ,
then {α, β} ∈ H1(XΓ;Q).

Why is this important? I.e., why should it matter whether a homology class lives in
the real homology or the rational homology? The point is, this theorem has arithmetic
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consequences. For instance, suppose f has q-expansion
∑
anq

n. We can make an L-function
from f as in the previous section using the Dirichlet series built from the an:

L(f, s) =
∑

an/n
s.

(The discussion before might lead one to believe that the an need to be Hecke eigenvalues,
since there we were connecting modular forms to elliptic curves. But this is not true.) We
can make a more direct connection between f and its L-function using the Mellin transform
of f . We have

(19) L(f, s) =
(2π)s

Γ(s)

∫ i∞

0

(−iz)sf(z)
dz

z
.

Now the L-function of a modular form satisfies many properties, the most important of
which is the existence of a functional equation taking s into 2−s (the 2 comes from f having
weight 2). The central point s = 1 is especially important for many applications; for example,
the Birch–Swinnerton-Dyer conjecture predicts that all the key arithmetic invariants of an
elliptic curve E/Q are contained in the special value L(E, 1) = L(fE, 1), where fE is the
modular form attached to E in Theorem 1.20. Evaluating (19) at s = 1, we have

L(f, 1) = −2πi

∫ i∞

0

f(z) dz = −〈{0,∞}, f〉.

Thus the fact that the modular symbol {0,∞} is a rational homology class means that
the special value L(f, 1) is a rational multiple of a period of f . In other words, the Manin–
Drinfeld theorem implies that the quantity L(f, 1), which is a priori an extremely complicated
transcendental number, actually lives in the rational span of certain other numbers, still
transcendental to be sure, but nevertheless more tractable.

Let’s go back to the general discussion. At this point we’ve written almost all the relations
needed to reconstruct H1 from our symbols. Specifically, let M2(Γ) denote the Q-vector
space generated by the {α, β}, modulo the 2-term and 3-term relations and Γ-action. Then
we have the following result of Manin relating modular symbols to a relative homology group.
Such groups can be unfamiliar to some, so we take a moment to recall them. Suppose X is
a space with a nice subspace Y . We have the chain complexes C∗(X), C∗(Y ) that can be
used to compute their homology. We have an inclusion C∗(Y ) → C∗(X) and can form the
quotient chain complex C∗(X)/C∗(Y ). Then the relative homology of the pair (X, Y ) is the
homology of this complex. We denote relative homology by H∗(X, Y ;Z). Intuitively, the
difference between H∗(X) and H∗(X, Y ) is that in the latter, we consider a chain to be a
cycle not only if its boundary vanishes, but also if its boundary lies in C∗(Y ). Now we can
state Manin’s key theorem:

2.12. Theorem (Manin). We have

M2(Γ)
∼−−→ H1(XΓ, ∂XΓ;Q).

For example, recall that the modular curve X0(11) has genus 1 and has 2 cusps. Thus
X0(11) is topologically a torus, and as one learns in topology class the usual homology group
H1(X0(11);Q) has dimension 2. We claim the relative homology H1(X0(11), ∂X0(11);Q) is
3-dimensional. Indeed, we still have the two closed 1-cycles giving our 2 dimensions from
before, and now there is an additional class, which can be represented by a path from one
cusp to the other.
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The spaceM2(Γ) is a good start, but we are primarily interested in part of the homology
relevant for studying the cusp forms, in other words H1(XΓ;Q). But it is easy to identify the
subspace of M2(Γ) mapping onto the usual homology. From our example above, it’s clear
that we don’t want relative classes that have boundary in the cusps. Instead we want those
relative classes with vanishing boundary at the cusps. Formally, let B2(Γ) be the Q-vector
space generated by the cusps of XΓ, equipped with the obvious Γ-action. Define

∂ : M2(Γ) −→ B2(Γ),

by
{α, β} 7−→ β − α.

A moments thought shows that this definition makes sense (the point is one has to think
about the relations defining M2(Γ) and make sure that the map is well-defined modulo
them.) Put S2(Γ) = ker(∂). It is clear that this is the subspace we want. Classes in S2(Γ)
are called cuspidal modular symbols. Manin proved that cuspidal modular symbols exactly
capture the homology of XΓ:

2.13. Theorem (Manin). We have an isomorphism

(20) S2(Γ)
∼−−→ H1(XΓ;Q).

After tensoring with R, it follows from (20) that we have an isomorphism

(21) S2(Γ)⊗ R ∼−−→ S2(Γ)∨,

and thus have a topological model of the vector space of cuspforms.

