
CLASSGROUP COMPUTATIONS IN LARGE DEGREE

CLAUS FIEKER

This is a draft version of May 28, 2018, 10:10a. It is still growing
and under construction.

1. Overview

K is a number field, viewed as KQ[t]/f where f ∈ Z[t] is monic and
irreducible. Then E := Q[t]/f is an order, the so called equation order.

Note: the equation order is non-canonical, it does depend on the
chosen polynomial.

In K there is a canonical order ZK the maximal order, or ring of
integers. It is the integral closure of Z in K, or the normalisation of E .
ZK is a Dedekind domain, a free Z-module of rank n = deg f = K : Q.

The (fractional) ideals in ZK form a group under multiplication. In
general orders, e.g. the equation order the invertable ideals still form a
group, but there are non-invertable ideals as well. The quotient of the
ideal group modulo the principal ideals is the ideal class group ClK .
This is a finite abelian group of size hK the class number of K (or ZK).

The units in ZK (or any order in K) are, modulo torsion, a free
abelian group of rank r = r1 + r2 − 1 where r1 is the number of real
roots of f (or the number of real embeddings of K into C, the field of
complex numbers) and 2r2 is the number of non-real roots. The torsion
subgroup is cyclic, generated by a root of unity.

We fix an ordering on the embeddings, (.)(i) : K → R for 1 ≤ i ≤
r1, (.)(i+r1) = (.)(i+r1+r2) : K → C the pairs of complex embeddings.
Orders give rise to lattices in essentially two ways:

• x 7→ ψ(x) = (x(1), . . . , x(r1),<(x(r1+1)),=(x(r1+1)), . . .) ∈ Rn

• x 7→ L(x) = (log |x(1)|, . . . , log |x(r1)|, log |x(r1+1))|, . . . , log |x(r1+r2)|) ∈
Rr1+r2

Later we will also encounter variants.

2. Classgroup I

Since the class group is finite, we can fix a number B and a set of
prime ideals F := {P |N(P) ≤ B} called a factor base. If B is large
enough, then the elements of F generate the class group. We will
mostly assume this.

1

2 CLAUS FIEKER

A relation α ∈ K is an element s.th. vP (α) = 0 for all P /∈ F . Equiv-
alently, 〈α〉 = αZK =

∏
P∈F P

vP (α) . Clearly, the set of all relations
forms a Z-module under multiplication. Let R be this set. Dirichlet’s
unit theorem implies that, up to torsion, R/T (Z∗K) ≡ Zr+#F the set of
F -units, then

1→ R→ 〈F〉 → ClK → 1

Let φ : R → ZF : α→ (vP (α))P∈F we get

1→ kerφ→ ZF → ClK → 1

Thus computation of the class group is “equivalent” to finding kerφ.
As this is a submodule of ZF , which is finitely generated, hence we need
generators for kerφ. This is not quite enough, we will add conditions
to this later.

Fixing relations αi ∈ R (1 ≤ i ≤ k) we obtain the relation matrix
M = (vP (αi))P∈F ,i.

Computation of the class group means finding

• F
• αi
• M

The difficult part is the 2nd step: finding (enough) relations. To em-
phasize again: computation of the class group is not just about the
computation of the structure/ order of the finite abelian group ClK , it
is about the computation of data allowing further use.

Buchmann gave the complexity of the class group algorithm, under
the GRH and “plausible assumptions” for families of fields of bounded
degree as

Ld[1/2, O(1)]

where d is the disriminant of the field and

Ld[α, β] = exp(β log dα log log d1−α + o(1))

is the usual subexponential function.

3. Limits

We assume the maximal order to be known. There is the funda-
mental result by Chistov that the computation of the maximal order
is polynomial time equivalent to finding the largest square-free divi-
sor of the polynomial discriminant. From a complexity point of view,
the latter is an “Ld[1/3, O(1)]” algorithm, the class group is mostly
Ld[1/2, O(1)]. There is a range of possibilities for the actual computa-
tion of the maximal order, once the factorisation (or the critical primes)
is known, but I won’t deal with this.

CLASSGROUP COMPUTATIONS IN LARGE DEGREE 3

Actually, one can run the class group algorithm directly on the non-
maximal order to obtain essentially the Picard-group of the order, how-
ever, it seems to be better (read faster) to first compute the maximal
order and then proceed with the computation.

4. Classgroup II: Biasse-Fieker

Buchmann’s result (or the versions of Cohen, Diaz y Diaz and Oliver)
were for a long time both theortically and practically the limit. Imple-
mentations in Pari/gp (=sage), Kant/KaSH = Magma both followed
this approach, so lets look into more details.

Let B as above be a bound for the prime ideals, we’ll come back to
the choice of B. Buchmann’s strategy was essentially this: Let a be a
random product of ideals in F . Compute b = a−1 and let b be the 1st
basis vector of a LLL-reduced basis for b. If ba is F -smooth, then b is
a relation. If not, then take a new ideal a and try again.

