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Introduction

The goal of these notes is to introduce algebraic curves, function fields, and their Picard groups.
The emphasis will be on algorithmic aspects of curves of large genus, in particular Khuri-Makdisi’s
algorithmic framework for computing with curves and their Picard groups.

The main prerequisite is some basic algebraic geometry, such as Fulton’s book [3] or the first
chapter of Hartshorne’s book [4]. This includes a few concepts from commutative algebra that
are widely used in algebraic geometry, such as prime ideals, local rings, tensor products of vector
spaces. We will mention sheaves or line bundles in some places where they are helpful, but we
will not use any deep techniques. Some knowledge of schemes may be helpful, but is not strictly
necessary.

1. Curves and function fields

Throughout these notes, k will be a field. In practice, k will often be a finite field; we will make
this assumption when it is needed.

1.1. Curves

The following definition is only meant for readers who know about schemes and who want to know
exactly how general our curves will be.

Definition. A variety over k is a quasi-projective k-scheme of finite type, or equivalently an open
subscheme of a projective k-scheme.

Definition. An curve over k is a one-dimensional variety over k.

Like any k-scheme, a curve X is in particular a topological space equipped with a sheaf of
k-algebras, the structure sheaf OX . For every open subset U ⊆ X, the k-algebra OX(U) consists
of the regular functions on U .

Definition. Let X be a curve, and let x be any point of X. The local ring of X at x, denoted by
OX,x, is the direct limit

OX,x = lim−→
x∈U⊆X

OX(U),

where U runs over all open subsets of X containing x. The residue field of x, denoted by k(x), is
the residue field of the local ring OX,x.

Definition. If x is a closed point of X, the degree of x, denoted by deg x, is the degree [k(x) : k].

Recall that a topological space X is irreducible if for any two closed subsets Y,Z ⊆ X with
Y ∪ Z = X, at least one of Y and Z is equal to X. Recall that a ring A is reduced if the only
nilpotent element of A is 0.

Definition. Let X be a curve over k. We say that X is irreducible if its underlying topological
space is irreducible. We say that X is reduced if for every open subset U ⊆ X, the k-algebra
OX(U) is reduced. We say that X is integral if X is both irreducible and reduced.

Let X be an integral curve over k. Topologically, the curve X consists of infinitely many
closed points and one generic point, the closure of which is the whole curve. The open subsets are
the empty set and the complements of finitely many closed points.
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Definition. Let X be an integral curve over K. The function field of X, denoted by K(X), is
the local ring of X at its generic point.

Note that for every point of X, we have an inclusion OX,x → K(X) because every open
subset of X containing x also contains the generic point. Moreover, the fraction field of OX,x can
be identified with K(x).

Definition. Let X be a projective integral curve over k. The field of constants of X is the
k-algebra OX(X) of global sections of OX .

The assumptions on X imply that OX(X) is indeed a field and that it is a finite extension of k.
Furthermore, OX(X) is a subring of k(x) for any closed point x of X. Finally, OX(X) is equal to k
if and only if X is geometrically integral. (This can be taken as the definition of “geometrically
integral”.)

1.2. Function fields

Definition. A function field over k is a finitely generated extension field K of k such that K has
transcendence degree 1 over k.

The notion of function fields is designed in such a way that function fields are exactly the
fields arising as fields of rational functions on (integral) algebraic curves.

Notation. If R is a domain, we write FracR for the field of fractions of R.

Example. The field k(t) = Frac k[t] (where k[t] is a polynomial ring in one variable over k) is a
function field.

Example. Let f = x2 + y2 − 1 ∈ R[x, y]. Then Frac(R[x, y]/(f)) is a function field.

Example. Let g = y2 + 1 ∈ R[x, y]. Then Frac(R[x, y]/(g)) is not a function field, because the
image of y generates a subfield isomorphic to C.

Definition. A discrete valuation ring is a principal ideal domain R with exactly two prime ideals,
namely 0 and a unique maximal ideal mR. A uniformiser of R is a generator of the ideal mR.

It is known that principal ideal domains are unique factorisation domains. It follows that if
R is a discrete valuation ring with field of fractions K and x is an element of K×, then there
is a unique n ∈ Z with xR = m

n
R; this n is denoted by ordR(x). This gives a surjective group

homomorphism
ordR:K

× → Z.