2.14. Hecke operators and unimodular symbols. At this point we have found a way
to connect the topology of the modular curve XΓ to weight 2 modular forms on Γ. This is
great but isn’t good enough for number theory. The point is, we have Hecke operators acting
on modular forms, and unless we can incorporate them into our model, it doesn’t do us much
good. But amazingly, the pairing between cuspforms and cycles, and the identification (21),
are compatible with the Hecke action. Namely, there exists an action of the Hecke operators
directly on the modular symbols: given a symbol {α, β} and an n, we can define a new (sum
of) symbol(s) Tn{α, β}, and we have the fundamental relation

(22) 〈Tn{α, β}, f〉 = 〈{α, β}, Tnf〉.
Furthermore, the action on symbols is simple to describe. We can use the matrices Xn

from before that we used to define the Hecke action on modular forms. Let’s take the set
Xp, where p is a prime not dividing the level.6 Then we define

(23) Tp{α, β} =
∑
g∈Xp

{gα, gβ}.

The same conditions on Xp that guarantee that the Hecke image of a modular form is
modular also guarantee that the right of (23) is a well-defined modular symbol. The relation
(22) imples that if we can find eigenclasses and eigenvalues in S2(Γ), then we can recover
eigenclasses and eigenvalues in S2(Γ). This is great news, but unfortunately there’s a catch:
in its present form, our model for S2(Γ) is not computable. The problem is that the current

6If Γ = Γ0(N) or Γ1(N), then we just mean p - N . For a general congruence subgroup Γ, we can just fix
N minimal such that Γ(N) ⊂ Γ, and then our discussion applies to p - N .
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definitions give infinite presentations of M2(Γ) and S2(Γ) (as spaces spanned by infinitely
many symbols divided by infinitely many relations).

To address this, we want to identify a finite generating set of M2(Γ). To this end, we
introduce unimodular symbols. These are the symbols given by the pairs of cusps corre-
sponding to the edges of the Farey tessellation of H (Figure 5). To make this picture, take
the ideal triangle in H with vertices at the cusps {0, 1,∞}. Then the SL2(Z)-translates of
this triangle fill out all of H. The edges are the SL2(Z)-translates of the geodesic connecting
0 to ∞.

Figure 5. Farey tessellation of H. The edges are the SL2(Z)-translates of the
geodesic from 0 to ∞.

Since Γ has finite-index in SL2(Z), there are only finitely many unimodular symbols mod
Γ. Thus the unimodular symbols yield a computable version of S2(Γ), at least potentially:
we of course need to know that S2(Γ) is spanned by them, and that all the relations needed to
cut out S2(Γ) can be written using unimodular symbols (this is actually a separate question).
We also have the problem that the Hecke operators can’t possibly preserve unimodularity.
This is clear from the definition (23); in general a symbol of the form {g · 0, g · ∞} won’t
correspond to an edge of the tessellation.

We solve these difficulties in one stroke.

2.15. Theorem (Manin’s trick, a.k.a. the modular symbol algorithm). For cusps α and β,
we have the relation

{α, β} =
∑
{αi, βi},

where each term is unimodular.

Proof. Without loss of generality, assume

{α, β} =

{
0,
p

q

}
.

Make simple continued fraction for p/q:

p

q
= a1 +

1

a2 +
1

a3 +
1

. . .
1

ar

= Ja1, a2, . . . , arK.

We get convergents
pk
qk

:= Ja1, a2, . . . , akK.
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Then {pk/qk, pk+1/qk+1} is unimodular, and our desired relation is{
0,
p

q

}
= {0,∞}+

{
∞, p1

q1

}
+

{
p1

q1

,
p2

q2

}
+ · · ·+

{
pr−1

qr−1

,
pr
qr

}
.

�

2.16. Example. Let’s express {0, 71/31} as a sum of unimodular symbols. We have

71

31
= J2, 3, 2, 4K.

Then the convergents are

J2K = 2, J2, 3K =
7

3
, and J2, 3, 2K =

16

7
.

Thus {
0,

71

31

}
= {0,∞}+ {∞, 2}+

{
2,

7

3

}
+

{
7

3
,
16

7

}
+

{
16

7
,
71

31

}
.

2.17. M-symbols. At this point we have

• a finite, computable model of M2(Γ) and S2(Γ),
• an algorithm for to compute Hecke operators.

To go further, we specialize to Γ = Γ0(N) (actually just Γ0(p) right now). We also
introduce another trick that’s even faster than the modular symbol algorithm for Hecke
operator computations.

2.18. Proposition. We have a bijection

Γ\ SL2(Z)
∼−−→ P1(Fp)

given by the bottom row map

Γ

[
a b
c d

]
7−→ (c : d).

Proof. The group SL2(Z) acts transitively on P1(Fp), and the stabilizer of (0 : 1) is Γ. �

Thus we can identify cosets in Γ\ SL2(Z) with P1(Fp). This implies unimodular symbols
mod Γ are in bijection with P1(Fp).