Buchmann “proved” that the probability of a random ideal of norm
N(a) < C to be B-smooth is essentially the “same” as that of an
random integer bounded by C to be B-smooth, hence

probgood ideal(C,B) = ψ(C,B)/C.

Assuming B = C1/a for a ∈ Z>0 we get via the Dickman-rho function:

ψ(C,C1/a) ≤ ρ(a) ≤ 1/a!

So, what is C? Using the LLL theorem, one sees

C ≤ 2n
√
d

The
√
d is the reason for the Ld[1/2, O(1)] in Buchmann, while the 2n

is the source of the bounded degree: 2n grows exponentially.
Thus the problem in the class group algorithm is to find (many)

elements/ ideals of norm bounded by s.th. smaller than
√
d. So far all

generic methods involve geometry of numbers, hence lattices and have
the
√
d.

Biasse, in this PhD thesis, motivated by the analogy to plane curves
in cryptography, found conditions on the polynomial defining the field
to allow for many small elements: if the coefficients of the defining
polynomial are sufficiently small relative to the discriminant, one get
many small elements for free: any small linear combination of small
powers of the primitive element will have small norm. He quantified
all the “small” and was able to prove that there are families of fields
where the class group can be computed in Ld[1/3]. But still of bounded
(fixed) degree.

4 CLAUS FIEKER

In order to remove the degree dependency, Biasse suggested using
stronger lattice reduction: replacing LLL by BKZ with a suitable block-
ing factor, increased the runtime complexity of the lattice reduction
from polynomial to sub-exponential, but also dropped the 2n to s.th.
sub-exponential. In total, this combined to a sub-exponential runtime
for fields of unbounded degree.

Reality: is has been observed that the 2n in the LLL is too pes-
simistic. Stehlé deomonstrated (and argued) that the constant, for
random lattices, grows more like 1.02n which means that for fields of
degree 500 (which are totally out of reach), we still have only a facor
of 20, 000 which is negliable. So, the Buchmann approach is fine in all
fields of attainable degree. Currently.

Bigger problem: the “smallest” discriminant of a field of degree 500,
using the GRH bounds of Martinet and others, is > 22730, hence, even
with a LLL “constant” of 1, we will only find elements of norm 21400.
If we assume a factor basis of 106 ideals (which we cannot handle), the
largest prime, thus the bound B is bounded by the 106-th prime: p =
15485863. For the smoothness probability we need to write B = C(1/a)
or a = logp(C) = 58.6, giving ρ(a) ≤ 10−75. Actually computing ρ(57)
gives an even much smaller bound. This means we cannot possibly
hope to find any relations this way.

For a = 9 we have ρ(9) = 1.01 · 10−9 which would give a 1 : 109

chance of finding a relation. However, then B = C1/9 = 2155 is too
large for the universe, let alone my computer.

Summary: the Fieker-Biasse approach, while a theoretical break-
through, is not practical.

Observation: so far, no-one is interested in generic, random, fields of
degree > 100. All such fields of (current) interest are special.

• cyclotomic (or (maximal) subfields)
• multi-quadratic
• small, sparse, defining polynomials
• composita of nice fields.

5. Ideal Arithmetic

In order to perform any computation in K or ZK with either elements
or ideals, we need to fix a presentation. Fundamentally, there are two
canonical choices for elements of K:

• using K = Q[t]/f , elements are represented as polynomials in
Q[t] of degree bounded by degK − 1
• using the vector space structure, K = Qn, elements are vectors

of length n.

CLASSGROUP COMPUTATIONS IN LARGE DEGREE 5

(Later we might allow for sparse polynomials or sparse vectors, but lets
focus on the dense case)

5.1. Polynomial presentation. Element addition/ substraction/ scalar
multiplication can immediately be implemented using the correspoding
operation for polynomials, hence at an arithmetic cost of O(n).

Multiplication requires a polynomial multiplication, followed by a
division with remainder by the defining polynomial. Using classical
(school) methods, this comes at a cost of O(n2). Using asymptotically
fast methods this drops to roughly O(n log n).

Division requires an extended euclidean algorithm, a gcd computa-
tion with Bezout coefficients. Again the arithmetic costs are O(n2)
classically and O(n log2 n) fast.

Norm computation can be achieved as a resultant of the element with
the defining polynomial, hence again at cost O(n2) resp. O(n log n).

Application of an automorphism corresponds to a modular compo-
sition, again at cost O(n2) or O(n log n).

On the other hand, membership testing, ie. x ∈ ZK requires a base-
change, hence always quadratic time.

