

Low dimensional Euclidean buildings: III

Thibaut Dumont

University of Jyväskylä

June 2019 - UNCG

Table of Contents

Projective plane

Triangle Lattices

Score and the score algorithm

Improving the score

Radu's C++ program and results

Long time ago, in a building far away

Finite projective plane

A building of type A_2 is called a **projective planes**. It's a graph of diameter 3 and girth 6 with two type of vertices called **points** or **lines**.

- ▶ If it is finite, every vertex has the same number of neighbor, q+1 (with $q \ge 2$ if thick).
- A projective plane has $q^2 + q + 1$ vertices of each types (points or lines).
- A projective plane has $(q+1)(q^2+q+1)$ edges (chambers).

The game: Dobble

The game: Dobble

Let Δ be a thick locally finite building of type \tilde{A}_2 , shortly **a triangle building**.

- ▶ Let $q \ge 2$ denote the regularity parameter of Δ .
- Let $I = \{0, 1, 2\}$ denote the types and V_i the set of residues of type $\{j, k\}$ where $\{i, j, k\} = \{0, 1, 2\}$.
- ▶ In other words, V_i is the set of vertices of type i.
- ▶ The residues are finite projective plane of order q (equivalently a finite thick A_2 -building).

Let Γ be a group acting on Δ . Assume the action is:

- **type-rotating**: either $g \in G$ fixes all types or permutes them cyclically.
- ▶ simply-transitive on the set of vertices on $V = V_0 \cup V_1 \cup V_2$: for every $v, w \in V$ there is a unique g mapping v to w.
 - ▶ The elements of G are in bijection with the vertices. (Think of \mathbb{Z}^n acting on itself by translation).

Let Γ be a group acting on Δ . Assume the action is:

- **type-rotating**: either $g \in G$ fixes all types or permutes them cyclically.
- ▶ simply-transitive on the set of vertices on $V = V_0 \cup V_1 \cup V_2$: for every $v, w \in V$ there is a unique g mapping v to w.
 - ▶ The elements of G are in bijection with the vertices. (Think of \mathbb{Z}^n acting on itself by translation).

Theorem (CMSZ)

Any such action gives a point-line correspondence and a compatible a triangular presentation. Conversely, any point-line correspondence in a projective plane admitting a triangular presentation yields a triangle building and a lattice as above.

Generators and Relations

Let Γ act simply transitively on the set $\mathscr V$ of vertices of a building Δ . Fix some $v_0 \in \mathscr V$, and let $\mathscr N$ denote the set $\{v \in \mathscr V \colon d_{\mathscr V}(v_0,v)=1\}$ of nearest neighbors of v_0 , i.e. the vertex set of the *residue* of v_0 . For each $v \in \mathscr N$, there must be a unique $g_v \in \Gamma$ such that $g_v v_0 = v$. If $v \in \mathscr N$, then

$$d_{\mathcal{V}}(g_v^{-1}v_0,v_0)=d_{\mathcal{V}}(v_0,g_vv_0)=1,$$

and so $g_v^{-1}v_0 \in \mathcal{N}$. Write $g_v^{-1}v_0 = \lambda(v)$. Then $g_v^{-1}v_0 = g_{\lambda(v)}v_0$, so that

$$g_{\lambda(v)} = g_v^{-1}$$
 for each $v \in \mathcal{N}$.

Note that $g_{\lambda(\lambda(v))} = g_{\lambda(v)}^{-1} = g_v$, so that $\lambda: \mathcal{N} \to \mathcal{N}$ is an involution. Suppose that $u, v \in \mathcal{N}$ and that $d_{\mathcal{N}}(\lambda(u), v) = 1$. Then

$$d_{\mathcal{V}}(v_0,g_ug_vv_0) = d_{\mathcal{V}}(g_u^{-1}v_0,g_vv_0) = d_{\mathcal{V}}(\lambda(u),v) = 1.$$

Thus $g_u g_v v_0 \in \mathcal{N}$. Write $g_u g_v v_0 = \lambda(w) = g_w^{-1} v_0$. Then $g_u g_v = g_w^{-1}$, so that

 $g_ug_vg_w=1$. Conversely, if $g_ug_vg_w=1$ for some $w\in\mathcal{N}$, then reversing the above steps, we see that $d_{\mathcal{V}}(\lambda(u),v)=1$ must hold. Let $\mathcal{F}=\{(u,v,w)\in\mathcal{N}^3\colon g_ug_vg_w=1\}$. Then

given $u, v \in \mathcal{N}, (u, v, w) \in \mathcal{F}$ for some $w \in \mathcal{N}$ if and only if $d_{\mathcal{V}}(\lambda(u), v) = 1$.

