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Long time ago, in a building far away
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Finite projective plane

A building of type As is called a projective planes. It's a graph of
diameter 3 and girth 6 with two type of vertices called points or lines.

> If it is finite, every vertex has the same number of neighbor, g + 1
(with ¢ > 2 if thick).

» A projective plane has ¢® + ¢ + 1 vertices of each types (points or
lines).

» A projective plane has (¢ + 1)(¢® + ¢ + 1) edges (chambers).
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Triangle Lattices

Let A be a thick locally finite building of type A,, shortly a triangle
building.
» Let ¢ > 2 denote the regularity parameter of A.
» Let I = {0, 1,2} denote the types and V; the set of residues of type
{j, k} where {i,j,k} ={0,1,2}.
» In other words, V; is the set of vertices of type 1.

> The residues are finite projective plane of order ¢ (equivalently a
finite thick Ag-building).
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Triangle Lattices

Let I be a group acting on A. Assume the action is:
> type-rotating: either g € G fixes all types or permutes them
cyclically.
» simply-transitive on the set of vertices on V = V5 U V; U V5: for
every v,w € V there is a unique g mapping v to w.

» The elements of G are in bijection with the vertices. (Think of Z™
acting on itself by translation).
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Triangle Lattices

Let I be a group acting on A. Assume the action is:

> type-rotating: either g € G fixes all types or permutes them
cyclically.

» simply-transitive on the set of vertices on V = V5 U V; U V5: for
every v,w € V there is a unique g mapping v to w.

» The elements of G are in bijection with the vertices. (Think of Z™
acting on itself by translation).

Theorem (CMSZ)

Any such action gives a point-line correspondence and a compatible a
triangular presentation. Conversely, any point-line correspondence in a
projective plane admitting a triangular presentation yields a triangle
building and a lattice as above.
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Triangle Lattices

Generators and Relations

Let I act simply transitively on the set ¥~ of vertices of a building A. Fix some
vo €7, and let A" denote the set {ve ¥ dy~(v, v) = 1} of nearest neighbors of
vo, 1.. the vertex set of the residue of vy. For each ve /", there must be a
unique g, eI such that g,v, = v. If ve A, then

dy (g5 *v0, Vo) = dy-(v0, g,00) = 1,
and so g, 'voe A" Write g, v, = MAv). Then g, *vo = g4, S0 that
Gy = 9, * for each ve A

Note that g; ;) = 9w = go» 80 that 2: 4" — 4" is an involution. Suppose
that u, ve A" and that dy-(A(u),v) = 1. Then

dy(v0> GuGuVo) = dyr (g 00, 9,00) = dy(Mu), v) = 1.
Thus g,g,v,€ 4. Write g,g,vo = AW) = g, 'v,. Then g,g, = g5, ', so that

99,9 = 1. Conversely, if g,g,9, = 1 for some we ./, then reversing the
above steps, we see that dy(Mu)v)=1 must hold. Let
T = {u,v,w)eHN34,9,9, = 1}. Then

given u, ve N, (u, v, W)€ 7 for some we A" if and only if dy-(A(u),v) = 1.
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Triangle Presentation

Definition 2.1. Let P and L be the sets of points and lines respectively in a projective
plane II. A bijection A\: P — L is called a point-line correspondence in II. A subset
T C P? is then called a triangle presentation compatible with \ if the two following
conditions hold:

1. For all z,y € P, there exists z € P such that (z,y,z) € T if and only if y € A(z) in
II. In this case, z is unique.

2. If (z,y,2) € T, then (y,z,2) € T.

Example 2.2. The projective plane PG(2,2) can be defined by P = L = Z /77 with line
x € L being adjacent to the points  + 1,  + 2 and z + 4 in P. Consider the point-line
correspondence A\: P — L: x € P+ x € L in II. Then

T={(z,z+1z+3),(z+1,z+3,2),(x+3,z,x+ 1) |z € P}

is a triangle presentation compatible with A. Indeed, (ii) is obviously satisfied and, for
z,y € P, it is apparent that there exists (a unique) z € P such that (z,y,2z) € T if and
only if y € {x + 1,2 + 2,2 + 4}, which is exactly the set of points on the line A(z).
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Score

Definition 3.5. Let A\: P — L be a point-line correspondence in a projective plane II. A

subset 7 C P% is called a triangle partial presentation compatible with \ if the two

following conditions hold:

(1) For all z,y € P, if there exists z € P such that (z,y,z) € T then y € A\(z) and z is
unique.