5.2. Vector presentation. Addition and scalar multiplication is no
problem here.

In order to multiply we need additional information, either a multi-
plication table, ie. an array containing products of the basis elements,
or a base-change to convert to the polynomials for multiplication. The
costs work out to be O(n3) for the multiplication table vs. O(n2) for
the base-change. However, here things are not what they seem: Using
ωiωj =

∑
Γi,j,kωk we get

(
∑

aiωi)(
∑

bjωj) =
∑
i,j,k

Γi,j,kaibjωk

Here, Γi,j,k is fix (fixed by the basis (ωi)i, while the coefficients are
arbitray, so we have n2 products of arbitrarily large numbers and n3

products of large times small, thus the effective cost is, for large ele-
ments, only O(n2) again.

Division can be done by base-change or by solving a linear system:
Let Mβ be the representation matrix of β, ie. the matrix where the rows
contain the coefficients if βωi and let 1 =

∑
oiωi then xMβ = 1 yields

the coefficients xi of the inverse of β. The costs are O(n3) arithmetic
operations for the linear algebra.

Norms of elements are here be obtained via the determinant of the
representation matrix, again at cost O(n3).

6 CLAUS FIEKER

5.3. Comparison. Clearly, off hand, there is no point in using the
vector version as every operation is more expensive than in the poly-
nomial case. However, this is not quite true in reality: coefficient size
matters. Asymptotically, the coefficient size of a single element in the
different representations is the “same” ie. the difference is bounded
(by a costant coming from the basis used). In any fixed application,
in particularly when the field degree is only moderate, this can make
a dramatic difference! As we are intersted in large degree (mainly)
we ignore this subtle problem and assume the polynomial presentation
hence forth.

More representations are known in the literature:

• factored form: elements are power products
• complex approximations and minimal polynomials
• straight-line programmes
• representation matrices

They are all useful - in the correct situation.

5.4. Ideals. Ideals are more interesting. Here we have a few “natural”
presentations:

• a principal ideals - we we happen to know a generator
• as a Z-module using a basis
• as a ZK-module using 2-generators.

Fine, but what operations do we need to support? In the class group
algorithm we need

• products, quotients
• valuations
• small elements

In general, we’d also like gcd’s aka sums of ideals.

5.5. Z-Modules. Ideals, in particular integral ideals are free Z-modules
of rank n and thus, after fixing a basis of the order/ field, can be rep-
resented via an integral matrix:

A =
∑

αiZ, αi =
∑

ai,jωj

and MA = (ai,j)i,j.
To compute AB given via MA, MB we have to compute all n2 prod-

ucts of basis elements:

AB =
∑

αiβjZ

thus need n2 products and the HNF reduction of an n2 × n matrix.
The algebraic complexity is thus O(n4) (for the linear algebra: the

CLASSGROUP COMPUTATIONS IN LARGE DEGREE 7

products can be evaluated using representation matrices making the
linear algebra the most expensive part).

If one ideal is given via 2-generators and the other via a basis, the
linear algebra reduces to 2n × n, the complexity to O(n3). Note that
if both ideals are given via 2-generators, we need a 4n × n reduction
which is worse.

For division, there are at least two methods: a direct reduction to
a n2 × n system, or, via inversion of the trace matrix to a clever ideal
product (which is typically a n2 × n linear problem)

However, it should be noted that

• the presentation can easily be made unique (fixing a hnf)
• to test membership, or to find small elements, a basis is cur-

rently needed.

5.6. 2-Element. In Dedekind domains, every ideal can be generated
using 2 elements only. To be more precise:

Lemma 1. Let 0 6= a ∈ A be arbitrary, then one can find α ∈ A s.th.
〈a, α〉 = A.

If a ∈ N and α is chosen uniformly at random in A/aA, then the
probability of α working is at least∏

p|a

∏
P|p

1− 1/N(P)

Thus unless small primes p|a are involved that are highly split (e.g.
2 totally split), this probability is typically large: fiding second gener-
ators is trivial. Testing is not. Also, there are almost no algorithms
for ideal operations via general 2-element presentation - apart from
powering: we always have

〈αi〉l = 〈αli〉
Pohst and Zassenhaus refined the 2-element presentation to the S-

normal presentation for any finite set S of prime numbers: Let S(ZK) =
{P|P|p ∈ S}. Then (a, α) ∈ N × ZK is a S-normal set of generators
for A iff

• vP(a) ≥ vP(A) for all P ∈ S(ZK , vP(a) = 0 otherwise
• vP(α) = vP(A) for all P ∈ S(ZK)

(a has too large valuation in S - but zero outside, α has the correct
valuation in S - but more outside, a is “to high”, α to broad)

Here too we have

Lemma 2. If a ∈ A∩N, S containing all primes in a, and α is chosen
uniformly at random in A/a2A, then the probability of α working is

8 CLAUS FIEKER

exactly ∏
p|a

∏
P|p

1− 1/N(P)

And here we have an effective test:

Theorem 1 (Zassenhaus). Let m = min〈α〉 ∩ N, then (a, α) is S-
normal for S containing all primes in a iff

gcd(a, a/ gcd(a,m)) = 1

.
Furthermore, 〈a, α〉 = A iff gcd(an, N(α)) = N(A)

Together with
min〈α〉 ∩ N = den(1/α)

This allows for a fast test (at cost of one inversion - and some integers)
The importance here is that in this presentation we have efficient

algorithms:
If 〈a, α〉 and 〈b, β〉 are S-normal for the same set S, then 〈ab, αβ〉 is

a S-normal presentation for the product - at cost of a single element
mutiplication!