What about the relations? We need 2-term and 3-term relations. Let S =

[
0 1
−1 0

]
, and

let R =

[
0 1
−1 1

]
.

2.19. Claim. The relations are those of the form

(c : d) + (c : d)S = 0(24)

(c : d) + (c : d)R + (c : d)R2 = 0.(25)

We have (24) from the orientation reversing identity (2-term relation). We have (25)
because the boundary of a triangle is zero (3-term relation). Why? Lift (c : d) to a matrix in
SL±2 (Z) to get a unimodular symbol. Then (24) visibly flips the orientation, and (25) finds
one of the two Farey triangles with this as an edge (we get the other for another choice of
lift). Note we use the ± here because the determinant of a Farey edge is either ±1.
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Computing, we get

(c : d) + (−d : c)0(26)

(c : d) + (−d : c+ d) + (−c− d : c) = 0.(27)

2.20. Theorem (M -symbols). The Q-vector space generated by P1(Fp) modulo (26) and
(27) is isomorphic to M2(Γ0(p)).

2.21. An example. It’s time to actually compute something. Let’s take p = 11 and figure
out what’s happening. The finite projective space P1(F11) has 12 = 11 + 1 points. We take

(0 : 1), (1 : 0), (1 : 1), (1 : 2), . . . , (1 : A)

as representatives, and because we’re lazy we abbreviate (c : d) to cd. What are the relations?
We start with a 12-dimensional Q-vector space. The 2-term relation gives

10 = −01 13 = −17

11 = −1A 14 = −18

12 = −15 16 = −19.

This cuts us down to a 6-dimensional space. The 3-term relation gives

10 + 01 + 1A = 0 12 + 14 + 17 = 0

11 + 19 + 15 = 0 13 + 16 + 18 = 0

which implies

10 + 01− 11 = 0 12 + 14− 13 = 0

11− 16− 12 = 0 13 + 16− 14 = 0.

Combining these with the 2-term relations cuts the space down to a 3-dimensional space.
Namely, we can write everything in terms of 10, 12, and 14. Note that the modular symbol
10 gives a path on X0(11) connecting the two cusps, and is an example of a relative class
that is truly relative (i.e. doesn’t give a cycle unless one is allowed to have boundary in the
cusps).

Now we want to compute the Hecke operators on the modular symbols and get our hands
on the Hecke eigenvalues. There are two ways to proceed. The first one is obvious: one
can simply lift M -symbols to modular symbols, and use the modular symbol algorithm.
Indeed, an M -symbol (c : d) can be enlarged to a matrix γ in SL2(Z) with bottom row
c, d, by undoing the bottom-row map from Proposition 2.18. Then the columns of γ can be
interpreted as cusps α, β, and thus as a modular symbol {α, β}. We can then use Manin’s
trick (Theorem 2.15) to work with the Hecke images of these modular symbols, and at the
end can convert back to our chosen basis of M -symbols.

The second way is to work directly with M -symbols. In fact, in a sense one can precompute
exactly what happens after one follows the technique above. In other words, one can write
down the unimodular output of Manin’s trick in a simple way, without explicitly computing
the continued fractions.

2.22. Definition. Let Yn be the set of integral matrices

Yn =

{
g =

[
a b
c d

]
: det(g) = n, a > b ≥ 0, d > c ≥ 0

}
.
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Note that #Yn is finite. These matrices, called by Mazur a set of Heilbronn matrices,
satisfy the following amazing property, whose proof we omit. For details, we refer to [6,
§II.2.4].

2.23. Claim. If ` 6= p is prime, then

T` =
∑
g∈Y`

(c : d)g.

2.24. Example. Let’s compute the Hecke operator T2 on M2(11). We have

Y2 =

{[
2 0
0 1

]
,

[
2 1
0 1

]
,

[
1 0
0 2

]
,

[
1 0
1 2

]}
.

Thus

(1 : 0)T2 = 10 + 10 + 10 + 16

= 3 · 10− 12

(1 : 2)T2 = 14 + 15 + 11 + 17

= 14− 12− 12− 14

= −2 · 12

(1 : 4)T2 = 18 + 16 + 12 + 18

= −14− 12 + 12− 14

= −2 · 14.

Therefore the matrix of T2 (with respect to the ordering 10, 12, 14) is

T2 =

 3 0 0
−1 −2 0
0 0 −2

 .
The eigenvalues are 3, −2, −2. This is exactly what we expect. Indeed, it is known that up
to isomorphism there are three distinct elliptic curves over Q of conductor 11. Although they
are not isomorphic, they are in fact isogenous ;7 this (weaker) equivalence relation implies
that the L-functions of any of them are equal. From [6, page 110], or from the LMFDB8 [15]
we get an equation for one of these curves:

E : y2 + y = x3 − x2 − 10x− 20.

