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Clock Problem

A clock has minute hand and hour hand which are distinct, but
indistinguishable. Most of the time, you can tell what time it is.
Question: How many times can you not tell what time it is?



12:00



6:00 vs. 12:30



Ambiguous?

Fact 1 A time is ambiguous if interchanging hands creates a new
time.
Fact 2 The Minute hand goes around 12 times the speed of the
hour hand.



Related Rates?



Solution



12:00



Solution



Epilogue

Image from ”Survey of Graph Embeddings Into Compact Surfaces” on Researchgate



Thank You!
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Length of a Presentation

What measurements do we care about?

Number of generators
Number of relations
Total length of relations

I
Word length (view relators as words)

I
Bit-length (can use exponents written as binary strings)

Bit-length corresponds closely to computational cost for evaluation.

Example

Dn = hr , s | rn = s2
= (rs)2 = 1i

2 generators. 2 relations. Word length: O(n). Bit-length: O(log n).
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The symmetric group is a Coxeter group.

Sn = hs1, . . . , sn�1 | s2
i = 1, (si�1si )

3
= 1,

(si sj)
2
= 1 if |i � j | � 2i.

s1 s2 sn�2 sn�1

(1, 2) (2, 3) (n � 2, n � 1) (n � 1, n)

This presentation is due to Moore (1897).

It has O(n) generators, O(n2
)

relations, and bit-length O(n2
).

There is a presentation of An+2 due to Carmichael (1923) with similar
measurements, on the generators (i , n + 1, n + 2) for i = 1, . . . , n.
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Recent Improvements

The best bit-length possible has been achieved.

Theorem (Bray, Conder, Leedham-Green, O’Brien, 2011)
An and Sn have presentations with a uniformly bounded number of

generators and relations, and bit-length O(log n).

A stronger result has also been shown.

Theorem (Guralnick, Kantor, Kassabov, Lubotzky, 2011)
An and Sn have 3-generator 7-relator presentations of bit-length O(log n).
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What I have done

There are errors in (GKKL, 2011) regarding the presentations of An and Sn.

These are now fixed.

See my honours dissertation (2019) and my GitHub for supporting code.
https://github.com/pjhuxford/short-presentations
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About me

Originally from Philadelphia, PA

Grew up partly in Melbourne, Australia.

Also lived in UK, Romania and Israel as a child.
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BS in Mathematics from Temple University, Philadelphia; completed
in 2015...

...but started in 2005(!)

MS in Mathematics from City College of New York (2016)

PhD student at Stevens Institute of Technology (Hoboken, NJ) since
fall 2017
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Current research (with Alexander Ushakov)

Baumslag-Solitar groups are groups with presentation

BS(m, n) = ha, t
��
ta

m
t

�1 = a

ni.

The Diophantine Problem (DP) for spherical equations over BS(m, n)
is the following decision problem. Given a spherical equation W :

w

�1

1

c

1

w

1

· · ·w�1

k ckwk = 1,

with unknowns wi and constants ci , is it decidable whether or not W
has a solution?
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Current research

Easy cases:
We have BS(1, 1) ⇠= Z⇥ Z and BS(1,�1) ⇠= Zo Z; in these cases it
can be shown that the problem is decidable in polynomial time.

Hard cases:
For |mn| > 1, we wish to prove that the Diophantine Problem for
spherical equations over BS(m, n) is NP-complete.

NP-hardness can be proved by exhibiting a reduction of the
3-partition problem.

Remains to show that DP2NP.
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Current research

We hope to generalize methods to a wider class of groups (e.g.
generalized Baumslag-Solitar groups).
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Thank you!

Thank you!
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