Furthermore, N(〈a, α) = gcd(an, N(α)) again, at the cost of a single
element norm and finally

Let den(1/α) = st s.th. gcd(t, a) = 1 and all primes dividing s also
divide a, then 〈1, t/α〉 is a S-normal presentation for 〈a.α〉−1

To use this for the product, we need to be able to change the set S:

Lemma 3 (Sircana). Let 〈a, α〉 be S-normal and 〈b, β〉 T -normal.
Then define s =

∏
S \ T and t =

∏
T \ S, then 〈a, tα + a2〉 and

〈b, sβ + b2〉 are both S ∪ T -normal for the same ideals.

Note: in the implementation the sets S and T are only implicit: they
are defined as the (unknown) primes dividing some integer. Here s and
t will have to be computed using some integer gcd operations.

Using this, the (general) ideal multiplication becomes essentially the
same cost as a single element multiplication!

The core problems here are

• the presentation is non-unique, ie. comparison has to be done
via AB−1 = ZK
• the presentation is non-unique, ie. sets via hashing, or, in gen-

eral hashing cannot be done this way
• the presentation is non-unique, in particular the 1st generator

tends to grow (unneccessarily) over the time and thus the 2nd
one as well

CLASSGROUP COMPUTATIONS IN LARGE DEGREE 9

• we know the norm, but not the minimum
• we cannot (yet) compute sums (gcd)

But there are also benefits:

• almost all prime ideals are naturally given in a {p}-normal pre-
sentation
• to compute valuations, an anti-uniformizer is handy an element

of valuation −1 at the critical prime, 0 at all conjugate primes
and non-negative elsewhere. The 2nd generator of the inverse
doees this
• until the elements are too large, this is fast

To size-reduce a S-normal presentation, we can try to find the min-
imum m as gcd(a, den(1/α)), then set S to the divisors of m and re-
duce α modulo m2. But here is the twist: computing 1/α takes about
O(n log n) or O(n2) operations in Z, but, generically, using integers of
size O(n log a) as well. So the total cost is O(n2 log n) or, classically
O(n3 log a) Using linear algebra (hnf) to find the minimum can be done
in O(n3 log a) as well - so the advantage is gone (or harder to realize).

However, one can see den(1/α) = rres(α, f) and one can try to com-
pute the resultant directly in Z/aZ. which generically is hard. We only
have

Lemma 4 (KL). Let α, f ∈ Z/aZ[t] and assume f monic. Then we
can compute

• res(α, f), rres(α, f) (= den(1/α))
• the Bezaut coefficients
• gcd(an, N(α))

In time Õ(n2 log a)

Unfortunately, we don’t have generically fast (O(n log n)) methods
here. Also, one polynomial needs to be monic.

At least, we’re beating the linear algebra again. For large degree
fields, this makes a huge difference - and the methods, apart from the
resultant, are easy to implement.

There are complications for index divisors, but those are not hard to
overcome. If the minimum is close to the norm, then the old, direct,
approach is faster by a logarithmic factor. If, as generically, the norm
is larger by a size-factor of n, we win.

6. Classgroups III

We need (at least):

• parameters (e.g. factor basis bound)

10 CLAUS FIEKER

• many (good) (small) elements
• recognize smoothess
• factor smooth elements
• the image of the relation matrix
• kernel (elements) of the relation matrix
• dependencies among units
• termination

6.1. Parameters. The total runtime is roughly the time to find rela-
tions plus the processing time (linear algebra). The linear algebra is
cubic, possibly only quadratic, in the size of the factor base, so ques-
tion: how hard is it to find relations? The assumption is that we’re
finding random elements of bounded norm, typically of norm bounded
by
√
D (or a constant multiple of it). The ψ and ρ functions tell us

what the expected yield should be, but experimentally, the succeessrate
is much higher! Good! But why?

Heuristic 1 (Donnelly). The elements are randomly distributed in a
bounded (by coordinates/ conjugates) region. The norm however, is
not uniform, it follows the hyperbolic volume: the number elements of
norm ≤ b should be proportional to

vol{
∏

xi ≤ b|0 < xi ≤ 1}

This volume can easily be computed and seems to explain the distri-
bution. The theoretical optimal parameters are such that the relation
search and the linear algebra take the same time. Practically, however,
the best possible examples depend on the largest size the linear algebra
can handle: the relation search is easy to parallelize, the linear algebra
not.