One can check, either by enumerating points, or by looking at [6, 15] that for E one has
a2 = −2. (Recall that ap := p+ 1−#E(Fp).) Why does this eigenvalue appear twice? The
reason is that the cohomology of the the modular curve H1(XΓ,C) is not quite the same as
S2(Γ), but instead we have

H1(XΓ,C) ' S2(Γ)⊕ S2(Γ),

where the bar denotes complex conjugation Thus we see the eigenvalue for a rational cuspform
twice. What about the other eigenvalue 3? This eigenvalue comes from the Eisenstein series.

7Two elliptic curves E1, E2 over a field K are isogenous if there exists a nonconstant morphism f : E1 → E2

defined over K that takes the identity (in the group law) of one into the other.
8The L-functions and modular forms database. This is an excellent resource for learning about many

aspects of automorphic forms and their relationship to arithmetic geometry.
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Indeed, we expect the eigenvalue `+ 1 for the operator T`. One can continue and find other
Hecke eigenvalues.

2.25. Exercise. (1) Check by hand that the matrix of T3 is

T3 =

 4 0 0
−1 −1 0
0 0 −1

 ,
and that this agrees with a3 for our elliptic curve defined above.

(2) Use a computer and your own program to check that the eigenvalues for the Hecke
operators T`, ` ≤ 97, ` 6= 11 agree with what you expect for the elliptic curve E.

2.26. Exercise. Consider the fundamental domain for Γ0(11) in Figure 3. Find all the
identifications needed to glue it up into the torus (if you didn’t do it already as part of
Exercise 2.7). What do the images of the modular symbols 12 and 14 look like when you draw
the corresponding geodesics on the torus? Do these classes generate the integral homology
of the torus?

2.27. Exercise. Use a computer to experiment with modular symbols and to do more
computations. You can use packages that compute modular symbols in SAGE, MAGMA,
and Pari, and/or you can do computer-assisted computations. The former means to use
built-in commands that build spaces of modular symbols and compute Hecke operators. The
latter means to work as much by hand as possible but to use the computer for especially
annoying subcomputations (like linear algebra, including finding characteristic polynomials).
I strongly encourage the latter approach to learn what’s going on. Verify more examples
of Theorem 1.20, e.g. Γ0(37) is interesting. Another interesting example is Γ0(23), which
contains the first newform defined over a quadratic extension of q.

What about nonprime levels? To generalize our constructions to Γ0(N) with N not nec-
essarily prime, we just have to understand how to represent the cosets Γ0(N)\Γ. One is
naturally led to the set P1(Z/NZ), the projective line mod N . By definition, this is the
collection of tuples (a, b) mod N with gcd(a, b,N) = 1, modulo the action of the group of
units (Z/NZ)×. As an example, for N = 4, one can show that representatives for the points
in P1(Z/4Z) we can take

{(1, 0), (0, 1), (1, 1), (1, 3), (1, 2), (2, 1)}.

2.28. Exercise. Verify the analogue of Proposition 2.18 for nonprime N .

Starting from this point, one proceeds as before, with the same relations.

2.29. Exercise. Compute some Hecke operators on the modular symbols for level 14. What
are the dimensions of M2(14) and S2(14)? How many isogeny classes of elliptic curves over
Q of conductor 14 are there? Search over equations and try to find a relevant elliptic curve
(hint: try to match as many ap(f) as you can).

Lecture 3. Higher weight

3.1. We now know how to use modular symbols and M -symbols to compute with weight
2 modular forms of any level. How do we deal with higher weight? It turns out that almost
all the same ideas work, with just a little more complexity: we need to replace the trivial
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coefficients C from before with something more complicated, namely a nontrivial system of
local coefficients.

Let X, Y be variables, and let Q[X, Y ]k−2 be the space of homogeneous polynomials in X
and Y of degree k−2. Recall thatM2 is our space of modular symbols {α, β} (the Q-vector
space on the symbols {α, β} modulo the 2-term and 3-term relations). We combineM2 with
Q[X, Y ]k−2 by defining

Mk := Q[X, Y ]k−2 ⊗QM2.

For this to make sense, we have to explain how the group acts on the coefficients. To ease
the notation, we omit the tensor product ⊗ and just write P ⊗ {α, β} as P{α, β}. Let

g =

[
a b
c d

]
∈ Γ. Then for P ∈ Q[X, Y ]k−2 and {α, β} ∈ M2, we have

(gP )(X, Y ) := P

(
g−1

[
X
Y

])
= P (dX − bY,−cX + aY ),

g{α, β} := {gα, gβ}.
We combine these to act on symbols:

g(P{α, β}) = gP{gα, gβ}.
We can now define higher weight modular symbols and cuspidal modular symbols just as

we did for weight 2. We just need to mod out by the relations imposed by the Γ-action:

