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Tiled orders in Mn(k)

Let k be a non-archimedean local field, O its valuation ring, and
Γ ⊂ Mn(k) an order (a subring containing 1, finitely generated over
O such that k ⊗O Γ = Mn(k)).

TFAE:

1) Γ is tiled (graduated/split)

2) Γ contains a conjugate of the ring R =




O
O

. . .

O


 .

3) Γ can be written as the intersection of n maximal orders,
uniquely determined by Γ.



Finding the normalizer N (Γ) ⊂ Mn(k)

n = 2 (Hijikata): For the
Hecke trace formula, he used
that if Γ is not maximal, then
N (Γ)/k×Γ× ∼= Z/2Z. We
can also get this from the
action of GL2(k) on the
Bruhat-Tits tree of GL2(k).

The tree for SL2(Q2) :

n ≥ 3 : We can visualize the tiled
orders as convex polytopes in
apartments of the building for
SLn(k). Then finding the
normalizer amounts to finding
symmetries of the convex
polytopes in the apartment.

An example of such a polytope:

[0, 1,−1] [0, 1, 0] [0, 1, 1] [0, 1, 2]

[0, 0,−1] [0, 0, 0] [0, 0, 1]

[0,−1,−2] [0,−1,−1] [0,−1, 0] [0,−1, 1]
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Bruhat-Tits Buildings (p-adic symmetric spaces)

Given a Lie group G and a maximal compact subgroup K , the quotient space

X
def
= G/K is a contractable Riemannian symmetric space with a natural

G -action. If Γ ⊂ G is a countable discrete subgroup of G , then the quotient
Γ\X is a manifold. One can learn about Γ via studying the geometry of the
quotient Γ\X . For example H∗(Γ,M) = H∗(Γ\X ,M) (if Γ is torsion free).
Bruhat-Tits buildings provide a p-adic analogue of Riemannian symmetric
spaces.

Example (SL2)

H = SL2(R)/ SO(2),
Γ ⊆ SL2(Z)

T comes from SL2
(
F2((1/t))

)
,

Γ ⊆ SL2(F2[t])
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Questions/things I am thinking about

What does the boundary look like?

How can we (partially) compactify these spaces?

What do the quotients look like? e.g. number of cusps, cohomology,
etc...

What do fundamental domains look like?

How to develop a theory of modular symbols for SL3

(
Fq((1/t))

)
.

How to calculate Hecke eigenvalues.
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Ben Breen, Dartmouth College
3nd year graduate student

Research Interests:
Algebraic number theory and Arithmetic 
Statistics

Old works:
Wild ramification in a family of 
low-degree extensions arising from 
iteration with Rafe Jones, Tommy 
Occhipiniti, and Michelle Yuen



Research Projects

Heuristics on Narrow class group:
Developing Cohen Lenstra type heuristics for narrow class 
groups.  Modeling unit groups and determining when fields 
have a system of totally positive units.

Hilbert Modular Forms:
Developing algorithms for multiplication 
of Hilbert Modular forms. Hopefully will 
be able to implement this in Sage or 
Magma 
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Current Research

In continuing the work of my advisor Prof. John Jones, my current
research is calculating information about the ramification groups of
various degree extensions of Qp. This information is finding the inertia
subgroup and the Galois slope content of the extension.

How do we calculate this information?
We change the problem to a number field search.

For each p-adic extension K , we find a number field F where the p-adic

completion is isomorphic to K and Gal(K/Qp) ∼= Gal(F/Q). In other

words, find a number field F where there is only one prime above p over

the splitting field of F . We can then apply algorithms and procedures to

the number field, namely resolvents, and this will give us information

about the ramification groups of the p-adic extension.

Benjamin Carrillo Arizona State UniversitySchool of Mathematical and Statistical Sciences
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Quaternion Algebras

Let B = (a,bQ ) = {t + xi + yj + zij ∶ t, x , y , z ∈ Q}/(i2 −a, j2 −b, ij + ji).
Define a reduced norm nrd∶B → R by

nrd(t + xi + yj + zij) = t2 − ax2 − by2 + abz2.
Let O be a maximal order in B. An element α ∈ O is irreducible if
nrd(α) = p is prime in Z. We also have a reduced trace trd∶B → R
by

trd(t + xi + yj + zij) = 2t.