Definition. A valuation ring is a domain R such that for every x in (FracR)×, either x or x−1 is
in R.

Example. Fields and discrete valuation rings are valuation rings.

Definition. Let K be a function field K over k. A valuation ring or place of K (over k) is a
subring R ⊆ K such that R is a valuation ring containing k.

There is a well-known correspondence between curves and function fields.

Definition. A curve X is regular if for every closed point x of X, the local ring OX,x is a discrete
valuation ring.

Theorem 1.1.

(a) If X is an integral curve over k, then its function field K(X) (i.e. the field of fractions of
OX(U) for any non-empty affine open subset U ⊂ X) is a finitely generated extension of
transcendence degree 1 over k.

(b) If φ:X → Y is a non-constant morphism of integral curves over k, then φ induces an inclusion
φ∗:K(Y ) → K(X).

(c) If X is a regular projective integral curve over k, then there is a bijection from the set of
points of X to the set of valuation rings of K(X) mapping a point x to the local ring OX,x

viewed as a subring of K(X).
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(d) If X is a regular projective integral curve over k, then the canonical map OX(X) → K(X)
identifies the field of constant functions on X with the algebraic closure of k in K(X).

(e) Let Ck be the category of regular projective integral curves over k with dominant morphisms,
and let Fk be the category of function fields over k with k-algebra homomorphisms. The as-
sociation X 7→ K(X) and (φ:X → Y ) 7−→ (φ∗:K(Y ) → K(X)) is a contravariant equivalence
of categories from Ck to Fk.

Proof . This is essentially [3, § 7.5, Corollary to Theorem 3].

The above theorem implies that for every integral curve X over k, there exists a regular
projective curve X ′ over k, unique up to isomorphism, such that K(X ′) and K(X) are isomorphic.
This X ′ is called the regular projective model of X over k. It can be constructed as follows. First
embed X into a projective curve X̄ (if X is given as a subvariety of an affine space An

k , embed An
k

into Pn
k and take the closure of X in Pn

k .) Next, take a covering of X̄ by affine open subsets U . For
each U , take the integral closure of the k-algebra OX̄(U). This is the coordinate ring of an regular
affine integral curve Ũ . Because taking integral closures is compatible with localisation, these affine
curves Ũ can be glued together to obtain the desired regular projective integral curve X ′.

1.3. Divisors

Let X be a regular projective integral curve over k.

Definition. The group of divisors on X is the free Abelian group DivX on the closed points of X.
When viewed as a divisor, a closed point is called a prime divisor .

Notation. We often write divisors D as

D =
∑

x∈X

nxx,

where x ranges over the set of closed points of X and nx are integers that are equal to 0 for all
but finitely many x.

Definition. A divisor in the above form is effective if nx ≥ 0 for all closed points x of X.

Notation. If D and E are two divisors on X, we write D ≥ E if the divisor D − E is effective.

Definition. The degree map is the group homomorphism

deg:DivX −→ Z
∑

x∈X

nxx 7−→
∑

x∈X

nx deg x.

Definition. For f ∈ K(X)× and x a closed point of X, the order or valuation of f at x is

ordx(f) = ordOX,x
(f).

Definition. For all f ∈ K(X)×, the divisor of f is

div f =
∑

x∈X

ordx(f)x.

Definition. The group of principal divisors on X is {div f | f ∈ K(X)×}.
Proposition 1.2. Every principal divisor on X has degree 0.

Definition. Two divisors D,D′ on X are linearly equivalent if D −D′ is a principal divisor.

The following construction of a line bundle OX(D) for a divisor D (and in particular its space
of global sections) will be of fundamental importance for us.

Definition. Let X be a smooth integral curve over k, and let D =
∑

x∈X nxx be a divisor on X.
We define a presheaf OX(D) on X by

OX(D)(U) =

{

{f ∈ K(X) | ordx f + nx ≥ 0 for all closed points x ∈ U} if U 6= ∅,
0 if U = ∅.

It is not hard to check that this is a sheaf on X, and in fact a line bundle (locally free sheaf of
OX -modules of rank 1).
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1.4. Differentials

Definition. Let R be a k-algebra. Themodule of (Kähler) differentials of R over k is the R-module
ΩR/k generated by the symbols df for f ∈ R subject to the relations

d(f + g) = df + dg, d(cf) = c df, d(fg) = g df + f dg

for all f, g ∈ R and all c ∈ k.

