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Research Interests

I Interested in studying computational aspects of jacobians of
superelliptic curves

I A superelliptic curve C is the projective normalization of the
affine A2-curve cut out by the equation yn = f (x). When
n = 2, it is called a hyperelliptic curve.

I The curve C embeds into J = Picg C, a g -dimensional abelian
variety.

I Previous work: helped write a program in Sage (which will be
included in future versions of Sage) that uses p-adic methods
to compute the characteristic polynomial of Frobenius for a
superelliptic curve over Fpn . Joint with A. Best, E. Costa, R.
Magner, N. Triantafillou.

I Main accomplishment is that it runs in O(p1/2+o(1)) time,
allowing it to be of use when p is large.



Research Interests

I Suppose we are in the nice case where d = deg f is coprime to
n (meaning there is a unique point at ∞) and f is separable.
Then g = (n − 1)(d − 1)/2 and J can be identified with
Pic0 C using the unique point at ∞.

I Current work: working on generalizing a formula of Y. Zarhin
about “division by 2” on hyperelliptic curves to the
superelliptic case.

I Since the Jacobian J is an abelian variety, multiplication by 2
gives an endomorphism of J. For every point P of C, there are
22g points D on J such that 2D = P −∞. Zarhin gives
formulas for these 22g such divisors.

I My work is on the superelliptic generalization. Instead of
multiplication by 2, consider the “1− ζ” map, where ζ is the
map on J induced by the map on C given by
ζ : (x , y) 7→ (x , ζny). Goal is to give formulas for the nd−1

points D on J satisfying (1− ζ)D = P −∞.
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Coleman integration

If C/R is a curve, P, Q ∈ C , ω ∈ Ω1
C (e.g. xdx

y ), we have a path
integral ∫ Q

P
ω ∈ R.

What about if C/Qp?

Coleman defined ∫ Q

P
ω ∈ Qp

a “path” integral, with cool properties .

These can be explicitly computed in many cases!

1



Coleman integration

If C/R is a curve, P, Q ∈ C , ω ∈ Ω1
C (e.g. xdx

y ), we have a path
integral ∫ Q

P
ω ∈ R.

What about if C/Qp?

Coleman defined ∫ Q

P
ω ∈ Qp

a “path” integral, with cool properties .

These can be explicitly computed in many cases!

1



Coleman integration

If C/R is a curve, P, Q ∈ C , ω ∈ Ω1
C (e.g. xdx

y ), we have a path
integral ∫ Q

P
ω ∈ R.

What about if C/Qp?

Coleman defined ∫ Q

P
ω ∈ Qp

a “path” integral, with cool properties .

These can be explicitly computed in many cases!

1



Coleman integration

If C/R is a curve, P, Q ∈ C , ω ∈ Ω1
C (e.g. xdx

y ), we have a path
integral ∫ Q

P
ω ∈ R.

What about if C/Qp?

Coleman defined ∫ Q

P
ω ∈ Qp

a “path” integral, with cool properties .

These can be explicitly computed in many cases!

1



Applications

Rational points: We can sometimes find ω so that

Zeroes
(∫ x

p0

ω

)
⊇ C(Q)

Heights:
Coleman-Gross introduced a height pairing on abelian varieties, it
be decomposed as a sum of local terms, one of which is

hp(D1, D2) =

∫

D2

ωD1

p-adic BSD:
Using the above height pairing one can define a p-adic regulator so
that for a modular abelian variety A/Q conjecturally

L∗(A, 0) = ϵp(A)
|III(A/Q)|Regγ(A/Q)

∏
v cv

|A(Q)tors||A∨(Q)tors|
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Let L/K be a Galois extension of local fields with Galois group G .
Let OL be the ring of integers of L over K . For i ∈ Z≥−1, let the
i th ramification group of L/K be the set:

Gi = {s ∈ G | vL(s(a)− a) ≥ i + 1 for all a ∈ OL}

The set of ramification groups gives a filtration of G and provides
information on how the discriminant will grow in a chain of
subfields of L.

The Galois slope content is a vector that encapsulates this
filtration. We can determine the Galois slope content of an
extension by calculating the discriminant of various subfields.