Sara Chari
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The Permutation

There are finitely many primes of reduced norm p, so, Q induces a
permutation τQ on the primes of norm p as follows:

τQ(Pi) = Pj if PiQ = Q ′Pj

for some Q ′ ∈ O with nrd(Q ′) = q. The permutation is well-defined
by “unique” factorization.

I am generalizing results about the sign of the permutation and

cycle structures known for B = (−1,−1Q ) to maximal orders in other

division quaternion algebras.

Sara Chari
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What I have done so far...

Let p ≥ 3 be a prime number and O the valuation ring in a finite extension
K of Qp. Let $ be a uniformizer and k = O/$ the residue field. Let

ρ̄ : GQ −→ GL2(k)

be a continuous representation that is unramified at p.

Theorem
If ρ : GQ −→ GL2(O/$mO) is a minimal deformation of ρ̄, then ρ is
modular of weight 1.

This is an application of an R = T theorem of Calegari and Geraghty in
their article Modular Lifting beyond the Taylor-Wiles Methods.

Mariagiulia De Maria My Research Interests May 22, 2017 2 / 3



... and what I want to do next.

The next steps are the following:
Can I apply the methods of Calegari and Geraghty to the case of
partial weight 1 Hilbert modular forms over p-adic rings? And over
rings modulo pm?
Compute examples of such forms and of their associated Galois
representations.

Mariagiulia De Maria My Research Interests May 22, 2017 3 / 3
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Research Interests

Next Semester: Exploring Post-Quantum Cryptography

Currently: Studying various algorithms to break the discrete
logarithm problem.
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Introduction
About

Current second year Master’s student at UNCG

B.S. in Mathematics from UNC-Chapel Hill

Research Interests - algebra, number theory, topology,
combinatorics, graph theory

Master’s thesis next year with Dr. Dan Yasaki in the topic of
arithmetree

Undergraduate Research with Dr. Linda Green at UNC-CH in
the topic of Fullerenes

Nathan Fontes Introduction



Introduction
Past Research

Fullerenes are carbon molecules formed like polyhedra,
containing exactly 12 pentagons and the rest hexagons.

Generalized Fullerenes are all polyhedra that can be created
using only two types of polygons, with a specific number of
one polygon.

k Face 1 Face 2 Description

3 Hexagon Triangle Contains 4 Triangles

3 Hexagon Square Contains 6 Squares

3 Hexagon Pentagon Contains 12 Pentagons

4 Square Triangle Contains 8 Triangles

The final row is what we call ”Fourines” since they have 4
faces connecting at each vertex.

Nathan Fontes Introduction
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2017 UNCG Summer School

Introduction

I’m 1st year graduate student in mathematics

Undergraduate degree:
    major:  Mathematics 
                Mechanical Engineering
    minor:  Statistics

                



2017 UNCG Summer School

Research Interests

commutative algebra & algebraic geometry(especially 
invariant theory)
arithmetic geometry (elliptic curves)
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Definitions

Research Interests

Siegel modular forms, Automorphic forms

Hn := {X + iY ∈ Matsym
n (C) : X,Y ∈ Matn(R), Y > 0}

γ =

(
A B
C D

)
∈ Γn := Sp2n(Z),

γ · Z = (AZ +B)(CZ +D)−1.

We write f ∈Mk(Γ
n) if f : Hn → C is holomorphic and for

all γ ∈ Γn,

f(γ · Z) = det(CZ +D)kf(Z).

Fourier Expansion: f(Z) =
∑

0≤T∈Λn

a(T ; f)e2πi tr(TZ)

H. R. Geller Research 2 / 3
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Congruences of Siegel Modular forms:

For f, g ∈Mk(Γ
n) we say f ≡ g (mod I) if

a(T ;F ) ≡ a(T ; g) (mod I) for all T ∈ Λn.