6.2. Relations. The classical Buchmann (Cohen, Diaz y Diaz, Olivier)
method tries a random product A of factor basis elements, then finds
a/some small elements α in A−1 and checks if αA is smooth over the
factor base.

Assuiming various things (product large enough, elements not in
subfields, ideals uniformly distributed over the class group), one can
prove an expected runtime. However in praxis this is too slow. All
implementations try to find elements of small norm (to increase the
smoothness probability). Controlling the norm directly is difficult, so
one settles for T2-small, ie. small in the lattice. Problem is that this
controls the norm only badly, ie. in Donnelly’s sense. In ideals of small
norm, there are frequently many more small norm elements.

Unfortunately, they

CLASSGROUP COMPUTATIONS IN LARGE DEGREE 11

• produce dependend rows in the relation matrix
• tend to fall in subfields

In total: they can not completely generate the class group. Only if
the norm of the ideal is “sufficiently large” will the relations behave as
Buchmann wants them. But then, the ideals are large and slow.

The generic idea here is to not compute the ideals from scratch at
every step, but change them slowly: remove a factor (at random), insert
another factor, to simulate a random walk through the class group. As
“sufficiently large” is hard to quantify, periodic checks are performed
to see if enough “progress” is made. If not, the product parameters are
increased.

For the choice of elements in A there are also differnt choices being
used:

• LLL-basis elements only
• (small) (random) combinations of LLL-basis elements
• systematic enumeration of small elements (Fincke-Pohst)

Various people have had various success with either of those methods.
A different approch is to use sieving as in the factorisation (NFS) or

discrete logarithm computation. So far, this works fine in small degree
(and large discriminant) fields, but not for large degree fields. There
are some ideas to try, but so far, no-one successfully reported sieving
in fields of degree > 10.

6.3. Smoothness. Usually, the first step here is to see if the norm is
smooth, so in particular to compute the norm.

Task: given α ∈ A of norm N(α) = dN(A) and d ≤
√
D, find d. The

reason for this complicated set-up is that finding d with the additional
information is easier than the generic norm.

To compute the norm we have many methods. Focussing on the
faster ones:

• product of the conjugates
• resultant

we can use the fact that we want d = N(α)/N(A) which is much smaller
thanN(α) directly. This means we can easily bound the (real) precision
necessary in the 1st method or limit the number of primes used in the
modular method employed in the 2nd. We also note that the occaisonly
wrong norm (because it was unexpectedly large) is harmless: a large
norm is less likely to yield a relation and we don’t require completeness,
only to find enough elements.

12 CLAUS FIEKER

Also, given that we need many norm computations with, say, the
same primes involved in the modular resultant, we can save even more
time.

Next step: given d or dN(A), test smoothness. Again, there are
non-trivial savings to be had here:

• using product trees, individual tests are sped up
• using batch-smoothness tests, many integers are tested at the

same time!

It should be noted that both improvements require fast arithmetic as
they do a tradeof involving large integers. The core idea is, instead of
testing (and removing) all primes pi individualy, to compute P =

∏
pi

and then do d → d/ gcd(d, P) until the gcd is 1. Properly balanced
this is much faster than individual tests. Extensions of this will also
identify the primes involved in d.

Next step: we have all (integer) primes dividing dN(A) = N(α) and
need the prime ideals P (and the exponents) that are involved. Naively,
one checks for all prime ideals above a critical prime and computes the
valuation. However, for large degree fields this is deadly slow.

Assume, for now, that the equation order is p-maximal and that p
is unramified. In most examples this covers most ideals, hence most of
the time. Also, assume α ∈ Z[t]/f . Dedekind: f ≡

∏
fi mod p results

in prime ideals Pi = 〈p, fi〉 and

Pi|α iff fi| gcd
Fp

(f, α)

So the critical primes can be found using product trees and (this time)
fast polynomial arithmetic (over small finite fields)!

A similar approach can be used for the large prime variant: if, after
all factors of the factor base are removed, we are left with an ideal of
prime norm, then gcd(α, f) over the corresponding finite field yields a
unique, canonical representation of the ideal, hence a basis for hashing.

A twist however comes from the fact that is two partial relations
are merged, the resulting full relation is no longer integral so that
the smoothness test is more involved (but can still be done on the
polynomials).

In the last step, the actual valuation has to be computed. For almost
all ideals involved this will be trivial: the valuation will be 1 and the
valuation of the norm is also 1. For the small prime ideals, the valuation
can be larger, here one has to be more careful.

6.4. Image. The image computation is mostly done in two steps:

• in a suitable finite field (or modulo an auxilliary prime p)

CLASSGROUP COMPUTATIONS IN LARGE DEGREE 13

• once the matrix has full rank, over Z
The 1st step is done to avoid coefficient explosion - while the finite
result is mostly small, the intermediate results (can) have a bit-length
proportional to the size of the matrix. Apart from testing for full
rank, we can also identify the “missing” primes and change the search
strategy to force them in.