(2) If (z,y,2) € T, then (y,z,z) € T.
We directly have the following.

Lemma 3.6. Let \: P — L be a point-line correspondence in a projective plane 11 of
order q. A subset T C P3 is a triangle presentation compatible with \ if and only if it is
a triangle partial presentation compatible with \ and |T| = (¢ +1)(¢* + g+ 1).

Proof. This is clear from the definitions, since there are exactly (¢ + 1)(¢*> + ¢ + 1) pairs
(z,y) € P? with y € A(z).

We now define the score of a point-line correspondence as follows.
Definition 3.7. Let A\: P — L be a point-line correspondence in a projective plane II of

order ¢. The score S(\) of \ is the greatest possible size of a triangle partial presentation
compatible with A.
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Graph G,

3.1 The graph associated to a point-line correspondence

In the context of triangle presentations, it is natural to associate a particular graph to
each point-line correspondence A: P — L of a projective plane II.

Definition 3.1. Let A\: P — L be a point-line correspondence in a projective plane II.
The graph G associated to A is the directed graph with vertex set V(G)) := P and
edge set B(G)) = {(z,y) € P* |y € \Mx)}.

For A, admitting a triangle presentation can now be rephrased as a condition on its
associated graph Gy. In order to state this reformulation, we first define what we will call
a triangle in a directed graph.

Definition 3.2. Let G be a directed graph. A set {e1,e2,e3} of edges in G such that the
destination vertex of e (resp. es and e3) is the origin vertex of eg (resp. eg and e;) is
called a triangle. If two of the three edges €1, es and e3 are equal, then they are all equal.
In this case, the triangle contains only one edge and is also called a loop.

Lemma 3.4. Let A\: P — L be a point-line correspondence in a projective plane I1. There
exists a triangle presentation compatible with A if and only if there ts a partition of
the set of edges E(G\) of Gy into triangles.

Proof. Via the above bijection, a partition of E(G}) into triangles exactly corresponds to
a triangle presentation compatible with A. O




Score of a Correlation

3.3 Scores of correlations

When A: P — L, L — P is a correlation of a (self-dual) projective plane II of order ¢,
i.e. a map such that A(p) > A(¢) if and only if p € ¢, there is an explicit formula for the
score of the point-line correspondence A\: P — L.

Proposition 3.10. Let \: P — L, L — P be a correlation in a projective plane 11 of
order q. Let a()\) be the number of points p € P such that \*(p) 3 p and let b(\) be the
number of points p € P such that \3(p) 3 p and \°(p) = p. Then

S = (g+ 1)@ +q+1) — (24— 3) - a(A) — b(N).

Theorem 3.11 (Devillers-Parkinson-Van Maldeghem). Let \: P — L, L — P be a
correlation in a finite projective plane II. Then there exists p € P such that p € X(p).
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Score of a Correlation Q

# of concerned X | a(A) | b(A) | S(A) | s(\) (mean)
6318 4 4 846 846.00
4212 10 2 758 T57.97
6318 10 10 750 750.00
4212 16 0 670 669.92
6318 16 16 654 654.00
6318 22 22 558 558.00

Table 3.1: Scores of the correlations of the Hughes plane of order 9.
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Score: Algorithm 1 ¢

While there exists e € E(G)) such that there is a unique triangle ¢ in G\ containing e,
choose this triangle ¢, remove the edge(s) of ¢ from G and start again this procedure.
If, at the end, there is no more triangles in G, then we say that the score-algorithm
succeeds and that the estimated score s(\) of X is the number of edges that
are covered by the chosen triangles. Otherwise, there still are triangles in G but
all edges are contained in 0 or at least 2 triangles. In this case, we say that the
score-algorithm fails. For a pseudo-code, see Algorithm 1.