Theorem (T. Kikuta, S. Takemori ’14)

There exists a finite set Sn(K) of prime ideals in K depending on
n such that the following holds: For a prime ideal p of O not
contained in Sn(K) and a mod pm cusp form F ∈Mk(Γ

n)Op with
k > 2n, there exists G ∈ Sk(Γ

n)Op such that F ≡ G (mod pm).

Trying to generlize the result for level.

H. R. Geller Research 3 / 3
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Sato-Tate conjecture & Nagao’s conjecture

The Sato-Tate
conjecture

Given an elliptic curve E over Q or a number field, we
can define its trace of Frobenius as
ap(E ) = p + 1−#E (Fp) for each prime p. The
Sato-Tate conjecture is about the distribution of trace
of Frobenius, more precisely, if one denotes
θp = cos−1(ap/2

√
p),

lim
X→∞

#{p ≤ X : α ≤ θp ≤ β}
#{p ≤ X} =

2

π

∫ β

α
sin2 θdθ.

There is a generalization of the Sato-Tate conjecture for
the higher genus case via random matrix theory.

Nagao’s
conjecture

Interestingly, Nagao conjectured if
Ap(E ) = 1

p

∑p
t=0 ap(E ),

lim
X→∞

∑

p≤X
−Ap(E ) log p = rankE (Q(T )).



Elliptic Divisibility Sequence

I ’m interested in the possible application to the
Sato-Tate conjecture (or various conjectures regarding
trace of Frobenius) on Nagao’s conjecture.

Elliptic
Divisibility
Sequence

(EDS)

I’m also fascinated by the elliptic divisibility sequence
(EDS) which is a natural generalization of the Fibonacci
sequence on a fixed elliptic curve. It is defined by
iterating a point P ∈ E (Q) and looking at the
denominator of the minimal form

x([n]P) =
An

D2
n

,

and the sequence {Dn}n≥1 is called EDS. I’m trying to
find the analogues of the classical questions for the
Fibonacci sequence from EDS. Also, there are
interesting ways to bridge EDS problems to the
distribution of trace of Frobenius.
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Andrew Kobin

Research Interests

Research Interests
Bachelor (Wake Forest University, ‘13, with Hugh Howards)

Knot mosaic theory
“Crossing Number Bounds in Knot Mosaics”, with Howards, to
appear in Knot Theory and Its Ramifications

Master’s (Wake Forest University, ‘15, with Frank Moore)
Class field theory and quadratic forms
Primes of the form p = x2 + ny2 and related questions

PhD (University of Virginia, ongoing, with Andrew Obus)
Algebraic and arithmetic geometry
Canonical rings of stacky curves
The unit equation in number fields and function fields

I recently passed my second year proficiency exam, so I am just
getting started on a couple projects!
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Further Details: Unit Equations

Let K be a field and OS a ring of S-integers in K.
The equation u+ v = 1 for u, v ∈ O×

S is called the S-unit equation.
(Dirichlet) When K is a number field, the S-unit equation has
finitely many solutions.
(Baker) When K is a number field, there is an effective upper
bound for number of solutions.
(Mason, Silverman) When K = k(C) is the function field of a
smooth projective curve, the S-unit equation has finitely many
solutions (up to u, v ∈ k∗) and there is an effective upper bound.
Ambitious goal: reprove these results using “smallness” of the
étale fundamental group πét

1 (X) where X = C or X = SpecZ.
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Mixed-Level Saito-Kurokawa Liftings

Classical Saito-Kurokawa liftings:

S2k−2(SL2(Z))
∼=−→ Jck,1(SL2

J(Z))
∼=−→ SMaaβ

k (Sp4(Z)).

Ramakrishnan generalized this further:

S2k−2(Γ0(Nt)) −→ Jk,t(ΓJ
0(N)).

Zantout and Schmidt proved:

S t,new
2k−2(Γ0(Nt))

Rama.
//

Rep. Th.

∼=
44

Jc,newk,t (ΓJ
0(N))

DZ

∼= // SDZ,new
k (ΓN [t]) .

Theorem (Brown-L.)