The map
d:R → ΩR/k

sending an element f ∈ R to df ∈ ΩR/k is a derivation of R over k, i.e. a k-linear map satisfying
the Leibniz rule d(fg) = g df + f dg.

Proposition 1.3. Let K be a function field over K.

(a) The K-vector space ΩK/k has dimension 1 over K.

(b) If K has characteristic 0 and f ∈ K \ k, then ΩK/k is generated by df as a K-vector space.

Proof . See Fulton [3, Proposition 8.4.6].

Definition. Let X be an integral curve over k. The space of meromorphic differentials on X is
the one-dimensional K(X)-vector space ΩK(X)/k.

Let X be a curve over k, and let x be a closed point of X. We have the OX,x-module

ΩX/k,x = ΩOX,x/k.

Viewing OX,x as a k-subalgebra of K(X), we can similarly view ΩX/k,x as an OX,x-submodule
of K(X).

Definition. We say that the curve X over k is smooth at x if ΩX/k,x is free of rank 1 as an
OX,x-module. We say that X is smooth if it is smooth at every point.

Proposition 1.4. Let X be a curve over k.

(a) If X is smooth over k, then X is regular.

(b) If X is regular and k is perfect, then X is smooth over k.

Proof . See for example the Stacks Project [7, tag 00TQ].

Let X be a smooth integral curve over k. If ω is a non-zero element of ΩK(X)/K , then OX,xω
is a free OX,x-submodule of rank 1 of ΩK(X)/K . This implies that OX,xω equals mn

X,xΩX/k,x for a
unique n ∈ Z.

Definition. Let X be a smooth integral curve over k, let ω be a non-zero meromorphic differential
on X, and let x be a closed point of X. The order or valuation of ω at x, denoted by ordx ω, is
the unique n ∈ Z such that

OX,xω = m
n
X,xΩX/k,x

as OX,x-submodules of ΩK(X)/k.

Example. Let X = P1
k be the projective line over k. The function field of X is k(t), and dt is

a meromorphic differential on X. On the subset A1
k ⊂ P1

k, which has coordinate ring k[t], the
element dt generates the module of differentials at every point, i.e. for every point x ∈ A1

k, we have

ΩX/k,x = OX,xdt.

On the other hand, the module of differentials at the point ∞ ∈ P1
k is generated by du, where u is

the uniformiser at ∞ defined by u = 1/t. This shows

OX,∞dt = OX,∞ · −u−2du = m
−2
X,∞ΩX/k,∞.

We conclude that

ordx dt =

{

0 if x ∈ A1
k,

−2 if x = ∞.

Definition. Let X be a smooth curve over k. The canonical line bundle on X is the presheaf
ΩX/k on X defined by

ΩX/k(U) =

{

{ω ∈ ΩK(X)/k | ordx(ω) ≥ 0 for all closed points x ∈ U} if U 6= ∅,
0 if U = ∅

with the obvious restriction maps.
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It is not hard to check that ΩX/k is in fact a sheaf on X. Because of the assumption that X
is a smooth curve, ΩX/k is in fact a line bundle on X.

Definition. The space of global differentials on X is the k-vector space ΩX/k(X).

Theorem 1.5. If X is a smooth projective curve over k, then the k-vector space ΩX/k(X) of
global differentials is finite-dimensional.

From now on, unless mentioned otherwise, a curve will be a smooth, projective, geometrically
integral curve over k.

Definition. Let X be a smooth, projective, geometrically integral curve over k. The genus of X
is the dimension of the k-vector space ΩX/k(X).

Definition. Let ω be a non-zero meromorphic differential on X. The divisor of ω is

divω =
∑

x∈X

ordx(ω)x.

Definition. A canonical divisor on X is any divisor K such that there exists a non-zero mero-
morphic differential ω on X with divΩX/k

(ω) = K.

Note that all canonical divisors on X are linearly equivalent.

Example. For X = P1
k with coordinate t, we can take

K = div(dt) = −2 · ∞.