Score:

Algorithm 1

Algorithm 1: Computing the estimated score s(\) of A

1
2
3
4
5
6
7
8
9

10
11
12

score < 0;
edgesInOneTriangle < true;
while edgesInOneTriangle = true do
edgesInOneTriangle < false;
for e in E(G)) do
if e is contained in exactly one triangle t of G then
edgesInOneTriangle < true;
remove the edge(s) of ¢ from E(G));
if t is a loop then
| score < score + 1;
else
L score < score + 3;

if there still are triangles in G then
‘ return FAIL

else
| return score
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Improving the Score: Algorithm 2 Q
|

Lemma 3.15. Let \: P — L be a point-line correspondence in a projective plane II of
order q and let a,b € P. Define Agp: P — L by Mg p(z) := Nz) for all x € P\ {a,b},
Aap(@) == A(b) and A\ p(b) := A(a). Then [S(Aqp) — S(A)| < 6(g+1).

Algorithm 2: Finding a point-line correspondence A with s(A) = 910

A+ some correlation of the Hughes plane;

while s()\) < 910 do

visited[\] < true;

bestA « —1; bestB < —1;

bestScore « —1;

for a in P and b in P do

if visited[Aqp] = false and s(\qp) > bestScore then

bestScore < s(Aap);
bestA « a;
bestB < b;

© 0w N e G A W N R

-
5

[
[

L A4 Abesta best;

-

2 return \;
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Results

A0 1 2 3 45 6 7 8 9
0-120 0 44 75 78 77 50 76 37 3
1154 39 30 8 88 68 65 57
2|70 82 42 23 38 90 61 69
3-|73 4 83 22 58 28 64 60
4_156 2 87 84 26 45 80 41
5125 14 63 72 7 32 51 46
6-136 27 31 29 79 33 85 24
7189 35 17 19 5 47 66 43
8.6 21 1 52 74 40 9 15
9-149

(0341 (01082) (02950  (0319) (03639 (06131) (0661 (06713

(06950)  (1,11) 14.72) (1.6.86)

(19.27)

(281.63)

5,45,53)
(644,10 (6,59,19)
(7,5832)  (7.63,64)
(880,70)  (8,90,85)
(9.60,11) (10,17,23) (10,26,33) (10,27,82)
(LIL11) (112371) (11.37,82) (11,54,24)
(22068) (128986) (1247.85) (12,8.5)
(13.46,35) (13,62,79)
(14,33,82) (14,44,32) (14,51,38)
(15,50,89) (15,67,83)
(16,84,33) (1690,18) (17.17
(182030) (18.42,78) (186287) (1887.62) (1890.29)
(19.50.87) (19.77,22) (19.81,41) (19.85,61) (20.24.62)
(21,2138) (21,29,68) (21,44,60) (21,53.31)
28,80) (23,43.26) (23,38,90)

(10,73,50)
(11,8347)
(12.59.76)

(14,65.43)
(16,18,82)

(16,6084) (16,67,46)
(17.68,40)

m,u,. (28,
(28.73.42) (28.86.01) (30,30.38)

G0zt (30,69,37) (31,54,83) (31,90,43)

(32,54,64) 1333.33) (33,40,51) 6 5.61) (343134

(31,50,30) (34,88,47) (31,90,35) (35,57,71) (35,70,86)
(36,53,41) (36,64,67) (36.78,65) (36.79,51) (3 (38.41,41)
(38.66,66) (38.8181) (38,85,85) (39.49,41) (3 11) (10.87,48)
(43.43,43) (43,51,68) (43 [B70.47) (MA14) (146275) (14.74.80)
(45.68,69) (45.86,62) (46,71,76) (46,80,50) (48.48.48) (48.49.63) (48,58.81)
(19,53,73) (19,60.85) (19.73,53) (19.80,59) (50.55,76) (50.73,51) (50.76,60) (50.8887)
(51.87,66) (52.75,81) (52.81,68) (53.90,88) (54,81,70) 79) (55.63.86) (56.83.60)
58.7: (60.79,85) (60.86.63) (63.09.70) (65.0686) (65.78.09) (66.80.71) (BS5783) (69.78.72)
79) (79.90.89) (S0.8157) (53.53,53) (55.88,58)