Benjamin Carrillo Arizona State University

Introduction



Unfortunately there does not exist an efficient procedure to
compute subfields of the Galois closure of p-adic field extensions,
but there are more efficient methods to computing subfields of the
Galois closure of number fields.

We introduce the notion of a global splitting model. Consider a
polynomial f (x) ∈ Z[x ] and let F be the field generated by a root
of f (x) over Q, we say f (x) is a global splitting model when
Gal(F̂/Qp) = Gal(F/Q), where F̂ is the completion of F with
respect to a P-adic absolute value.

How can we find global splitting models?

I Databases
I Composita of other global splitting models
I Class Field Theory
I Generic Polynomials

Benjamin Carrillo Arizona State University

Introduction
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Let K be a finite extension of Qp and let L/K be a totally ramified
extension of degree p. Let R ⊂ OK be the set Teichmüller representatives
of OK/(πK ). A polynomial

f (X ) = X p + ap−1X
p + · · ·+ a1X + a0 ∈ OK [x ]

is said to be Eisenstein if vK (ai ) > 1 and vK (a0) = 1. Let E (L) be the set
of Eisenstein polynomials over K that have a root in L. Let e be the
ramification degree of K over Qp, i.e. vK (p) = e. Given a polynomial
f (X ) ∈ E (L), we define the type of f as follows:

1 If min16i6p−1 vK (ai ) = m 6 e, let λ be the least integer such that
vK (aλ) = m, and take ω ∈ R such that aλ ≡ ωπmK . In this case the
type of f is 〈λ,m, ω〉.

2 If v(ai ) > e + 1 for 1 6 i 6 p − 1, we say f is of type 〈0〉.

Theorem

All polynomials in E (L) are of the same type.

Endrit Fejzullahu (University of Florida) May 28, 2018 2 / 1



Theorem (S. Amano)

There exists a prime element of L that is root of an Eisenstein polynomial
of the form

X p − ωπmKXλ − πKa
if L is of type 〈λ,m, ω〉, or root of an Eisenstein polynomial of the form

X p − πKa

if L is of type 〈0〉.

This theorem shows that every totally ramified extension L/K of degree p
is determined by an Eisenstein polynomial with only three nonzero terms.
My goal is to do this more generally. That is, understand which totally
ramified extensions of a local field K (not necessarily of characteristic 0)
correspond to Eisenstein polynomials with only three nonzero terms.

Endrit Fejzullahu (University of Florida) May 28, 2018 3 / 1
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Past Research

Definition

Let k and N be integers. Then a modular form of weight k for
Γ0(N) is a holomorphic function f : H → C such that:

(i) f (g(z)) = (cz + d)k f (z) for all g ∈ Γ0(N), z ∈ H.

(ii) f is holomorphic at ∞.

We can write a q-expansion of a modular form f at a point z ∈ H:

f (z) =
∞∑

n=0

anq
n for q = e2πiz .

The pth Hecke operator of weight k, Tp, is a linear transformation
on the space of weight k modular forms.

The eigenvalues of Tp are exactly the pth coefficients, ap, in
the q-expansions of eigenforms.

Modular forms are linear combinations of such eigenforms.

Nathan Fontes Introduction



Past Research

Goal: Compute spaces of modular forms of weight k for Γ0(N).

Modular symbols (an infinite set of symbols modulo infinite
relations) can be identified with modular forms.

Manin symbols (a finite set of symbols modulo finite
relations) can be identified with modular symbols.

Hecke operators on Manin Symbols give information about
Hecke operators on modular forms.

Eigenforms are computed using Hecke operators on Manin
symbols.

Future Research: I am attending the Ph.D. program in
mathematics at Clemson University beginning Fall 2018!

Nathan Fontes Introduction



Past Research

Goal: Compute spaces of modular forms of weight k for Γ0(N).

Modular symbols (an infinite set of symbols modulo infinite
relations) can be identified with modular forms.

Manin symbols (a finite set of symbols modulo finite
relations) can be identified with modular symbols.

Hecke operators on Manin Symbols give information about
Hecke operators on modular forms.