When using sieving, a different approach is used: the factor basis is
much larger and many more relations are found. Then in the linear
algebra, many rows (relations) and columns (ideals) are removed in
order to make the size manageable. If enough survives, this is fine.

As the relation matrix is extremely sparse, sparse linear algebra is
used here.

6.5. Kernel. The kernel, or more precisely, kernel elements, corre-
spond, via the power product of the relations, to units. Hence we need
kernel elements. Problem: the bit-size of each coordinate of a kernel
element is proportional to the size of the matrix, and, to make things
worse, its dense. That means for typical sizes of relation matrices, we
cannot simply compute the kernel.

Two approaches are currently used:

• take a (small) (dependend) subset of the rows and the kernel
elements from those rows
• compute a straight-line representation of the transformations

done in the previous step. Ie. remember the sequence of el-
ementary transformations. In comparison to the direct ker-
nel, this takes O(nm) storage, while the full kernel would be
O((m− n)m2) due to the size of the entries.

In either case, we usually do not compute (or use) the full kernel, but
just some elements. Individual kernel elements can also be found using
iterative methods (Lanczos, Wiedemann) like in the NFS.

A problem here, in particular with the 1st approach is that the sys-
tem of units thus constructed, even if one uses all subsets of fixed size,
will have a non-trivial (large) index.

6.6. Units. Given units ui, given as (huge) products of (many) (small)
elements with (huge) exponents, we need to find dependencies, ie. find
ni s.th.

∏
uni
i = 1. Those dependencies are then used to construct a

basis for the group generated by all those units from the last step.
The (usual) methods here are using

• (real) logarithms
• p-adic logarithms

14 CLAUS FIEKER

In either case,
∏
uni
i = 1 is transformed to

∑
ni log ui = 0. In both

cases the complications arise from the need to use approximations: we
will never see/ be able to prove an exact zero. Using real-logarithms,
the precision neccessary is at least the bit-length of the exponents,
hence proportional to the size of the relation matrix.

Using p-adic logarithms, the precision will depend on the size of
the (unknown) output, which is potentially much smaller. However,
it also depends o Leopold’s conjecture, hence all relations found need
verification - using real-logarithms. Combining the information from
various p-adic computations using CRT, we could parallelize this.

6.7. Termination. At this point we have a (conjectured) class group,
in particular a class number h and a (conectured) regulator r. Both
have, under the assumption that the factor basis was large enough, the
property that they can (only) be too large, if they are, they are too
large by an integer factor of at least 2.

Theorem 2. There is an explicit constant c coming from the residue
of the zeta-function of the number field s.th. c = hr.

This is supplemented by

Theorem 3 (GRH: Bach, Belabas). There is a polynomial time algo-
rithm that will compute c̃ s.th. c̃/

√
2 ≤ c ≤ c̃

√
2

The information needed here is essentially the factor base: all prime
ideals of norm bounded by O(log2D).

So: if c̃/
√

2 ≤ hr ≤ c̃
√

2 we are done.
If not, we need more relations as either the image (class group) or

the kernel (units) are too small.

6.8. Saturation. In the run of the algorithm, close to completion, we
will be off by a small index, typically a factor of 2 or maybe 3. At this
point the relation search is struggeling to find the missing bit. Also,
in other applications we are given a a subgroup V = 〈αi|1 ≤ i ≤ l〉 of
some group of S-units and need to enlarge to a p-maximal over group

W := {x ∈ US|xp
k ∈ V }

This task split into 2 problems: identify vectors ki ∈ Z s.th.∏
αkii ∈ (K∗)p

and second to compute the pth-root.

Lemma 5. Let p be a prime and α ∈ ZK. Then

• tp − α ∈ K[t] is irreducible iff it has no roots.

CLASSGROUP COMPUTATIONS IN LARGE DEGREE 15

• if tp − α is irreducible, then there are infinitely prime ideals P
sth. tp − α is irreducible over the residue field FP

This is repeatedly used: for (many) prime ideals P s.th. p|N(P) −
1 = F∗P and define

φP : C l
p = V → F∗P/()p = Cp

The intersection of the kernels of φP for many P, in particular the
none-zero elements (or a basis for the intersection modulo p-th powers
i V) are candidates for being pth powers. That need testing. Idealy, if
enough ideals are used, those elements are pth powers.