The map given by Ramakrishnan is a Hecke equivariant isomorphism from

S t,new
2k−2 (Γ0(Nt)) to Jcusp,newk,t (ΓJ

0(N)), where N, t ∈ N are odd square free

integers such that gcd(N, t) = 1.

Huixi Li (Clemson University) SK Liftings and Congruence Primes May 29, 2017 2 / 3



Congruence Primes of the Hilbert Siegel Automorphic Forms

Theorem (Hida 1981)

Let f ∈ Sk(Γ0(N)) be a newform. Then p is a congruence prime for f if

and only if p | Lalg(k, Sym2 f ).

Theorem (Brown-Klosin 2016)

Let f ∈ Sn,k(M) be an automorphic form on the unitary group

U(n, n)(AF ), where F is a totally real �eld, K/F is a quadratic imaginary

extension and M | N are ideals of OF . Then p is a congruence prime of f if

valp

(
πdn

2

vol(FK0,n(M))
Lalg(2n + t/2, f , ξ; st)

)
< 0.

Huixi Li (Clemson University) SK Liftings and Congruence Primes May 29, 2017 3 / 3
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Ramification Polygons

1 Definition: Newton polygon of
ϕ(αx + α)

αn
.

2 One Segment (Greve): Gal(ϕ) = G1 o H

{tA,v : (Fp)m → (Fp)m : x 7→ Ax + v | A ∈ H ′ ≤
GL(m, p), v ∈ (Fp)m}

3 Max Tame Subextension (Greve)

T = I

(
e1e0

√
(−1)v1γb1n1 ϕ0, . . . ,

e`e0

√
(−1)v`γb`n` ϕ0

)

Jonathan Milstead Galois Groups of Eisenstein Polynomials over Local Fields



Blocks

1 Greve
∆i = {α′∈ K | ϕ(α′) = 0 and νL(α′ − α1) ≥ mi + 1}

2 Starting Group (Ex. 3 segments)

Gal(ϕ) ≤ Gal(L1/L2) o (Gal(L2/L3) oGal(L3/Qp))

3 Residual Polynomial Classes (Milstead,Pauli)



α′ :

ϕ(α′) = 0 and either

vL(α′ − α1) > mi + 1 or

vL(α′ − α1) = mi + 1 and
−1 + α′

α1

αmi
1

∈ δFp





Jonathan Milstead Galois Groups of Eisenstein Polynomials over Local Fields



Enumerating extensions of p-adic fields with
given invariants
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Generating Polynomials of Extensions of Q3 of degree 9

1. Totally ramified, thus Eisenstein 5085 Extensions

2. Valuation of Discriminant: 15 162 Extensions

3. Ramification polygon: {(1, 7), (3, 3), (9, 0)} 108 Extensions

4. Residual polynomials: (2 + z2, 1 + z3) 27 Extensions

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

...
...

...
...

...
...

...
...

...
...

33 * * * * * * * * * 0
32 * * * * * * * * * 0
31 6= 0 * * * * * * * * 0
30 0 0 0 0 0 0 0 0 0 1
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1. Totally ramified, thus Eisenstein 5085 Extensions

2. Valuation of Discriminant: 15 162 Extensions

3. Ramification polygon: {(1, 7), (3, 3), (9, 0)} 108 Extensions

4. Residual polynomials: (2 + z2, 1 + z3) 27 Extensions

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

...
...

...
...

...
...

...
...

...
...

33 0 0 0 0 0 0 0 0 0 0
32 * * * * * * * * * 0
31 6= 0 0 0 6= 0 0 0 * 6= 0 * 0
30 0 0 0 0 0 0 0 0 0 1

311 · 23 = 1 417 176 Polynomials



Generating Polynomials of Extensions of Q3 of degree 9

1. Totally ramified, thus Eisenstein 5085 Extensions

2. Valuation of Discriminant: 15 162 Extensions

3. Ramification polygon: {(1, 7), (3, 3), (9, 0)} 108 Extensions

4. Residual polynomials: (2 + z2, 1 + z3) 27 Extensions

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

...
...

...
...

...
...

...
...

...
...