Triangle Presentation

Definition 2.1. Let P and L be the sets of points and lines respectively in a projective plane Π . A bijection $\lambda \colon P \to L$ is called a **point-line correspondence** in Π . A subset $T \subseteq P^3$ is then called a **triangle presentation** compatible with λ if the two following conditions hold:

- 1. For all $x,y\in P$, there exists $z\in P$ such that $(x,y,z)\in \mathcal{T}$ if and only if $y\in \lambda(x)$ in $\Pi.$ In this case, z is unique.
- 2. If $(x, y, z) \in \mathcal{T}$, then $(y, z, x) \in \mathcal{T}$.

Example 2.2. The projective plane $\operatorname{PG}(2,2)$ can be defined by $P=L={\bf Z}/7{\bf Z}$ with line $x\in L$ being adjacent to the points $x+1,\ x+2$ and x+4 in P. Consider the point-line correspondence $\lambda\colon P\to L\colon x\in P\mapsto x\in L$ in Π . Then

$$\mathcal{T} := \{(x, x+1, x+3), (x+1, x+3, x), (x+3, x, x+1) \mid x \in P\}$$

is a triangle presentation compatible with λ . Indeed, (ii) is obviously satisfied and, for $x,y\in P$, it is apparent that there exists (a unique) $z\in P$ such that $(x,y,z)\in \mathcal{T}$ if and only if $y\in \{x+1,x+2,x+4\}$, which is exactly the set of points on the line $\lambda(x)$.

Score

Definition 3.5. Let $\lambda \colon P \to L$ be a point-line correspondence in a projective plane Π . A subset $\mathcal{T} \subseteq P^3$ is called a **triangle partial presentation** compatible with λ if the two following conditions hold:

- (1) For all $x,y\in P$, if there exists $z\in P$ such that $(x,y,z)\in \mathcal{T}$ then $y\in \lambda(x)$ and z is unique.
- (2) If $(x, y, z) \in \mathcal{T}$, then $(y, z, x) \in \mathcal{T}$.

We directly have the following.

Lemma 3.6. Let $\lambda \colon P \to L$ be a point-line correspondence in a projective plane Π of order q. A subset $\mathcal{T} \subseteq P^3$ is a triangle presentation compatible with λ if and only if it is a triangle partial presentation compatible with λ and $|\mathcal{T}| = (q+1)(q^2+q+1)$.

Proof. This is clear from the definitions, since there are exactly $(q+1)(q^2+q+1)$ pairs $(x,y)\in P^2$ with $y\in \lambda(x)$.

We now define the score of a point-line correspondence as follows.

Definition 3.7. Let $\lambda \colon P \to L$ be a point-line correspondence in a projective plane Π of order q. The **score** $S(\lambda)$ of λ is the greatest possible size of a triangle partial presentation compatible with λ .

Graph G_{λ}

3.1 The graph associated to a point-line correspondence

In the context of triangle presentations, it is natural to associate a particular graph to each point-line correspondence $\lambda \colon P \to L$ of a projective plane Π .

Definition 3.1. Let $\lambda \colon P \to L$ be a point-line correspondence in a projective plane Π . The **graph** G_{λ} associated to λ is the directed graph with vertex set $V(G_{\lambda}) := P$ and edge set $E(G_{\lambda}) := \{(x,y) \in P^2 \mid y \in \lambda(x)\}$.

For λ , admitting a triangle presentation can now be rephrased as a condition on its associated graph G_{λ} . In order to state this reformulation, we first define what we will call a triangle in a directed graph.

Definition 3.2. Let G be a directed graph. A set $\{e_1, e_2, e_3\}$ of edges in G such that the destination vertex of e_1 (resp. e_2 and e_3) is the origin vertex of e_2 (resp. e_3 and e_1) is called a **triangle**. If two of the three edges e_1 , e_2 and e_3 are equal, then they are all equal. In this case, the triangle contains only one edge and is also called a **loop**.

