

Low dimensional Euclidean buildings: II

Thibaut Dumont

University of Jyväskylä

June 2019 - UNCG

Table of Contents

Classification

Classification: Irreducibility

Let (W,S) be a Coxeter system. (Draw random Coxeter diagram with at least 2 connected components)

- ▶ Connected components: $I = J_1 \sqcup \cdots \cup J_n$ and $S = S_1 \sqcup \cdots \sqcup S_n$.
- ▶ The subgroups $W_{J_k} = \langle S_k \rangle$ pairwise commute.
- ▶ $W \cong W_1 \times \cdots \times W_n$ as groups.
- $(W,S)\cong (W_1,S_1)\times\cdots\times (W_n,S_n)$ as Coxeter systems.

Classification: Irreducibility

Let Δ be a building of type (W, S) and fix a chamber $c \in \mathcal{C}(\Delta)$.

- ▶ Connected components: $I = J_1 \sqcup \cdots \cup J_n$ and $S = S_1 \sqcup \cdots \sqcup S_n$.
- Let Δ_k denote the J_k -residue containing c, a building of type (W_k, S_k) .
- ▶ The product chamber system $\Delta_1 \times \cdots \times \Delta_n$ is a chamber system over I where, for $i \in J_k$, the incidence is given by

$$(c_1,\ldots,c_n)\sim_i (d_1,\ldots,d_n)$$

if and only if $c_k \sim_i d_k$ and $c_\ell = d_\ell$ for all $\ell \neq k$.

Classification: Irreducibility

Let Δ be a building of type (W, S) and fix a chamber $c \in \mathcal{C}(\Delta)$.

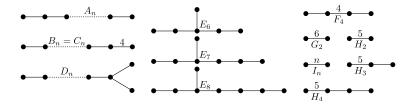
- ▶ Connected components: $I = J_1 \sqcup \cdots \cup J_n$ and $S = S_1 \sqcup \cdots \sqcup S_n$.
- Let Δ_k denote the J_k -residue containing c, a building of type (W_k, S_k) .
- ▶ The product chamber system $\Delta_1 \times \cdots \times \Delta_n$ is a chamber system over I where, for $i \in J_k$, the incidence is given by

$$(c_1,\ldots,c_n)\sim_i (d_1,\ldots,d_n)$$

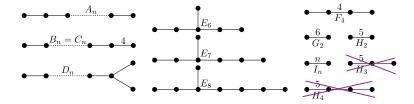
if and only if $c_k \sim_i d_k$ and $c_\ell = d_\ell$ for all $\ell \neq k$.

Theorem

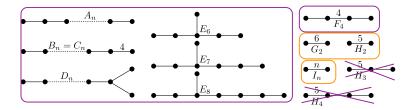
The product $\Delta_1 \times \cdots \times \Delta_n$ is a building isomorphic to Δ (with $\sigma = id$).



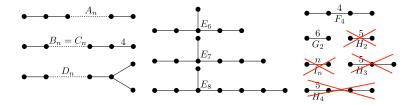
Coxter (1934): all irreducible spherical Coxeter groups



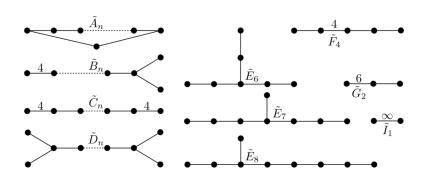
Ronan-Tits: no building thick building of type H_3 or H_4 .



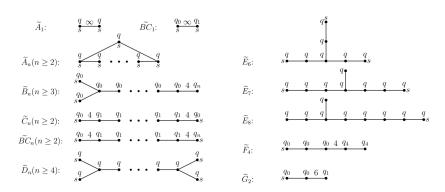
Tits spherical classification: all buildings with diagram of rank ≥ 4 .



No root system associated, hence no Euclidean extension. $_{\mbox{\tiny (wikipedia)}}$

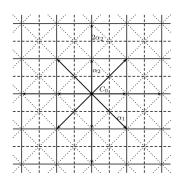


One edges added when Euclidean reflection groups exist. $_{\scriptscriptstyle{(wikipedia)}}$

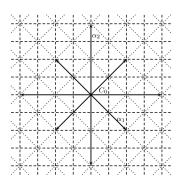


Classification with regularity parameters. $_{({\sf Parkinson's\ thesis})}$

$$(R=BC_2). \text{ Take } E=\mathbb{R}^2, \ \alpha_1=e_1-e_2 \text{ and } \alpha_2=e_2. \text{ Then } B=\{\alpha_1,\alpha_2\} \text{ and } R^+=\{\alpha_1,\alpha_2,\alpha_1+\alpha_2,\alpha_1+2\alpha_2,2\alpha_2,2\alpha_1+2\alpha_2\}.$$



$$(R=C_2). \text{ Take } E=\mathbb{R}^2, \, \alpha_1=e_1-e_2 \text{ and } \alpha_2=2e_2. \text{ Then } B=\{\alpha_1,\alpha_2\}$$
 and $R^+=\{\alpha_1,\alpha_2,\alpha_1+\alpha_2,2\alpha_1+\alpha_2\}$ (see Example 3.1.2).



Classification

Tits' classification:

▶ Euclidean buildings of rank at least 4 are Bruhat-Tits buildings associated with an algebraic group G(F) over a local field F and the automorphism group "is" $\operatorname{Aut}(\Delta) = G(F)$

Classification

Tits' classification:

- Euclidean buildings of rank at least 4 are Bruhat-Tits buildings associated with an algebraic group G(F) over a local field F and the automorphism group "is" $\operatorname{Aut}(\Delta) = G(F)$
- $ightharpoonup \operatorname{SL}_n(\mathbb{Q}_p)$