Eigenforms are computed using Hecke operators on Manin
symbols.

Future Research: I am attending the Ph.D. program in
mathematics at Clemson University beginning Fall 2018!

Nathan Fontes Introduction



Vector-Valued Modular Forms
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Fun facts about myself and about vector-valued modular forms:

I do improv comedy.

I will be attending workshops and conferences in Budapest and
Luxembourg in July.

I like lots of different kinds of mathematics and I hope to get some
ideas for new projects during this workshop.

The generalization of a modular form with respect to a character is a
vector-valued modular form with respect to a representation.

Vector-valued modular forms are used in number theory, Moonshine,
and vertex operator algebras.

My work expresses certain vector-valued modular forms in terms of
the Gaussian hypergeometric series evaluated at the inverse of a
Hauptmodul.

One of my goals is to make progress towards proving the unbounded
denominator conjecture:

Modular forms on a noncongruence subgroup have unbounded
denominators.
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Current second year PhD student at UNCG

B.S. in Applied Mathematics and Computer Science at
UW-Stout

Research Interests: Additive Number Theory and
Algorithmic Complexity
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Cole Love

About Me

Waring’s
Problem

Waring’s Problem over Finite Fields

Waring’s problem asks whether there exists some positive
integer s such that every natural number can be expressed
as the sum of at most s k-th powers.

We consider the problem of representing an arbitrary
polynomial as a sum of k-th powers over a field of positive
characteristic.

Let v(p,k) denote the smallest natural s such that every
polynomal in Fp[t] can be written as the sum of at most s
k-th powers.

Under certain conditions, we can relate v(p,k) to the sum
of the digits in the base-q expansion of k.
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Ramification Polygons

1 Definition: Newton polygon of
ϕ(αx + α)

αn
.

2 One Segment (Greve): Gal(ϕ) = G1 o H

{tA,v : (Fp)m → (Fp)m : x 7→ Ax + v | A ∈ H ′ ≤
GL(m, p), v ∈ (Fp)m}

3 Max Tame Subextension (Greve)

T = I

(
e1e0

√
(−1)v1γb1n1 ϕ0, . . . ,

e`e0

√
(−1)v`γb`n` ϕ0

)

Jonathan Milstead Galois Groups of Eisenstein Polynomials over Local Fields



Blocks

1 Greve
∆i = {α′∈ K | ϕ(α′) = 0 and νL(α′ − α1) ≥ mi + 1}

Corresponds to K[x ]/(ϕ) = L0 ⊃ L1 ⊃ . . . ⊃ L` ⊃ K

2 Residual Polynomial Classes (Milstead, Pauli)



α′ :

ϕ(α′) = 0 and either

vL(α′ − α1) > mi + 1 or

vL(α′ − α1) = mi + 1 and
−1 + α′

α1

αmi
1

∈ δFp
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(2-Group) Belyĭ maps
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2-Group (Galois) Belyĭ maps

X1 = P1

X2

X3

...

Xr = X

2

2

2

2

ϕ

2 / 3



Nonhyperelliptic example
128S1-128,32,128-g62 → 64S1-64,16,64-g30 →
32S1-32,8,32-g14 → 16T1-16,4,16-g6 → 8T1-8,2,8-g2 →
4T1-4,1,4-g0 → 2T1-2,1,2-g0

X ⊂ A6 : x5
1 − x1 − x2

2

x1 − x3
1 + x2x4

4

x3
1x3 − x1x3 − x2x2

4

x2
1x2

4 − x2x3 + x2
4

x2x3 − x2
1 − 1

x3x2
4 − 1

x2
5 − x4

x2
6 − x5

ϕ : x4
3x2

2 − 2x2
3x2 + 1

https://math.dartmouth.edu/~mjmusty/32.html 3 / 3



Research Interest:

Algorithms for Local Fields
and Zeros of Derivatives of Zeta
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Summer School in Computational Number Theory

Zeros of Derivatives of ζ – Right Half Plane

qM+1k+(M+2)c

M+1

qM k�(M+1)c qM k

S k
M

qM k+(M+1)c

M

qM�1k�Mc

2(j+1)�

log(M+1)�logM

(2j+1)�

log(M+1)�logM

2j�

log(M+1)�logM

�

�

t

1 2 3 4 5 6

1

2

3

4

Theorem (Binder, P., Saidak)

For M ≥ 2 and qM =
log

(
logM

logM+1

)

log( M
M+1)

the red box contains one zero of ζ(k)(s).