33 0 0 0 0 0 0 0 0 0 0
32 * 0 0 0 0 0 0 0 0 0
31 1 0 0 1 0 0 0 2 * 0
30 0 0 0 0 0 0 0 0 0 1

32 = 9 Polynomials



Generating Polynomials of Extensions of Q3 of degree 9

1. Totally ramified

2. Valuation of Discriminant: 15

3. Ramification polygon: {(1, 7), (3, 3), (9, 0)}, slopes −2,−1/3

4. Residual polynomials: (2 + z2, 1 + z3)

Each of the 27 extensions of Q3 with these invariants is generated
by exactly one of the polynomials:

x9 + 6x7 + 3x3 + 3 x9 + 3x8 + 6x7 + 3x3 + 3 x9 + 6x8 + 6x7 + 3x3 + 3
x9 + 6x7 + 3x3 + 12 x9 + 3x8 + 6x7 + 3x3 + 12 x9 + 6x8 + 6x7 + 3x3 + 12
x9 + 6x7 + 3x3 + 21 x9 + 3x8 + 6x7 + 3x3 + 21 x9 + 6x8 + 6x7 + 3x3 + 21

Each polynomial generates 3 distinct extensions.



Michael Reed, UNCG Undergraduate

Member: American Institute of Aeronautics and Astronautics

Member: American Mathematical Society

Collaborating with Dr. Vladimir Golubev (ERAU, AFOSR) on
Multi-disciplinary Design Optimization of Synthetic Jet
Actuators for Transitional Boundary Layer Separation Control

First gained interest in Modular Forms exactly one year ago.

Research Interest: Investigate the occurrence of
doubly-periodic vortex soliton solutions of coupled nonlinear
hyperbolic partial differential equations.

Research Interest: Arithmetic on groves of planar binary
trees using the Loday-type dendriform dialgebra.

Research Interest: Symbolic computation and term rewriting
using abstract syntax trees for expressions.



Michael Reed, Toroidal Vortex Expulsion

Figure: Vena contracta visible near orifice of asymmetric flow synthetic
jet actuator, 3D Reynolds Averaged Navier-Stokes PDE.



An introduction to my research interest

Manami Roy

University of Oklahoma

May 22, 2017

UNCG Summer School in Computational Number Theory 2017
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My research interest

Automorphic forms and automorphic representation
Classical modular forms and Siegel modular forms
Automorphic L-functions
Elliptic curves
The Langlands program

Past Research:
Master’s project: The Ramanujan’s conjectures and L-functions
corresponding to cusp forms.

Current Research:
I am investigating level of the Siegel modular forms under different
congruence subgroups constructed via the sym3 lifting.
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The sym3 lifting and level of Siegel modular forms
π f ∈ Sk(Γ0(N))

Π F ∈ Sk+1,k−2(??)

functoriality(!)

f : a cuspidal eigen-newform of weight k and level N.
π : a cuspidal automorphic representation of GL(2,A).
Π : a cuspidal automorphic representation of GSp(4,A).
F : a cuspidal Siegel modular form.

The sym3 : GL(2,C) → GL(4,C) map gives a functorial lifting.

Goal: To find the level of F under appropriate congruence subgroups.

K(pn) =



k ∈ GSp(4,Qp) : k ∈




Zp Zp Zp p−n

pn Zp Zp Zp
pn Zp Zp Zp
pn pn pn Zp


and det(k) ∈ Z×

p




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Number Theory Summer School

James Rudzinski

University of North Carolina at Greensboro

May 22, 2017

James Rudzinski Number Theory Summer School



Symmetric Chain Decomposition

Definition (Symmetric chain decomposition)

A symmetric chain decomposition of Bn is a partition of Bn into
symmetric chains.

111

110 101 011

100 010 001

000

Figure: Symmetric chain decomposition of B3

James Rudzinski Number Theory Summer School



Symmetric Chain Decomposition

We were able to organize the initial strings in a tree so that each string
could also be attained in an efficient way by only adding ones. We can
recursively generate the initial string of each chain along with the
indices of the zeros that are to be changed to ones.

0000

0100 0010 0001

0101 0011

Figure: Tree of inital strings for the symmetric chain decomposition of B4.

