GUÀRDIA EXERCISES I

- (1) Let $K = \mathbb{Q}(\theta)$, where θ is a root of $f(x) = x^3 + 5x^2 + 6x + 5$. Determine the decomposition of p = 5. In other words, compute the factorization of the principal ideal $5\mathbb{Z}_K$.
- (2) Let K = Q(θ), where θ is a root of f(x) = x(x + 2)(x + 4) + 2⁷.
 (a) Show that 2Z_K factors as a product of three distinct primes,

$$2\mathbb{Z}_K = \mathfrak{p}_1\mathfrak{p}_2\mathfrak{p}_3.$$

- (b) Use the previous part to show that K has no integral power basis, i.e., $\mathbb{Z}[\alpha]$ is a proper subset of \mathbb{Z}_K for all $\alpha \in K$. (We say \mathbb{Z}_K is not *monogenic*.)
- (3) Fix a prime $p \in \mathbb{Z}$. Let $\nu_p \colon \mathbb{Z} \to \mathbb{N} \cup \{\infty\}$ be the *p*-adic valuation. Define $\nu \colon \mathbb{Z}[x] \to \mathbb{N} \cup \{\infty\}$ by

$$\nu(\sum_{i} a_i x^i) = \min_{i} \{\nu(a_i)\}.$$

Prove that ν is a valuation.