Sebastian Pauli (UNCG) Interests 2 / 4



Summer School in Computational Number Theory

Zeros of Derivatives of ζ – Right Half Plane
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Summer School in Computational Number Theory

Zeros of Derivatives of ζ – Left Half Plane

with Ricky Farr and Filip Saidak
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Symmetric Chain Decomposition

Definition (Symmetric chain decomposition)

A symmetric chain decomposition of Bn is a partition of Bn into
symmetric chains.

111

110 101 011

100 010 001

000

Figure: Symmetric chain decomposition of B3

James Rudzinski Number Theory Summer School



Symmetric Chain Decomposition

We were able to organize the initial strings in a tree so that each string
could also be attained in an efficient way by only adding ones. We can
recursively generate the initial string of each chain along with the
indices of the zeros that are to be changed to ones.

0000

0100 0010 0001

0101 0011

Figure: Tree of inital strings for the symmetric chain decomposition of B4.

James Rudzinski Number Theory Summer School
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About Me and Math Interests
About Me

• I just finished my first year of being a Ph.D.
student and my third year at UNCG.

• I have two daughters, ages 8 and 12.

• My undergraduate degree is in computer science,
but I was also a music major. I play piano, oboe,
organ, and a few others.

Math Interests / Past Research

• I love algebra and all things algebraic, and I
really enjoy teaching.

• Undergraduate Project: An adaptive learning
program using belief networks

• Master’s Thesis: Symbolic Computation of
Resolvents with Dr. Sebastian Pauli
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RESEARCH INTERESTS

Analytic, Probabilistic and Elementary Number Theory

1. Prime numbers

– general distribution

– special forms

2. Riemann ⇣-function

– properties of zeros

– non-vanishing

– higher derivatives

– monotonicity

– Dirichlet L-functions

3. Arithmetic functions

– probabilistic results

– special values



Visible Lattice and Ammann-Beenker Points
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Visible Lattice Points

The visible lattice points Vlat are the points (m, n) ∈ Z2

with gcd(m, n) = 1.

Bernd Sing Visible Lattice and Ammann-Beenker Points
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Visible Lattice Points

One can show densVlat =
∏
p∈P

(
1− 1

p2

)
= 1

ζ(2) =
6
π2 ≈ 0.6079,

i.e., around 60.8% of the lattice points are visible.

Bernd Sing Visible Lattice and Ammann-Beenker Points



Visible Ammann-Beenker Points

The prototiles of the Ammann-Beenker tiling are a square and a

rhomb (of sidelength 1).

Bernd Sing Visible Lattice and Ammann-Beenker Points



Visible Ammann-Beenker Points

The vertices of the Ammann-Beenker tiling form a relatively dense

and uniformly discrete point set.
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Visible Ammann-Beenker Points

One might ask: Which points are visible here? And what is their

density?
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Visible Ammann-Beenker Points

Here, we get densVAB = 3
4

∏
p≡1,7 mod 8

(
1− 1

p2

)2 ∏
p≡3,5 mod 8

(
1− 1

p4

)
=

1
ζQ(
√

2)(2)
≈ 0.6969, i.e., around 69.7% of the AB-points are visible.
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TU Kaiserslautern

2 of 3



Solvable extensions can be constructed as towers of abelian
extensions.
Issues:

• Constructing abelian extensions can be expensive,
depending on the type of extension and on the bound on
the discriminant.

• The abelian layers usually “don’t match”.