Remark . In the language of line bundles, a canonical divisor is nothing but the divisor of a non-zero
rational section of the canonical line bundle. Equivalently, a canonical divisor is any divisor in the
linear equivalence class corresponding to the canonical line bundle under the standard isomorphism
between the divisor class group and the group of isomorphism classes of line bundles.

1.5. Exercises

1.1. Let X be a curve over k. Show that if x is a closed point of X, then the residue field k(x) is
a finite extension of k.

1.2. Let X be an integral curve over k. Show that K(X) is a field.

1.3. Let S be the power series ring k[[x, y]], let m = (x, y) be its maximal ideal, and let f ∈ m be
a non-zero element. Let R = S/(f).

(a) Suppose that at least one of the two partial derivatives ∂f/∂x and ∂f/∂y is a unit in R. Show
that R is isomorphic to a power series ring k[[t]] in one variable; in particular, f is irreducible
and R is a discrete valuation ring.

(b) Take f = y2 − x3. Show that f is irreducible, but R is not a discrete valuation ring.

1.4. Let K be a function field over k. Show that the algebraic closure of k in K equals the
intersection of all valuation rings of K.

1.5. Show that if R is given by a k-algebra presentation

R = k[x1, . . . , xn]/(f1, . . . , fm),

then ΩR/k has an R-module presentation

ΩR/k
∼= (Rdx1 + · · ·+Rdxn)/(Rdf1 + · · ·+Rdfm),

where Rdx1 + · · · + Rdxn is a free R-module with basis (dx1, . . . , dxn) and df1, . . . , dfm are the
elements of this module defined by dfi =

∑n
j=1

∂fi
∂xj

dxj .
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1.6. Let k be a field of characteristic different from 2, and consider a square-free polynomial

f = anx
n + an−1x

n−1 · · ·+ a1x+ a0 ∈ k[x].

of degree n > 0. Let X be the smooth projective curve given by the affine equation

y2 = f(x).

(a) Show that there are either one or two points “at infinity” with respect to the above affine
model, and find a uniformiser at each of these points.

(b) Compute the divisor of the meromorphic differential ω = dx
2y .

2. More on curves and divisors

Throughout this section, X will be a smooth projective integral curve over k.

2.1. The vector spaces L(X,D)

If D is a divisor on X, we abbreviate

L(X,D) = OX(D)(X).

Thus L(X,D) is the k-vector space of functions with prescribed minimal orders of vanishing and
maximal pole orders at the points occurring in D. We note that the non-zero elements of L(X,D)
are exactly the rational functions f 6= 0 such that the divisor div f +D is effective. Furthermore,
if D =

∑

x∈X nxx, the definition of L(X,D) is equivalent to

L(X,D) =
⋂

x∈X

m
−nx

X,x ⊂ K(X), (2.1)

where x ranges over the set of closed points of X and mX,x is the maximal ideal of OX,x viewed
as an invertible OX,x-ideal.

Theorem 2.1. For every divisor D on X, the k-vector space L(X,D) is finite-dimensional.

Example. Take X = P1
k and D = n∞ with n ∈ Z. The space L(X,n∞) consists of rational

functions that have no poles on A1
k (i.e. polynomials) and a pole of order at most n at ∞. Hence

L(X,n∞) = {f ∈ k[t] | deg f ≤ n}

and
dimk L(X,n∞) = max{0, n+ 1}.

For any extension field k′ of k, we write Xk′ for the base change of the curve X to k′. From
now on, we will assume that X is geometrically integral , i.e. that the base change Xk̄ to an algebraic
closure k̄ of k is an integral curve.

It is often useful to know that the spaces L(X,D) are “stable under base change”. Since X
is geometrically integral, the curve Xk′ is integral and the function field K(Xk′) is canonically
isomorphic to K(X)⊗k k

′. If D is a divisor on X, we have an induced divisor Dk′ on Xk′ . Writing
D =

∑

x∈X nxx, we have

Dk′ =
∑

x∈X

nx

∑

y 7→x

e(y/x)y, (2.2)

where y ranges over the closed points of Xk′ mapping to the closed point x of X and e(y/x) is the
ramification index of y over x.