Lemma 3.4. Let $\lambda \colon P \to L$ be a point-line correspondence in a projective plane Π . There exists a triangle presentation compatible with λ if and only if there exists a partition of the set of edges $E(G_{\lambda})$ of G_{λ} into triangles.

Proof. Via the above bijection, a partition of $E(G_{\lambda})$ into triangles exactly corresponds to a triangle presentation compatible with λ .

Score of a Correlation

3.3 Scores of correlations

When $\lambda\colon P\to L,\ L\to P$ is a **correlation** of a (self-dual) projective plane Π of order q, i.e. a map such that $\lambda(p)\ni\lambda(\ell)$ if and only if $p\in\ell$, there is an explicit formula for the score of the point-line correspondence $\lambda\colon P\to L$.

Proposition 3.10. Let $\lambda \colon P \to L$, $L \to P$ be a correlation in a projective plane Π of order q. Let $a(\lambda)$ be the number of points $p \in P$ such that $\lambda^3(p) \ni p$ and let $b(\lambda)$ be the number of points $p \in P$ such that $\lambda^3(p) \ni p$ and $\lambda^6(p) = p$. Then

$$S(\lambda) = (q+1)(q^2 + q + 1) - (2q - 3) \cdot a(\lambda) - b(\lambda).$$

Theorem 3.11 (Devillers–Parkinson–Van Maldeghem). Let $\lambda \colon P \to L$, $L \to P$ be a correlation in a finite projective plane Π . Then there exists $p \in P$ such that $p \in \lambda(p)$.

Score of a Correlation

# of concerned λ	$a(\lambda)$	$b(\lambda)$	$S(\lambda)$	$s(\lambda)$ (mean)
6318	4	4	846	846.00
4212	10	2	758	757.97
6318	10	10	750	750.00
4212	16	0	670	669.92
6318	16	16	654	654.00
6318	22	22	558	558.00

Table 3.1: Scores of the correlations of the Hughes plane of order 9.

Score: Algorithm 1

While there exists $e \in E(G_{\lambda})$ such that there is a unique triangle t in G_{λ} containing e, choose this triangle t, remove the edge(s) of t from G_{λ} and start again this procedure. If, at the end, there is no more triangles in G_{λ} , then we say that the score-algorithm succeeds and that the estimated score $s(\lambda)$ of λ is the number of edges that are covered by the chosen triangles. Otherwise, there still are triangles in G_{λ} but all edges are contained in 0 or at least 2 triangles. In this case, we say that the score-algorithm fails. For a pseudo-code, see Algorithm 1.

Score: Algorithm 1

Algorithm 1: Computing the estimated score $s(\lambda)$ of λ

```
1 score \leftarrow 0:
 2 edgesInOneTriangle \leftarrow true;
 3 while edgesInOneTriangle = true do
        edgesInOneTriangle \leftarrow false;
        for e in E(G_{\lambda}) do
 5
            if e is contained in exactly one triangle t of G_{\lambda} then
                edgesInOneTriangle \leftarrow true;
 7
                remove the edge(s) of t from E(G_{\lambda});
                if t is a loop then
 9
                     score \leftarrow score + 1;
10
11
                else
12
                    score \leftarrow score + 3;
13 if there still are triangles in G_{\lambda} then
        return FAIL
14
15 else
        return score
16
```

Improving the Score: Algorithm 2

Lemma 3.15. Let $\lambda \colon P \to L$ be a point-line correspondence in a projective plane Π of order q and let $a,b \in P$. Define $\lambda_{a,b} \colon P \to L$ by $\lambda_{a,b}(x) := \lambda(x)$ for all $x \in P \setminus \{a,b\}$, $\lambda_{a,b}(a) := \lambda(b)$ and $\lambda_{a,b}(b) := \lambda(a)$. Then $|S(\lambda_{a,b}) - S(\lambda)| \le 6(q+1)$.