Now we have β =
∏
αni
i , 0 ≤ ni < p and need to either compute a

pth root - or show the non-existence. The key problem to any direct
approach is the the sheer size of β: During the class group computation,
if applied directly, k will be of size |F|, thus even if the exponents
are bounded β will have huge coefficients. When spplied to the unit
group only, then the αi are themselves given as power products of the
relations, so

αi =
∏

r
mi,j

i,j

where the number of terms is O(|F|) and, expected, log |mi,j| = O(|F|)
as well. Brauer-Siegel, in conjuction with LLL shows that we will
have log |αi| = O(1

r

√
D), hence cannot have small (or even manageable

sized) coefficients.
We will use the compact presentation to transform

β =
∏

αni
i =

l∏
i=0

γp
i

i

where l = O(log |β|) and T2(γi) = O(
√
D)p. (Not quite, the size of the

prime ideals dividing β also comes in here) Clearly, β is a pth power
iff γ0 is and γ0 is small enough for direct computation. In fact, the
expectation is that generically at this point γ0 = 1.

6.9. Compact Presentation. Given β huge and 〈β〉 =
∏

Pki
i , will

can find γi s.th.

β =
∏

γp
i

i

Note, that

• in the class group context all elements are build from relations,
hence the prime ideals are explicitly known
• generically, a coprime factorisation is sufficient, thus can be

computed in polynomial time (using coprime bases over the
integers and then for ideals)

16 CLAUS FIEKER

The method splits into 2 parts: support reduction and then size reduc-
tion.

To start: ai =
∏

P
ni,j

j and ni,j = bki/pic mod p, so 0 ≤ ni,j < p, and

〈β〉 =
∏

ap
i

i . Gradually, each ideal ai is now reduced: find an (LLL-
small) element µ ∈ ai−1 thus ãi = µiai is an integral ideal of bounded

norm, 〈β〉 =
∏
µp

i

i

∏
ãi
pi with small ideals ãi. The size of µi will at

least depend on the size of the primes dividing Pi.

The second step appoximates β̃ = β
∏
µ−p

i

i : for l = blog |β̃|c down

to 1 do the following η = 1
pl

log |β̃| and find γl ∈ b−1l which is LLL small

for T2,η. As a result, γp
l

l ≈ β̃ and β̃γ−p
l

l is smaller. Next, we update
the bi and continue.

The final γ0 is defined as the last β̃. Since this is ”smallit can ex-
plicitly be computed using modular evaluation.

7. Special Fields

The techniques above still do not solve the problems inherent in
large degree fields, however they are successfully be utilized in ”special”
fields. So far, essentially no-one is interested in generic large fields,
large fields, in crypto or other applications are carefully constructed
for various applications. This special properties might be used to help
the class group computation:

7.1. Cyclotomics. The security of current incarnations of NTRU de-
pends on not being able to solve the PID problem in (large degree)
cyclotimic field, mostly power-of-two fields. The Genntry-Sy? algo-
rithm reduced the PID problem to one in the maximal real subfield,
hence to a field of half degree.

Alexandre Gelin, in his recent thesis, managed to use special features
of the real subfield to solve this in a (totally real) field of degree 128:
One can show that ζ i2n +ζ−i2n up to ordering are a LLL reduced basis for
the maximal order. Gelin used a bound of 25, 000 for the factorbase
and tried as relations random sums of up to 6 LLL-basis elements.
Those relations were then supplemented by their Galois orbits. In his
experiment, he needed little more than 6 hours to obtain a relation
matrix of full rank. In fact, this can be sped up to just under one hour.

However, proving anything in this situation seems to be out of reach.

7.2. Multiquadratic. Last year, in a long paper, a team suggested to
use multiquadratic fields, in particular fields of the form Q[

√
p
1
, . . . ,]

for (small) distinct primes pi. They showed that in those fields

• fast multiplcation is possible

CLASSGROUP COMPUTATIONS IN LARGE DEGREE 17

• determination of the maximal order is ”easy” (trivial outside 2)
• the unit group, up to powers of 2 is generated by the units of

all (quadratic) subfiields. The maximal power is known as well
• for elements, explicitly given in the canonical basis. fast extrac-

tion of square roots is possible.
• the PID problem can also be solved effectively.

In fact, for all those problems, they could avoid any lattice techniques
and work in the canonical base using polynomials only.

They reported very good running times for a field of degree 256.
They also reported fundamental difficulties if large primes are encoun-
tered: in this case, the units of the quadratic field are of size exponential
in p, not log p, thus the units ”require” the compact presentation, hence
lattice techniques.

However, when restricted to small primes, the method was proven
to run in polynomial time, hence gave the first example of large fields
with fast class group not depending on quantum computers.

Classically, this has also been used for normal fields of degree 8 and
Galois group D4.

7.3. Verification.

8. Julia/ Hecke

Julia is a strongly typed, JIT compiled language. It is not object
oriented, but instead polymorphic: there can be many functions with
the same name, selection is done based on the types of all arguments.
In order to make (maximal) use of the JIT compilation, care must be
taken to have functions being type stable, ie. the output type should
only depend on the input type, not the actual values.