Remark . When k is perfect, all ramification indices e(y/x) are equal to 1. When k is imperfect,
the extensions of discrete valuation rings can be ramified; take k = Fp(v), let X = P1

k with
parameter t, let x be the closed point defined by tp = v, and consider the inseparable extension
k′ = k[w]/(wp − v). Then Xk′ has a unique point y over x, defined by t = w, and the ramification
index equals p.
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Furthermore, we have a k′-linear isomorphism

L(X,D)⊗ k′
∼−→ L(X,D)k′ ⊂ K(Xk′).

Proposition 2.2. For every divisor D on X and every extension field k′ of k, we have

L(X,D)k′ = L(Xk′ , Dk′) ⊂ K(Xk′)

and hence a canonical k′-linear isomorphism

L(X,D)⊗k k′ −→ L(Xk′ , Dk′)

In particular, we have

dimk L(X,D) = dimk′ L(Xk′ , Dk′).

Proof . It is clear that the map is injective because it can be viewed as a restriction of the isomor-
phism K(X)⊗k k

′ ∼−→ K(X)k′ = K(Xk′) to L(X,D)⊗k k
′. Using the description (2.1) of L(X,D)

and the description (2.2) of Dk′ , we see that it suffices to show that for every x ∈ X we have an
equality

mX,xk
′ =

∏

y 7→x

m
e(y/x)
Xk′ ,y .

This follows from the definition of the ramification indices e(y/x).

The following theorem is one of the most important facts about spaces of global sections.

Theorem 2.3 (Riemann–Roch). Let X be a smooth, projective, geometrically integral curve of
genus g over k, and let K be a canonical divisor on X. For every divisor D on X, we have

dimk L(X,D)− dimk L(X,K −D) = 1− g + degD.

Remark . The term dimk L(X,K −D) may also be viewed as the dimension of the space of global
sections of the line bundle ΩX/k(−D).

Remark . The space L(X,K−D) can be identified, via Serre duality , with the k-linear dual of the
first cohomology group H1(X,OX(D)).

Corollary 2.4. If K is a canonical divisor on X, then we have

degK = 2g − 2.

Proof . Take D = K in the Riemann–Roch theorem.

Definition. A divisor D on X is special if the space L(X,K −D) is non-zero.

For non-special divisors D, the Riemann–Roch formula simplifies to

dimk L(X,D) = 1− g + degD. (2.3)

Corollary 2.5. For every divisor D on X, we have

degD < 0 =⇒ L(X,D) = 0,

degD ≥ 2g − 1 =⇒ D is non-special.

Proof . If degD < 0, then for any non-zero element f ∈ L(X,D) the divisor div f + D would
be an effective divisor of negative degree, which is impossible; this implies the first claim. If
degD ≥ 2g − 1, then we have deg(K − D) < 0, so L(X,K − D) = 0 by the first claim, so D is
non-special.
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2.2. Basepoint-free divisors and very ample divisors

Let X be a smooth projective geometrically integral curve of genus g over k.

Definition. A divisor D on X is basepoint-free if for any divisor E such that L(X,E) = L(X,D),
we have E ≥ D.

Remark . This is a slight abuse of terminology; usually the adjective “basepoint-free” is used for
linear systems, and “generated by global sections” for the corresponding line bundles.

Note that D is basepoint-free if and only if for every prime divisor P on X, the space L(X,D−
P ) is a strict subspace of L(X,D).

Lemma 2.6. Let k′ be an extension field of k, and let D be a divisor on X. Then D is basepoint-
free if and only if the divisor Dk′ on Xk′ is basepoint-free.

Proof . We use the fact that there is a surjective map r:Xk′ → X on topological spaces. Sup-
pose Dk′ is not basepoint-free, and let Q be a prime divisor on Xk′ such that all elements of
L(Xk′ , Dk′) ∼= L(X,D) ⊗k k′ vanish in Q, where the isomorphism comes from Proposition 2.2.
Then all elements of L(X,D) vanish on the prime divisor r(Q) of X, so D is not basepoint-free.

Conversely, suppose D is not basepoint-free, and let P be a prime divisor on X satisfying
L(X,D−P ) = L(X,D). Then Pk′ is a non-zero effective divisor (not necessarily prime) satisfying
L(Xk′ , Dk′ − Pk′) = L(Xk′ , Dk′), so Dk′ is not basepoint-free.

Lemma 2.7. Let F be a divisor of degree at least 2g on X. Then F is basepoint-free.