A C3-extension of a quadratic field
• may be not normal over Q,
• may have Galois group C6,
• may have Galois group S3.
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Stark’s Conjecture as it relates to
Hilbert’s 12th Problem

Brett A. Tangedal

University of North Carolina at Greensboro, Greensboro NC, 27412, USA
batanged@uncg.edu

May 28, 2018



Let F be a real quadratic field, OF the ring of integers in F, and
m an integral ideal in OF with m 6= (1). There are two infinite
primes associated to the two distinct embeddings of F into R,
denoted by p

(1)
∞ and p

(2)
∞ . Let H2 := H(mp

(2)
∞ ) denote the ray

class group modulo mp
(2)
∞ , which is a finite abelian group.

Given a class C ∈ H2, there is an associated partial zeta
function ζ(s, C) = ∑

Na−s, where the sum runs over all integral
ideals (necessarily rel. prime to m) lying within the class C. The
function ζ(s, C) has a meromorphic continuation to C with
exactly one (simple) pole at s = 1. We have ζ(0, C) = 0 for all
C ∈ H2, but ζ ′(0, C) 6= 0 (if certain conditions are met).



First crude statement of Stark’s conjecture: e−2ζ
′(0,C) is an

algebraic integer, indeed this real number is conjectured to be a
root of a palindromic monic polynomial

f(x) = xn + a1x
n−1 + a2x

n−2 + · · ·+ a2x
2 + a1x+ 1 ∈ Z[x].

For this reason, e−2ζ
′(0,C) is called a “Stark unit”. By class field

theory, there exists a ray class field F2 := F(mp
(2)
∞ ) with the

following special property: F2 is an abelian extension of F with
Gal(F2/F) ∼= H2. Stark’s conjecture states more precisely that
e−2ζ

′(0,C) ∈ F2 for all C ∈ H2.
This fits the general theme of Hilbert’s 12th problem: Construct
analytic functions which when evaluated at “special” points
produce algebraic numbers which generate abelian extensions
over a given base field.
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An Example from Ramification Theory







Applications of Voronoi to Automorphic Forms

Dan Yasaki

UNC Greensboro
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(May 28–June 1, 2018)



Perfect forms and tessellations: G = SL2 /Q

φ(x , y) = x2 − xy + y2, M(φ) =

{
±
[
1
0

]
,±

[
0
1

]
,±

[
1
1

]}
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Research Interests

My interests are in computational algebraic number theory and its
applications in cryptography.

Cryptographic schemes base their security on the hardness of
underlying problems such as the principal ideal problem (PIP) and the
short principal ideal problem (SPIP), the shortest vector problem
(SVP) and it’s variant γ-SVP, among others.

The nice structure of the fields involved in these schemes often allows
for practical and asymptotic improvements to algorithms for
computing class groups, unit groups, and more.

We can use these improvements to tackle the PIP, SPIP, SVP, and
others.
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My Work So Far

Computing the class group of the maximal real subfield of power-of-2
cyclotomic fields (commonly denoted Q(ζ2n)+):

Computed Cl(OK ) for K = Q(ζ512)+ in approximately 7 hours.

This field appears in cryptographic schemes of Smart and
Vercauteren, as well as Garg, Gentry, and Halevi.

The method can be used to solve the PIP and gives a practical attack
on the security of these schemes.

Currently working on computing class groups and unit groups of
multiquadratic fields Q(

√
d1, . . . ,

√
dn).
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Introduction and Research Interests

Introduction

So far I have acquired a bachelor and a master degree in
Mathematics at University of Crete.

After that I moved to the University of Paderborn where I recently
started my PhD studies under the supervision of Prof. Dr. Jürgen
Klüners.
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Research Interests

I am interested in

Algebra

Computer Algebra

Galois Theory

Number Theory and Algebraic Number Theory

In my opinion computer algebra is very interesting because we can
study and develop algorithms and software for deeply theoretical
accomplishments in mathematics.
In particular my research topic is the computation of Galois groups
of local function fields. So far I have studied the ramification
polygon and tamely ramified extensions.
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Research Interest

Modular Forms, Elliptic Curves, and Modular Curves

Congruence subgroups

Complex tori as elliptic curves

Modular curves and moduli spaces

Modular Curves as Riemann Surfaces

Charts

Elliptic points

Cusps

Dimension Formulas

Automorphic forms

Meromorphic differentials

Divisors and the Riemann-Roch Theorem
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