1,58)

(70.70.70) (T1,75,88) (72,78,76) (79,

Table B.2: Triangle presentation 7 compatible with A
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Results

A The Hughes plane of order 9

13142

1331 41

1830 40

217 10 27 37
25(8 10 30 39

18 20 41

o2 35

21 38

19 43
1509 12 19 45
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Radu’s C4++ program //ﬁ

A few things to know about the C4++ code:
» Radu uses the fact that the lines 0, 1, 10 and 30 generate the
Hughes plane.
> |t was too slow to check all pairs a, b, so he tests and selects only a
few pairs. Especially the vertices for which few triangles have been
used. He calls them bad vertices.
What the code does:
» Generates correlations until it finds one with a good score > 750.
» Apply the improving algorithm, which permutes some a and b to see

if it gets to the score max of 910. (Keeps track of the permutations
to not fall in a local maximum).

» If after 150 steps the score is still low, it moves on to the next
correlation.
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> Finite projective plane As(Fs).
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Goal 1: Radu's lattice

> Finite projective plane Ay (Fs).
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Goal 1: Radu's lattice

» A point-line correspondence A forming pairs.
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Goal 1: Radu's lattice

» The incidence relation: point C line
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Goal 1: Radu's lattice

» A graph G, associated to the point line correspondence .

A\

\
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Goal 1: Radu's lattice //%

» The triangle presentation 7 is a cover of GG, by disjoint of triangles.

A\

\
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Goal 1: Radu's lattice

» Triangle can also mean loop.

A\

\

Thibaut Dumont

| sune2019 | 27,43



Goal 1: Radu's lattice

> So we remove triangles (or loop) one by one to obtain 7.

\\Y

\
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Goal 1: Radu's lattice

> So we remove triangles (or loop) one by one to obtain 7.
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Goal 1: Radu's lattice

> So we remove triangles (or loop) one by one to obtain 7.

\\Y

\

Thibaut Dumont | sune2019 | 30/43



Goal 1: Radu's lattice

> So we remove triangles (or loop) one by one to obtain 7.
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Goal 1: Radu's lattice

> So we remove triangles (or loop) one by one to obtain 7.
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\
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Goal 1: Radu's lattice

> So we remove triangles (or loop) one by one to obtain 7.
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Goal 1: Radu's lattice

> So we remove triangles (or loop) one by one to obtain 7.

\\Y
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Goal 1: Radu's lattice

> So we remove triangles (or loop) one by one to obtain 7.
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Goal 1: Radu's lattice

> So we remove triangles (or loop) one by one to obtain 7.

N/
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Goal 1: Radu's lattice

> So we remove triangles (or loop) one by one to obtain 7.
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Goal 1: Radu's lattice

> So we remove triangles (or loop) one by one to obtain 7.

N
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Goal 1: Radu's lattice

> So we remove triangles (or loop) one by one to obtain 7.
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Goal 1: Radu's lattice

> So we remove triangles (or loop) one by one to obtain 7.
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Goal 1: Radu's lattice

> So we remove triangles (or loop) one by one to obtain 7.
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Goal 1: Radu's lattice

> So we remove triangles (or loop) one by one to obtain 7.

Thibaut Dumont | sune2019 | 42/43



Goal 1: Radu's lattice

> So we remove triangles (or loop) one by one to obtain 7.

11
1
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Goal 1: Radu's lattice //%

> No triangle left, so we the triangle we removed form a cover of G.
Pretty lucky!

Thibaut Dumont | sune2019 | 4443