Proof . Thanks to the Lemma 2.6, we may assume that k is algebraically closed. For every closed
point P of X, both F and F − P are non-special by Corollary 2.5, the Riemann–Roch formula
implies

dimk L(X,F − P ) = degF − g = dimk L(X,F )− 1.

The claim now follows from Hartshorne [4, IV, Proposition 3.1(a)].

Definition. Let D be a divisor on X. An ideal generating set for D is a subset S ⊆ L(X,D) such
that for any divisor E such that S ⊆ L(X,E), we have E ≥ D.

Remark . The reason for this terminology (which I borrowed from Khuri-Makdisi [6]) is that it is
analogous to the concept of a generating set for a (fractional) ideal of a Dedekind domain.

Let F be a basepoint-free divisor on X. We write V = L(X,F ). To any point P of X over
some extension field k′ of k, we associate the linear subspace

VP = L(Xk′ , F − P ) ⊆ V ⊗k k′.

Because F is basepoint-free, VP is a hyperplane in V ⊗k k′. Let PV be the projective space of
hyperplanes in V ; this can be defined as a projective k-scheme by

PV = Proj

(

⊕

n≥0

Symn
k V

)

.

For any point P ∈ X(k′) with k′ an extension field of k, the hyperplane VP defines a point in
(PV )(k′) that we also denote by VP . More generally, any point of X over a k-algebra R defines
an R-valued point of PV . We get a map

iF :X → PV

P 7→ VP .

Definition. A divisor F on X is very ample if F is basepoint-free and the map iF is a closed
immersion.

Lemma 2.8. Let F be a divisor of degree at least 2g + 1 on X. Then F is very ample.

Proof . Lemma 2.7 implies that F is basepoint-free, so it remains to show that iF is a closed
immersion. We may assume that k is algebraically closed, since extension of the base field does
not affect the property of iF being a closed immersion. For every two closed points P,Q of X, we
have

dimk L(X,F − P −Q) = degF − g − 1 = dimk(X,F )− 2.

The claim now follows from Hartshorne [4, IV, Proposition 3.1(b)].
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2.3. Picard groups and Jacobian varieties

In the correspondence between number fields and function fields, the analogue of the class group
of a number field is the Picard group of a curve or function field.

Definition. The Picard group of X (or of K(X)), denoted by PicX, is the quotient of the group
of divisors on X by the subgroup of principal divisors, i.e. it is defined by the exact sequence

K(X)×
div−→ DivX −→ PicX −→ 0.

The class of a divisor D in PicX is denoted by [D].

Remark . The Picard group can also be defined as the group of isomorphism classes of line bundles
on X, with the tensor product as the group operation.

Because principal divisors have degree 0, the degree map

deg:DivX → Z

induces a homomorphism
deg: PicX → Z.

Notation. We write Pic0 X for the kernel of the degree map, i.e.

Pic0 X = {[D] ∈ PicX | degD = 0}.
Theorem 2.9. Let X be a smooth projective geometrically integral curve over k. Assume that X
has a k-rational point. Then there exists an Abelian variety (projective connected group variety)
JacX over k with the property that for every extension field L of k, there is an isomorphism

(JacX)(L)
∼−→ Pic0(XL)

that is functorial in L.

2.4. The zeta function of a curve over a finite field

In this subsection, k will denote a finite field of q elements, and X will denote a smooth projective
geometrically integral curve over k.

We define the zeta function of X by

ZX =
∏

P∈PDivX

1

1− tdegP
=

∏

d≥1

(1− td)−#PDivd X ∈ Z[[t]],

where PDivd X is the set of prime divisors of degree d.

Theorem 2.10. Let X be a smooth projective geometrically integral curve over a finite field k of
q elements.

(a) The zeta function of X can be written as

ZX =
LX

(1− t)(1− qt)
,

where LX ∈ Z[t] is a polynomial of the form

LX = 1 + a1t+ · · ·+ a2g−1t
2g−1 + qgt2g

(b) The polynomial LX factors over C as

LX = (1− α1t)(1− α2t) · · · (1− α2gt),

where the αi are complex number of absolute value
√
q.

(c) The polynomial LX satisfies
qgt2gLX(1/qt) = LX(t).

(d) We have
#X(k) = q + a1 + 1

and
#Pic0 X = LX(1).
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2.5. Exercises

2.1. Let D and D′ be two divisors on X that are linearly equivalent. Show that the k-vector
spaces L(X,D) and L(X,D′) are isomorphic.