James Rudzinski Number Theory Summer School



Introduction

Sandi Rudzinski

Department of Mathematics and Statistics
University of North Carolina at Greensboro

UNCG Number Theory Summer School 2017



Resolvent Polynomials

• The roots of a resolvent polynomial are created by plugging in
the roots of one polynomial into variations of a multivariate
polynomial.

• My thesis focused on computing special types of resolvent
polynomials without the use of root approximations.



Filip SAIDAK

Department of Mathematics

UNC Greensboro



RESEARCH INTERESTS

Analytic, Probabilistic and Elementary Number Theory

1. Prime numbers

– general distribution

– special forms

2. Riemann ⇣-function

– properties of zeros

– non-vanishing

– higher derivatives

– monotonicity

– Dirichlet L-functions

3. Arithmetic functions

– probabilistic results

– special values



Research Interests

Introduction & Research Interests

Christian Steinhart

Universität des Saarlandes

22nd May 2017, Greensboro

Christian Steinhart Introduction & Research Interests



Research Interests

Teichmüller-Theory

What are the possible complex structures on a topological
surface S?

Given a (quadratic) differential on such a structure yields a
flat surface, i.e. polygons with parallel sides of equal length
identified.
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Figure: eierlegende Wollmilchsau
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Research Interests

Teichmüller-Theory

SL2(R) acts on the space of flat surfaces chart-wise,
equivalently as linear transformations on the polygon.
→ gain new complex structures on S

→ identify H with the set of these complex structures, named
the Teichmüller disk.

Interesting case when stabilizer of the flat structure is cofinite.

Projects:

Embedding of Teichmüller disks of Origamis, i.e. coverings of
the once-punctured torus, into the Outer Space CVn.

Finding similar embeddings of more general Teichmüller disks.
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Makoto Suwama

University of Georgia

UNCG Summer School, 2017
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Introduction

Just finished my first year in graduate school at UGA.

Interests

(Algebraic) Number Theory

Arithmetic Geometry

Algebraic Geometry

Representation Theory

Plan to find an advisor and a thesis topic this summer.

Makoto Suwama (University of Georgia) Introduction UNCG Summer School, 2017 2 / 3



Undergraduate thesis

Suppose

K is a number field

E/K is an elliptic curve defined over K

Then

E (K ) ∼= Zr × E (K )Tors

Want to compute E (K )/nE (K ), for some n ∈ Z. (HARD)
=⇒ Instead, compute Sel(n)(E/K ).

0 E (K )/nE (K ) Sel(n)(E/K ) X(E/K ) 0

For my undergraduate thesis, I studies 2-descent algorithm which
computes Sel(2)(E/K ).

Makoto Suwama (University of Georgia) Introduction UNCG Summer School, 2017 3 / 3



Stark’s Conjecture as it relates to
Hilbert’s 12th Problem

Brett A. Tangedal

University of North Carolina at Greensboro, Greensboro NC, 27412, USA
batanged@uncg.edu

May 22, 2017



Let F be a real quadratic field, OF the ring of integers in F, and
m an integral ideal in OF with m 6= (1). There are two infinite
primes associated to the two distinct embeddings of F into R,
denoted by p

(1)
∞ and p

(2)
∞ . Let H2 := H(mp

(2)
∞ ) denote the ray

class group modulo mp
(2)
∞ , which is a finite abelian group.

Given a class C ∈ H2, there is an associated partial zeta
function ζ(s, C) =∑Na−s, where the sum runs over all integral
ideals (necessarily rel. prime to m) lying within the class C. The
function ζ(s, C) has a meromorphic continuation to C with
exactly one (simple) pole at s = 1. We have ζ(0, C) = 0 for all
C ∈ H2, but ζ ′(0, C) 6= 0 (if certain conditions are met).



First crude statement of Stark’s conjecture: e−2ζ
′(0,C) is an

algebraic integer, indeed this real number is conjectured to be a
root of a palindromic monic polynomial

f(x) = xn + a1x
n−1 + a2x

n−2 + · · ·+ a2x
2 + a1x+ 1 ∈ Z[x].