3.2. Definition.
Mk(Γ) :=Mk/(P{α, β} − g(P{α, β}))

To get higher weight cuspidal symbols Sk(Γ), we take the kernel of a boundary map as we
did before. Let

B2 := Q-vector space on symbols {α} for α ∈ P1(Q),

Bk := Q[X, Y ]k−2 ⊗Q B2,

Bk(Γ) := Bk/(P{α} − gP{gα}).
The boundary map ∂ : Mk(Γ)→ B2(Γ) is given by

∂(P{α, β}) = P{β} − P{α}.
We define the weight k cuspidal modular symbols to be the kernel of this boundary map:

3.3. Definition.
Sk(Γ) := ker(∂).

3.4. Pairing. As before, we have a pairing of cuspforms and modular symbols. Let

Sk(Γ) := C-vector space of weight k holomorphic cuspforms

Sk(Γ) = C-vector space of weight k antiholomorphic cuspforms

= {f : f ∈ Sk(Γ)}.
The integration pairing is now

Sk(Γ)⊕ Sk(Γ)×Mk(Γ)→ C

〈(f1, f2), P{α, β}〉 =

∫ β

α

f1(z)P (z, 1) dz +

∫ β

α

f2(z)P (z, 1) dz.
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3.5. Theorem (Shokurov). The pairing

〈·, ·〉 : Sk(Γ)⊕ Sk(Γ)× Sk(Γ)⊗Q C→ C

is a nondegenerate pairing of C-vector spaces.

One application of the pairing is computing special values of L-functions at critical integers.
Let f be a weight k holomorphic cuspform. The L-function L(f, s) has functional equation
of shape s 7→ k − s. The integers j = 1, . . . , k − 1 are called critical [7]. They are analogues
of s = 1 in the weight 2 case.

We have

L(f, j) =
(−2πi)j

(j − 1)!
〈f,Xj−1Y k−2−(j−1){0,∞}〉.

3.6. M-symbols for Γ0(N). Now we specialize to Γ = Γ0(N) and work with M -symbols.
The construction is very similar to what we did before.

Recall that we have defined the mod N projective line P1(Z/NZ) to be the set of pairs
(c : d), where c, d are integers mod N satisfying gcd(c, d,N) = 1 and where (c : d) is the
equivalence class modulo the action of (Z/NZ)×. Instead of the rational numbers, we take
our coefficients to be homogeneous polynomials in two variables X, Y of degree k− 2. Thus
our M -symbols are linear combinations of symbols

P (c : d), P ∈ Q[X, Y ]k−2, (c : d) ∈ P1(Z/NZ).

We have a right action of SL2(Z) on such symbols by

(P (c : d))g = (g−1P )((c : d)g), g ∈ SL2(Z).

To finish the job, we need to impose the 2- and 3-term relations. In fact there is a further
relation we need to impose, since now the group SL2(Z) acts nontrivially on the coefficients
(we didn’t see this before for weight 2). Define three matrices by

S =

[
0 1
−1 0

]
, R =

[
0 1
−1 1

]
, and J =

[
−1 0
0 −1

]
.

3.7. Definition. The space Mk(N) of weight k M-symbols mod N is the Q-vector space
generated by x = X iY k−2−i(c : d) ∈ P1, modulo the relations

x+ xS = 0,

x+ xR + xR2 = 0,

x− xJ = 0,

for all x as above.

To compute Hecke operators, we just do what we did before. In particular, we use the Y`
matrices as in Claim 2.23 to compute the action of T`. However, one must beware that now
g also acts on the coefficients (the action was trivial before).

3.8. Exercise. Using modular symbols show that there is a Hecke eigenform of weight 4
and level 5 with q-expansion q − 4q2 + 2q3 + 8q4 − 5q5 − 8q6 + 6q7 − 23q9 +O(q10).



MODULAR SYMBOLS 25

Lecture 4. Further exercises

4.1. Exercise. This exercise covers some of the basics of the geometry of the upper-halfplane,
if you haven’t seen it before.

(1) Show that G = SL2(R) acts transitively on H via fractional linear transformations.
(2) Show that the stabilizer of i is isomorphic to K = SO(2). This means H ' G/K.
(3) Show that the G action on H is by isometries with respect to the hyperbolic metric

(dx2 + dy2)/y2.
(4) Compute the area of the fundamental domain for SL2(Z) with respect to the hyper-

bolic metric.

4.2. Exercise. Show that the principal congruence subgroup Γ(N) ⊂ SL2(Z) is torsion-free
if N ≥ 3. (Hint: the conjugates of the subgroups generated by the matrices S and R from
the text contain all the elements of finite order in SL2(Z). Look at traces.)