2.2. (a) Show that the group Pic0
P

1

k
is trivial.

(b) Verify the Riemann–Roch theorem for all divisors D on P1
k.

2.3. Let X be a smooth projective geometrically integral curve over k, and let D be a divisor
on X. Show that D is basepoint-free if and only if there exists an ideal generating set for D.

3. Algorithms for curves and Picard groups

Throughout this section, X will denote a smooth projective geometrically integral curve of genus g
over k.

3.1. Khuri-Makdisi’s representation of a curve

We fix a divisor F satisfying
degF ≥ 2g + 1.

For all i ≥ 0, we write
V i = L(X, iF ).

Then we have

dimV i =

{

1 for i = 0,
1− g + idegF for i > 0.

If D is a divisor on X, we write

V i
D = L(X, iF −D).

We will usually restrict to divisors D satisfying

degD ≤ idegF − (2g + 1)

We note that for any two divisors D and E, we have a canonical k-bilinear multiplication map

L(X,D)× L(X,E) −→ L(X,D + E),

which induces a k-linear map

µD,E :L(X,D)⊗k L(X,E) −→ L(X,D + E).

Lemma 3.1. Let D and E be two line bundles of degree at least 2g + 1. Then the k-linear map
µD,E is surjective.

Proof . This is more subtle than the statement might suggest; the proof that I know uses a small
amount of of cohomology of vector bundles and a method known as the “basepoint-free pencil
trick”. See [5, Lemma 2.2] for a sketch.

Lemma 3.2. Let D, E and F be three divisors on X such that D is effective. Assume that F is
basepoint-free, and let W be a ideal generating set for F . Then the inclusion

L(X,E −D) ⊆ {g ∈ L(X,E) | g ·W ⊆ L(X,E + F −D)} (3.1)

is an equality.

Proof . By Proposition 2.2, it suffices to prove the claim after base extension to an algebraic closure
k̄ of k. We write

E −D =
∑

x∈X(k̄)

mxx, F =
∑

x∈X(k̄)

nxx.

Let g be an element of the right-hand side of (3.1); we need to prove that g is in L(X,E − D).
For any x ∈ X(k̄), we can find h ∈ W such that ordx h = −nx because W is an ideal generating
set for F . Since gh is in L(X,E + F − D), we have ordx(gh) + mx + nx ≥ 0. It follows that
ordx(g) +mx ≥ 0. Since this holds for all x ∈ X(k̄), we conclude that g is in L(X,E −D).
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Motivated by these results, we represent our curve by giving the spaces

V 0, V 1, . . . , V 7

together with the multiplication maps

V i × V j → V i+j for i, j ≥ 0 and i+ j ≤ 7.

(The number 7 is explained by the fact that all algorithms can be performed using only subspaces
of the V i with i ≤ 7.)

For simplicity, we assume that the curve X has a k-rational point O. We fix a uniformiser
t of the local ring OX,O. Elements of the spaces V i are represented by power series in t up to
sufficient precision to identify them uniquely as elements of V i. The spaces V i themselves are
represented by k-bases of such power series. This allows us to easily evaluate the multiplication
maps V i × V j → V i+j .

Remark . To construct our curve, we actually only need to give a basis for V 1 to sufficient precision.
Namely, by Lemma 3.1, we can compute bases for the other V i by taking products of the basis
elements of V 1.

Example. Let k be a field of characteristic not dividing 6, and let X be an elliptic curve over k
given by a Weierstraß equation

y2 = x3 + ax+ b.

Let O be the unique point at infinity, and let

R = k[x, y]/(y2 − x3 − ax− b).

We take F = 3O. We obtain
V i = {f ∈ R | ordO(f) ≤ 3i}.

More concretely,
V 0 = k,

V 1 = span{1, x, y},
V 2 = span{1, x, y, x2, xy, x3},
V 3 = span{1, x, y, x2, xy, x3, x2y, x4, x3y}.

The element
t = x/y

is a uniformiser of the local ring OX,O, and one can compute

x = t−2 − at2 − bt4 − a2t6 − 3abt8 − (2a3 + 2b2)t10 − 10a2bt12 +O(t14),

y = t−3 − at− bt3 − a2t5 − 3abt7 − (2a3 + 2b2)t9 − 10a2bt11 +O(t13).