Algorithm 2: Finding a point-line correspondence λ with $s(\lambda) = 910$

```
1 \lambda \leftarrow some correlation of the Hughes plane;

2 while s(\lambda) < 910 do

3 | visited/\lambda/ \leftarrow true;

4 | bestA \leftarrow -1; bestB \leftarrow -1;

5 | bestScore \leftarrow -1;

6 | for a in P and b in P do

7 | | if visited[\lambda_{a,b}] = false and s(\lambda_{a,b}) > bestScore then

8 | bestScore \leftarrow s(\lambda_{a,b});

9 | bestA \leftarrow a;

10 | bestA \leftarrow b;

11 | \lambda \leftarrow \lambda_{bestA,bestB};

12 return \lambda;
```

Results

	λ	_0	_1	_2	_3	_4	_5	_6	_7	_8	_9
-	0_	20	0	44	75	78	77	50	76	37	3
	1_	54	39	30	8	88	68	18	34	65	57
	2_	70	82	42	23	38	90	81	13	61	69
	3_	73	4	83	22	58	28	59	55	64	60
	4_	56	2	87	84	26	45	53	11	80	41
	5_	25	14	63	72	7	32	62	86	51	46
	6_	36	27	31	29	79	33	16	71	85	24
	7_	89	35	17	19	5	47	67	10	66	43
	8_	6	21	1	52	74	40	12	48	9	15
	9_	49									
41) ,80)		,10,82) 1,1,1)	(0,29		(0,34;		1,56,88) 1,4,72)		1,31) 5,89)	(0,66,	

(0,3,41)	(0.10.82)	(0.29.54)	(0,34,9)	(0.56.88)	(0.61.31)	(0.66,1)	(0.67,13)	(0.68,74)
(0.69,80)	(1,1,1)	(1,2,16)	(1,3,47)	(1,4,72)	(1,5,89)	(1.6,86)	(1,7,51)	(1,8,77)
(1,9,27)	(2,3,62)	(2,19,12)	(2,43,61)	(2,54,73)	(2,60,65)	(2,65,55)	(2,73,35)	(2.75,17)
(2.81.63)	(3,3,3)	(3,14,8)	(3,23,6)	(3,27,56)	(3,49,7)	(3.76.4)	(3.84.5)	(4,15,28)
(4,20,37)	(4,28,15)	(4,39,81)	(4,48,29)	(4,53,20)	(4,74,79)	(4.85,71)	(5,17,90)	(5,22,67)
(5,31,33)	(5,40,60)	(5,45,53)	(5,50,30)	(5,55,40)	(5,71,22)	(6,13,25)	(6,24,78)	(6,30,26)
(6,35,21)	(6,44,10)	(6,59,19)	(6,78,24)	(6,87,59)	(7,18,39)	(7,21,75)	(7,32,57)	(7,37,83)
(7,46,69)	(7,58,32)	(7,63,64)	(7,82,18)	(8,11,87)	(8,26,52)	(8,36,58)	(8,52,68)	(8,57,36)
(8,64,50)	(8,80,70)	(8,90,85)	(9,20,43)	(9,42,38)	(9,55,44)	(9,56,42)	(9,57,48)	(9,58,45)
(9,59,46)	(9,60,11)	(10,17,23)	(10,26,33)	(10,27,82)	(10,35,73)	(10,48,77)	(10,67,81)	(10,73,50)
(10,79,69)	(11,11,11)	(11,23,71)	(11,37,82)	(11,54,24)	(11,55,85)	(11,67,61)	(11,72,49)	(11,83,47)
(12,12,12)	(12,24,68)	(12,39,86)	(12,47,45)	(12,58,56)	(12,67,53)	(12,80,82)	(12,81,57)	(12,89,76)
(13,31,48)	(13,46,35)	(13,52,26)	(13,62,79)	(13,67,27)	(13,75,52)	(13,85,82)	(13,86,64)	(14,15,21)
(14,22,63)	(14,33,82)	(14,41,37)	(14,44,32)	(14,51,58)	(14,57,51)	(14,65,43)	(14,67,22)	(15,16,30)
(15,36,34)	(15,45,82)	(15,49,59)	(15,59,89)	(15,67,83)	(15,88,65)	(16,18,82)	(16,40,25)	(16,53,66)
(16,60,84)	(16,67,46)	(16,70,36)	(16,84,55)	(16,90,18)	(17,17,38)	(17,46,20)	(17,59,70)	(17,65,82)
(17,68,40)	(17,74,72)	(18,22,42)	(18,29,39)	(18,42,78)	(18,62,87)	(18,87,62)	(18,90,29)	(19, 22, 77)
(19,32,79)	(19,34,75)	(19,54,45)	(19,59,87)	(19,77,22)	(19,84,41)	(19,85,61)	(20,24,62)	(20,33,64)
(20,53,37)	(20,56,70)	(20,62,77)	(20,77,24)	(21,21,38)	(21,29,68)	(21,44,60)	(21,53,31)	(21,55,83)