4.3. Exercise. To get a presentation for a group using a fundamental domain, one can use
the following theorem:

4.4. Theorem. Let Γ ⊂ SL2(R) be a discrete group acting properly discontinuously on H.
Let V ⊂ H be an open connected subset such that

H =
⋃
γ∈Γ

γV,

Σ = {γ | V ∩ γV 6= ∅} is finite.

Then a presentation for Γ can by constructed by taking generators to be symbols [γ] for γ ∈ Σ
subject to the relations [γ][γ′] = [γγ′] if V ∩ γV ∩ γ′V 6= ∅.

Use Theorem 4.4 to get a presentation of PSL2(Z) = SL2(Z)/{±I}. (Hint: take V to be
a slight “thickening” of the standard fundamental domain described in Exercise 2.7.)

4.5. Exercise. This problem explores some geometry similar to the modular group acting
on the upper-halfplane, and is relevant to studying other automorphic forms. Let H3 be
hyperbolic three-space. An “upper halfspace” model for H3 can by gotten by taking the
points (z, r) ∈ C×R>0 and using the metric ds2 = (dx2 + dy2 + dr2)/r2 (here we are writing
z = x+iy). We can also think of H3 as being the subset of quaternions H = {x+iy+rj+tk |
x, y, r, t ∈ R} with r > 0 and t = 0. Write P = P (z, r) for the quaternion corresponding to
(z, r) ∈ H3.

Let G = SL2(C). For M = ( a bc d ) ∈ G, define a transformation of H3 by

M · P = (aP + b)(cP + d)−1.

In this defintion the operations on the right are to be computed in H.

(1) Show that this is a left action of G on H3.
(2) Show that the action is transitive.
(3) Show that the stabilizer of (0, j) is isomorphic to

SU(2) = {M ∈ G |MM̄ t = I}.

4.6. Exercise. This exercise continues the study of hyperbolic 3-space and discrete group
actions.
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(1) Let Γ = SL2(Z[i]) ⊂ SL2(C). Then Γ acts on H3. Show that the set

D = {(x+ iy, r) ∈ H3 | 0 ≤ |x|, y ≤ 1/2, x2 + y2 + r2 ≥ 1}

is a fundamental domain for the action of Γ on H3. (Hint: consider using the matrices
S = ( 0 1

−1 0 ) and matrices of the form ( 1 a+bi
0 1 ) to move points in H3 around. Look at

the proof for a fundamental domain for SL2(Z) acting on H (in say, Serre, or lots of
other places) to get a feel for what to do.)

(2) If you try to construct a fundamental domain of Γ′ = SL2(Z[
√
−5]) using something

like the above, it doesn’t work. What goes wrong? (This is related to the nontrivial
class number of this ring.)

4.7. Exercise. This exercise continues the study of hyperbolic 3-space. Let D be the
fundamental domain of Γ = SL2(Z[i]) from Exercise 4.6.

(1) The domain D has a cellular structure. Find the subgroups of Γ that stabilize the
different cells on the boundary.

(2) The groups you just computed are the analogues of the subgroups of SL2(Z) that
give rise to the 2- and 3-term relations used in defining the space of M -symbols.
Define M -symbols for SL2(Z[i]) and do some computations with them (including
computing Hecke eigenvalues). This was done by Cremona in his thesis; the results
were published in [5]. You can look there if you get stuck or want some pointers.
Yasaki has implemented these symbols in MAGMA, so you can easily play with them.

4.8. Exercise. Let θ(z) be the classical theta function

θ(z) =
∑
n∈Z

qn
2

.

(1) Show that θ(z)m = 1 +
∑

k≥1 ρm(k)qk, where ρm(k) is the number of ways of repre-
senting k as a sum of m squares.

(2) One can show that θ(z)4 is a modular form of weight 2 for the group Γ0(4). Further-
more, one knows that the space M2(Γ0(4)) is spanned by the two weight two Eisen-
stein series E2(z)−2E2(2z) and E2(z)−4E2(4z), where E2(z) = 1−24

∑
n≥1 σ1(n)qn.

(In particular these combinations of E2 are actually modular.) Write θ(z)4 in terms
of these Eisenstein series.

(3) Use part (b) to prove a famous formula of Jacobi:

ρ4(n) = 8
∑
d|n

d6≡0 mod 4

d.

(4) Deduce Lagrange’s theorem: every positive integer can be written as a sum of four
squares.

4.9. Exercise. The notation for this problem is taken from Exercise 4.8. This time we
consider θ(z)8 ∈M4(Γ0(4)). This space of modular forms is spanned by E4(az) for a = 1, 2, 4.
Prove

ρ8(n) = 16
∑
d|n

d6≡2 mod 4

d3 + 12
∑
d|n

d≡2 mod 4

d3.
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4.10. Exercise. Suppose Q : Zk → Z is a positive-definite quadratic form, where k is even.
Then the theta series ΘQ(q) =

∑
x∈Zk qQ(x) is known to be a modular form of weight k/2 of

some level and some nebentype. (For the case Q is even unimodular, this modular form has
full level and trivial nebentype). This exercise explores how to pin down this modular form.