For this reason, e−2ζ
′(0,C) is called a “Stark unit”. By class field

theory, there exists a ray class field F2 := F(mp
(2)
∞ ) with the

following special property: F2 is an abelian extension of F with
Gal(F2/F) ∼= H2. Stark’s conjecture states more precisely that
e−2ζ

′(0,C) ∈ F2 for all C ∈ H2.
This fits the general theme of Hilbert’s 12th problem: Construct
analytic functions which when evaluated at “special” points
produce algebraic numbers which generate abelian extensions
over a given base field.



Introduction

Debbie Demet White

Department of Mathematics and Statistics
University of North carolina at Greensboro

to be a mathematician...

May 2017



About me

I I graduated from Middle East Technical University from
Turkey in 1992 then I worked as a high school teacher in
many public and private schools for almost 20 years.

I I moved to the US for my son some health problems, the plan
was to go back after his things is done, but when I realized I
am still here and will continue to live, I decided to go back to
my teaching career.



About me

I Now I want to enjoy beauty of mathematics.I think of
mathematics as a language; studying the grammar can be
tedious, boring and frustrating, but it is necessary to use it in
whichever way we may decide. Understanding and
appreciating the different genres of literature requires a good
knowledge of the basic rules of the language in which they are
expressed. When we enjoy a poem or a short story we never
think about the grammar behind it, if we did it would spoil
our enjoyment; instead we marvel at the finished product.
Mathematics can be viewed in a similar way: the long hours
spent working calculus problems are the way to make the
basic rules become so natural and instinctive that we do not
need to think about them. We can concentrate on other,
more exciting and challenging problems.

I I am at the beginning of this journey.

I I excited being here to learn more. . .
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Department of Mathematics
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Hypersymmetric Abelian Varieties

Definition (Hypersymmetric Abelian Variety)(Chai and Oort, 2006;
Zong, 2008)

Let (Γ) be a finite dimensional semi-simple algebra over Q with positive
involution. Let A be an abelian variety over an algebraically closed field k
of characteristic p. A is Γ-hypersymmetric if the natural map

EndΓ(A)⊗Q Qp → EndΓ⊗QQp(A[p∞])

is a bijection.

Theorem

(Zong, 2008) An effective Γ-linear polarized isocrystal M is isomorphic to
the Dieudonné isocrystal of a Γ-hypersymmetric abelian variety A if and
only if M underlies an (S)-restricted partitioned isocrystal.

Luciena Xiao (Caltech) Introductory Talk
UNCG Summer School in Computational Number Theory 2017 2

/ 3



A Special Case: Γ = Q

Definition

An abelian variety A over an algebraically closed field is hypersymmetric if
the natural homomorphism End(A)⊗Z Zp → End(A[p∞]) is an
isomorphism.

Theorem

(Chai and Oort, 2006) For every symmetric Newton polygon ζ and every
prime number p there exists a hypersymmetric abelian variety A over Fp

with Newton polygon equal to ζ.

Application

Chai used hypersymmetric points to show a conjecture by F. Oort that
every prime-to-p Hecke orbit in the moduli space Ag of principally
polarized abelian varieties over Fp is dense in the leaf containing it.

Luciena Xiao (Caltech) Introductory Talk
UNCG Summer School in Computational Number Theory 2017 3
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Applications of Voronoi to Automorphic Forms

Dan Yasaki

The University of North Carolina Greensboro

UNCG Summer School in Computational Number Theory
Modular Forms: May 22–26, 2017



Perfect forms and tessellations: G = SL2 /Q

φ(x , y) = x2 − xy + y2, M(φ) =

{
±
[
1
0

]
,±
[
0
1

]
,±
[
1
1

]}



Automorphic forms



Yuan Yan

Department of Mathematics and Statistics
University of Massachusetts Amherst

May 21,2017
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2017 UNCG Summer School

Introduction

I just finished my first year graduate study at University of 
Massachusetts Amherst

 I got master’s degree in mathematics at  The University 
of Texas at Austin

               

                



2017 UNCG Summer School

Generally speaking, I am interested in number theory. In 
particular, the theory of algebraic number, elliptic curves 
and modular forms

         

Research Interests