3.2. Computing in the Picard group

Let x be an element of Pic0 X. We can write the divisor class x as [F −D], where F is our fixed
divisor of degree d ≥ 2g + 1 and D is some effective divisor of degree d. We represent D by the
subspace

V 2
D = L(X, 2F −D) ⊂ L(X, 2F ) = V 2

of codimension d.
In [5], Khuri-Makdisi developed a very elegant framework for computing in the Picard group

of X using this representation of X and of divisors D as above. In [6], he improved the complexity
by making clever use of ideal generating sets (basepoint-free subspaces) of the spaces L(X,D)
instead of the full spaces where possible. The resulting algorithms have the best known asymp-
totic complexity (as the genus grows) for general curves, thanks to the fact that the fundamental
operations are reduced to linear algebra. We now very briefly sketch how this works.
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A representative for the zero element of Pic0 X can be generated as follows. We choose any
non-zero element s ∈ V 1 and compute

sV 1 = {st | t ∈ V 1} ⊂ V 2.

For example, if F is effective and we take s = 1, we obtain sV 1 = L(X,F ) = L(X, 2F −F ), which
encodes the divisor F − F = 0.

Testing whether a subspace V 2
D represents the zero element can be done using Lemma 3.2.

Namely, we can compute

L(X,F −D) = {s ∈ L(X,F ) | s ·W ⊆ L(X, 2F −D)},

or more compactly
V 1
D = {s ∈ V 1 | s ·W ⊆ V 2

D},
where W is any basepoint-free subspace of L(X,F ). We then note that since the divisor F − D
has degree 0, the space L(X,F −D) is non-zero if and only if F −D is principal.

As in the case of elliptic curves, the group operation is reduced to the “addflip” operation

(x, y) 7→ −x− y,

which is more fundamental from a computational point of view. This operation can be implemented
as follows. Suppose we are given two elements x, y ∈ Pic0 X, represented by subspaces V 2

D =
L(X, 2F −D) and V 2

E = L(X, 2F − E) as above. Using Lemma 3.1, we then compute

V 4
D+E = V 2

D · V 2
E .

(Here we write V 2
D ·V 2

E for the image of V 2
D ⊗V 2

E under the multiplication map V 2 ⊗V 2 → V 4, i.e.
the subspace of V 4 spanned by all products st with s ∈ V 2

D and t ∈ V 2
E .) Next, using Lemma 3.2,

we can compute
V 3
D+E = {s ∈ V 3 | s ·W ⊆ V 4

D+E},
where W is any basepoint-free subspace of V = L(X,F ). In the resulting space, we choose any
non-zero element

s ∈ V 3
D+E = L(X, 3F −D − E).

We may write div s = D + E + S − 3F , where S is an effective divisor. Since x = [F − D] and
y = [F − E], we have

−x− y = [D + E − 2F ] = [F − S],

so that the subspace V 2
S of V 2 represents −x− y. We compute

V 5
D+E+S = L(X, 5F −D − E − S) = s · V 2.

Finally, we compute (again using Lemma 3.2)

V 2
S = {t ∈ V 2 | t ·W ⊆ V 5

D+E+S},

where W is any basepoint-free subspace of V 3
D+E .

From the addflip operation we immediately obtain negation by

−x = −0− x

and addition by
x+ y = −(−x− y).

The problem of testing for equality is easily reduced to testing for zero by

x = y ⇐⇒ x− y = 0.

For more on these algorithms and for the complexity analysis, we refer to Khuri-Makdisi’s papers
[5] and [6].
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3.3. Algorithms over finite fields

The type of function fields that most resemble number fields are function fields over finite fields.
In this case, the author developed algorithms for various tasks in the paper [1]. These algorithms
are implemented in the author’s modgalrep package [2]. We just list the algorithms and refer to
[1] and [2] for all details.

• Picking uniformly random divisors and elements of the Picard group

• Decomposing divisors as linear combinations of prime divisors

• Applying the Frobenius map to Picard group elements defined over an extension of the base
field

• Computing Frey–Rück (or Tate) pairings and Weil pairings

• Computing a basis for the l-torsion of the Picard group for prime numbers l
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