Let us write Q using an integral k × k matrix C = (Cij) so that Q(x) = xtCx (here we
view x ∈ Zr as a column vector). Let A be the matrix C + Ct. Thus A is integral, even
(Aii ∈ 2Z) and symmetric (Aij = Aji). Furthermore Q(x) = 1

2
xtAx. The level N of Q is the

smallest integer N such that A∗ = NA−1 is again even.

• Check that N | detA and detA | Nk.

The discriminant D of Q is (−1)k/2 detA.

• Check that D is congruent to 0 or 1 mod 4.

Then one can show that ΘQ is a modular form of weight k/2, level N , and nebentype χD,
where χD is the quadratic character (D• )

• Compute the level and nebentype for the classical theta function from Exercises 4.8
and 4.9.
• Compute the level and nebentype for the modular forms for some interesting qua-

dratic forms. You can take lattices from the LMFDB [15] look at their associated
quadratic forms.
• Use modular form data from the LMFDB to find relations between your theta series

and other modular forms. Compute interesting representation numbers for your
quadratic forms in terms of divisor sums and other data.

4.11. Exercise. Let f(z) be the eta-product (η(z)η(11z))2, where η is the Dedekind eta-
function (see Example 1.9 for the product formula for η).

(1) Compute the q-expansion of f up to q100.
(2) Verify that the coefficients of this q-expansion agree with the a(n)(E) data produced

by the elliptic curve y2 +y = x3−x2−10x−20 of conductor 11 up to q100. (Thus this
eta-product gives a compact way to write down this modular form. Most modular
forms, unfortunately, have no such product expansion.)

4.12. Exercise. This exercise explores another geometric aspect of the Hecke operators,
namely their connection with (affine) buildings. Fix an integer q. Let T be the infinite tree
of degree q + 1. Thus T is a graph with infinitely many vertices and no cycles; each vertex
of T is joined to q + 1 others. Define the distance d(v, v′) between two vertices v, v′ to be
the length of the shortest path connecting them, where each edge is defined to have length
1. Finally define two sequences of correspondences θk, Tk, k ≥ 0 on the set of vertices of T
by

θk(v) =
∑

d(v,v′)=k

v′

and
Tk = θk + Tk−2 (k ≥ 2),

with the initial conditions T0 = θ0, T1 = θ1.

(1) Show that the θk satisfy

θ1θ1 = θ2 + (q + 1)θ0,

θ1θk = θk+1 + qθk−1 (k ≥ 2).
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(2) Show that the Tk satisfy

TkT1 = Tk+1 + qTk−1 (k ≥ 1).

(3) Explain what this has to do with Hecke operators. Hint: let q = p, a prime. Fix a
lattice L0 ⊂ R2 (say L0 = Z2). Let L be the set of all sub and superlattices of L0

such that [L : L0] = pk, k ∈ Z. Define an equivalence relation on L by L ∼ pkL for
any k ∈ Z. Let [L] denote the class of a lattice. Then there is a bijection between
lattice classes and the vertices of T . The edges correspond to chains of the form
L ( L′ ( pL. where [L′ : L] = p.

4.13. Exercise. This exercise and the following ones explore the analogue of modular sym-
bols method for SL3(Z). The original results are due to Ash–Grayson–Green [2] and Ash–
Rudolph [1]. For more details one should refer to these papers.9

Fix a prime p and let Γ0(p) ⊂ SL3(Z) be the subgroup of matrices (aij) with ai1 = 0 mod p
for i = 2, 3. Just as H1 of the modular curve provides a geometric incarnation of the
holomorphic modular forms, we can use cohomology to give a geometric incarnation of
certain automorphic forms for SL3. We replace the upper-halfplane with the symmetric
space X = SO(3)\ SL3(R) and the modular curve with the quotient X0(p) := X/Γ0(p). The
relevant cohomology group is H3(X0(p);C).

Ash–Grayson–Green proved that the subspace H3
cusp(X0(p);C) ⊂ H3(X0(p);C) of coho-

mology corresponding to cuspidal automorphic forms is isomorphic to the space of functions
W (p) = {f : P2(Fp)→ C} satisfying the following relations:

(1) f(x, y, z) = f(z, x, y) = f(−x, y, z) = −f(y, x, z)
(2) f(x, y, z) + f(−y, x− y, z) + f(y − x,−x, z) = 0
(3) f(x, y, 0) = 0
(4)

∑
z∈Z/pZ f(x, y, z) = 0.

(Beware: we are using a “first-column” map to identify SL3(Z)/Γ0(p) with P2(Fp). The
argument of f is to be interpreted as homogenous coordinates.) Implement this space and
compute the dimension for some primes p. You will find p = 53 especially interesting.