(21,80,77)	(22,71,74)	(22,74,63)	(22,78,42)	(23,28,80)	(23,41,36)	(23,43,26)	(23,58,90)	(23,83,77)
(23,86,28)	(23,90,57)	(24,40,34)	(24,51,85)	(24,81,84)	(24,88,32)	(25,25,25)	(25,30,58)	(25,37,65)
(25,47,48)	(25,50,77)	(25,57,56)	(25,61,29)	(25,74,49)	(26,39,55)	(26,45,76)	(26,60,39)	(26,63,88)
(26,66,77)	(27,31,61)	(27,41,34)	(27,54,29)	(27,74,68)	(27,80,69)	(27,88,66)	(28, 32, 40)	(28,40,80)
(28,42,52)	(28,61,32)	(28,73,42)	(28,86,61)	(29,44,89)	(29,64,76)	(29,71,70)	(30,30,38)	(30,45,57)
(30,54,74)	(30,62,61)	(30,69,37)	(31,54,83)	(31,76,78)	(31,78,36)	(31,89,81)	(31,90,43)	(32,46,84)
(32,54,64)	(32,66,72)	(33,33,33)	(33,40,51)	(33,47,46)	(33,59,56)	(33,72,39)	(33,75,61)	(34, 34, 34)
(34,50,39)	(34,63,37)	(34,88,47)	(34,90,35)	(35,57,71)	(35,62,41)	(35,70,86)	(35,71,58)	(35,72,83)
(36,53,44)	(36,64,67)	(36,78,65)	(36,79,51)	(37,52,89)	(37,89,52)	(38,41,41)	(38,42,56)	(38,64,64)
(38,66,66)	(38,81,81)	(38,85,85)	(39,49,41)	(39,74,43)	(40,76,41)	(40,87,48)	(42,47,47)	(42,73,52)
(43,43,43)	(43,51,68)	(43,59,64)	(43,70,47)	(44,44,44)	(44,62,75)	(44,74,80)	(44,79,47)	(45,45,45)
(45,68,69)	(45,86,62)	(46,46,46)	(46,71,76)	(46,80,50)	(48,48,48)	(48,49,63)	(48,58,81)	(48,65,84)
(49,53,73)	(49,69,85)	(49,73,53)	(49,89,59)	(50,55,76)	(50,73,51)	(50,76,60)	(50,88,87)	(51,73,54)
(51,87,66)	(52,75,84)	(52,84,68)	(53,90,88)	(54,84,70)	(55,56,79)	(55,63,86)	(56,83,60)	(57,75,72)
(58,72,75)	(60,79,85)	(60,86,63)	(63,69,70)	(65,66,86)	(65,78,69)	(66,89,71)	(68,87,83)	(69,78,72)
(70,70,70)	(71,75,88)	(72,78,76)	(79,79,79)	(79,90,89)	(80,81,87)	(83,83,83)	(88,88,88)	

Table B.2: Triangle presentation \mathcal{T} compatible with λ .

Results

A The Hughes plane of order 9

Radu's C++ program

A few things to know about the C++ code:

- ► Radu uses the fact that the lines 0, 1, 10 and 30 generate the Hughes plane.
- ▶ It was too slow to check all pairs *a*, *b*, so he tests and selects only a few pairs. Especially the vertices for which few triangles have been used. He calls them **bad** vertices.

What the code does:

- Generates correlations until it finds one with a good score ≥ 750 .
- Apply the improving algorithm, which permutes some a and b to see if it gets to the score max of 910. (Keeps track of the permutations to not fall in a local maximum).
- If after 150 steps the score is still low, it moves on to the next correlation.

Finite projective plane $A_2(\mathbb{F}_2)$.

Finite projective plane $A_2(\mathbb{F}_2)$.

 \blacktriangleright A point-line correspondence λ forming pairs.

lacktriangle The incidence relation: $point \subset line$

▶ A graph G_{λ} associated to the point line correspondence λ .

lacktriangle The triangle presentation $\mathcal T$ is a cover of G_λ by disjoint of triangles.

► Triangle can also mean loop.

No triangle left, so we the triangle we removed form a cover of G_{λ} . Pretty lucky!