In julia, do

julia> using Hecke

and you are ready to go.
Similar to Magma, Gap and Sage, in order to use non-trivial objects,

you need to create the parents, usually some rings.

julia> Qx, x = FlintQQ["x"]

creates both Q[x] as a ring and the polynomial x.

julia> (x+1)^4

To create a number field, you need to have a polynomial

julia> K, a = number_field(x^5+1)

julia> ZK = maximal_order(K)

julia> C, mC = class_group(ZK)

18 CLAUS FIEKER

Now try it again: (using <cursor-up>: julia remembers your com-
mand history even between restarts)

julia> C, mC = class_group(ZK)

instantenous. But cheating: the class group of ZK is already computed
so the last one is returned.

julia> C, mC = class_group(ZK, redo = true)

will actually recompute it again.
Still much faster than the 1st time as now the program does not need

to be compiled again. In order to time commands, you can prefix them
with @time, e.g.

julia> @time C, mC = class_group(ZK, redo = true)

Note, adding a semicolon ; to the end of a line suppresses the output.
The class group computation returned 2 values: the class group, as

an abelian group (try typeof(C)) and a map mC : C → I where I is
the set of fractional ideals. This map can be used to

• obtain an ideal a representing an element in C
• given an ideal a, solve the discrete logarithm problem, ie. find

the element in C

This pattern in repeated everywhere in Hecke: abstract objects (groups)
are returned in 2 values, the abstract presentation and a map linking
it to the data.

8.1. Fast Algorithms. Try 2^100 and compare (and explain) it to
fmpz(2)^100 or BigInt(2)^100.

Now compare

julia> function factorial(n::Int)

p = fmpz(1)

for i=2:n

p *= i

end

return p

end

julia> @time factorial(100)

julia> @time factorial(100)

julia> @time factorial(100);

julia> @time factorial(50000);

julia> @time prod(fmpz(i) for i=1:50000)

julia> @time prod([fmpz(i) for i=1:50000)]

Can you explain this? Can you do better? Can you compete with

CLASSGROUP COMPUTATIONS IN LARGE DEGREE 19

julia> @time Hecke.my_prod([fmpz(i) for i=1:50000]);

(you’ll have to run it twice for the compilation)
Doing @which bla(1,2) shows you what function will be called and

where to find it.
The same ideas can be used for different rings. Whenever we have

a product that is asymptotically faster than ”quadratic”, this tech-
nique wins. Use include("your file") to store/ load more complex
examples.

8.2. Class Group. Try to find the possibilities and limits for class
group computation in Hecke. Obviously, this depends on the time,
but lets restrict to 1min max. Try class groups of ”random“ small
number fields. You migh want to use rand(fmpz(1):fmpz(100)) or
even x^6 + rand(Qx, 1:5, -100:100)

Can you find non-quadratic fields with non-trivial class group? Can
you find a family? (Evil question: can you actually find a family of
fields with bounded class number? Nevertheless, explicitly having non-
trivial class groups is fun.)

You can follow the progress by doing set_verbose_level(:ClassGroup, 1)

or even 2. Beware, the larger the number the more output is produced
(mostly incomprehensible) - and the slower the programm runs.

Also \tt ?class_group shows that there are many/several options
not yet explored. In particular, bound can be used to manually select
the bound used for the factor base in the class group computation.

8.3. Unit group. Given one of the above fields, or possible \tt t^2 -p

for (large) primes p (you can use next_prime or PrimesSet to get
primes).

Eg. s.th. smallish

julia> K, a = number_field(x^2-1000003)

julia> ZK = maximal_order(K)

julia> u, mu = unit_group(ZK)

julia> mu(u[2])

julia> u, mu = unit_group_fac_elem(ZK)

julia> mu(u[2])

u[2] gives you acess to the second generator of the group.
Compare to x2−100001 and try larger examples. When do you have

to use the factored form?

8.4. Other. The julia packages are installed into your home directory
(in general) in

~/.julia/v0.6/Hecke

20 CLAUS FIEKER

Have a look at the examples directory to get some ideas. Can you cre-
ate multi-quadratic fields? By hand? using the example code? Explore
the non-simple fields and compare the results. Saturation and compact
presentation are both installed. Can you get it to work?

Can you find good/optimal parameters for the class group? Try
varying the bound remembering to use redo.

8.5. Installing. In order to install julia, one checks julialang.org/downloads
and best obtains a binary. After starting julia, at the prompt, try

julia> Pkg.add("Hecke")

which should install

• AbstractAlgebra
• Nemo, including the c-written projects

– mpir (a gmp-replacement)
– mpfr
– flint2
– antic
– arb

• Hecke

For ease of use, you should also do

julia> Pkg.add("Revise")

at least if you want to develop/ change any of the above packages.
Then, you need to
using Revise if you want, and using Hecke once after starting

julia. This will make everything in AbstractAlgebra, Nemo and Hecke
available.