4.14. Exercise. This exercise introduces higher-dimensional modular symbols. The basic
reference is [1]. (We have swapped rows and columns in our description to be compatible
with [2].)

Let A be a matrix in Mn(Q). Regard A as a collection of rational row vectors A =
(v1, . . . , vn). Let M be the Q-vector space generated by symbols [A] modulo the following
relations:

(1) [v1, . . . , vn] = (−1)|σ|[vσ(1), . . . , vσ(n)] where σ is a permutation and |σ| denotes its
parity.

(2) [A] = 0 unless the vi span Qn.
(3) [qv1, v2, . . . , vn] = [v1, . . . , vn] for q ∈ Q×.
(4) If all v1, . . . , vn+1 are nonzero, then

∑
i(−1)i[v1, . . . , v̂i, . . . , vn+1] = 0, where the hat

means omit vi.

The symbols [A] are called modular symbols. The relations imply that we can assume A is
integral. If A is integral and detA = ±1, we say [A] is a unimodular symbol.

9Ask if you don’t have access to them. Beware that in [2], discrete groups act on symmetric spaces from
the right, not the left. So some objects here look different from what you might expect.
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If γ ∈ SLn(Z) we put [A] · γ = [Aγ]. In [1],10 it is shown that for any finite-index
Γ ⊂ SLn(Z), the symbol [A] modulo Γ determines a cohomology class [A]Γ ∈ HN(XΓ;Q),
where XΓ = X/Γ (here X = SO(n)\ SLn(R)), and N = n(n− 1)/2.

(1) Explain the relationship between this construction and what we did above in the case
n = 2. (Hint: it’s the same thing!)

(2) Ash–Rudolph proved a version of Manin’s trick (Theorem 2.15) for these symbols,
and in particular gave an explicit algorithm to write any modular symbol as a sum
of unimodular symbols. Implement this algorithm for n = 3. (Hint: the main
step in the algorithm is the) following: Given a integral symbol [A] = [v1, . . . , vn]
with D = | detA| > 1, find an integral point w such that the n symbols [Ai(w)] =
[v1, . . . , vi−1, w, vi+1, . . . , vn] satisfy 0 ≤ | detAi(w)| < D. There are various ways to
do this; for n ≤ 3 one can use LLL-reduction [9].)

4.15. Exercise. This exercise puts together Exercises 4.13 and 4.14. We freely use their
notation. The goal is to compute the Hecke action on H3

cusp(X0(p);C).
Let ` 6= p be a prime. There are two types of Hecke operators at `, called T`,1 and T`,2.

The first has coset representatives

X`,1 = V ∪ V ′ ∪ V ′′

where

V =


 ` 0 0

0 1 0
0 0 1

 , V ′ =


 1 0 0

cp ` 0
0 0 1

 , V ′′ =


 1 0 0

0 1 0
ap b `

 ,

where 0 ≤ a, b, c < `. The second has coset representatives

X`,2 = W ∪W ′ ∪W ′′

W =


 ` 0 0

0 ` 0
0 0 1

 ,W ′ =


 ` 0 0

0 1 0
0 c `

 ,W ′′ =


 1 0 0

ap ` 0
bp 0 `

 ,

where 0 ≤ a, b, c < `. Note that these are not Heilbronn matrices, they are just the repre-
sentatives for the Hecke operators. The action on modular symbols is

(28) T`,k[A] =
∑

B∈X`,k

[AB], k = 1, 2.

The symbols on the right of (28) are not unimodular, and the algorithm of Exercise 4.14
should be applied to them to make them unimodular. After this, one obtains a expression
of the form

(29) T`,k[A] =
∑

[Ai],

where the symbols on the right of (29) are unimodular.
Here is how this can be used to compute the Hecke action on the functions in W (p) from

Exercise 4.13. There is a pairing between symbols and functions, namely

(30) 〈[A], f〉 := f(A),

where the right means evaluation of f on the point of P2(Fp) corresponding to the first
column of A. There are finitely many unimodular symbols modulo Γ0(p), and any f ∈ W (p)

10Ask if you don’t have it.
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is uniquely determined by its values on these unimodular symbols. Thus Hecke operators
can act on W (p) by taking the adjoint action with respect to (30). Concretely, if we have
the relation (29) where [A] is unimodular, and T ∗`,k is the adjoint operator on W (p), then

(31) 〈[A], T ∗`,kf〉 =
∑
i

〈[Ai], f〉.

Finally we can say what to do: combine these facts with the results of Exercises 4.13 and
4.14 to compute the Hecke action on any nonzero classes you found in 4.13. (Hint: p = 53
is the first interesting case, and it is known that the Hecke eigenvalues live in Q(

√
−11).)
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