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The plan

1. Cross ratio on the boundary;
2. Tits representation;
3. Deletion condition and exchange condition;
4. Longest element in a finite Coxeter group



Cross ratio on metric spaces

Classical cross ratio: for a,b, c,d ∈ C ∪ {∞},

cr(a,b, c,d) =
(a− d)(b − c)

(a− c)(b − d)
.

Let X be a metric space, and a,b, c,d ∈ X , define

cr(a,b, c,d) =
d(a,d)d(b, c)

d(a, c)d(b,d)
.



Metric on the boundary of a tree

Let T be a tree, and p ∈ T . Define a metric on ∂T as follows:
for a 6= b ∈ ∂T ,

dp(a,b) = e−d(p,ab),

where d(p,ab) is the distance from p to the geodesic ab.

It is easy to see that dp satisfies the triangle inequality. In fact,
dp is an ultra metric:

dp(a, c) ≤ max{dp(a,b),dp(b, c)}.

For a,b, c,d ∈ ∂T we have

cr(a,b, c,d) =
e−d(p,ad)e−d(p,bc)

e−d(p,ac)e−d(p,bd) = ed(p,ac)+d(p,bd)−d(p,ad)−d(p,bc).



Cross ratio on the boundary of a tree

The cross ratio (cross difference) on ∂T :

(a,b, c,d) = d(p,ac) + d(p,bd)− d(p,ad)− d(p,bc).

Exercise: (a,b, c,d) is independent of p, and is the signed
distance from m(a,b, c) to m(a,b,d), with + sign if the direction
from m(a,b, c) to m(a,b,d) is the same direction as from a to
b, and − sign otherwise.

Theorem. A metric tree T with no vertex of valence one is
determined up to isometry by the cross ratio on ∂T .



Trees associated with Euclidean buildings

Let ∆ be a locally finite thick Euclidean building. Let Y be a wall
in ∆. A subset Y ′ is said to be parallel to Y if there is some
c ≥ 0 such that d(y ,Y ′) = c = d(y ′,Y ), ∀y ∈ Y , ∀y ′ ∈ Y ′.

Let PY be the union of all the sets parallel to Y . A basic fact in
CAT (0) space is that PY splits isometrically as a product
PY = Y × Z for some convex subset of ∆. Due to the
dimension consideration it is easy to see that Z is a tree.

By the above discussion, the tree Z can be recovered from the
cross ratio. This idea can be used to classify some Euclidean
buildings.



Tits representation

Let (W ,S) be a Coxeter system with Coxeter matrix M = (mij).
An injective homomorphism W → GLn(R) (where n = |S|) due
to Tits is constructed as follows.

Write S = {s1, · · · , sn}. Fix a basis (ei), 1 ≤ i ≤ n, for Rn. Let B
be the symmetric bilinear form determined by

B(ei ,ej) = − cos
π

mij
.

Note B(ei ,ei) = 1 and B(ei ,ej) ≤ 0 for i 6= j .

Let Hi be the hyperplane Hi = {v ∈ Rn : B(v ,ei) = 0}. For
each i , define σi : Rn → Rn by:

σi(v) = v − 2B(ei , v)ei .



Tits representation II

It is easy to check that σi(ei) = −ei and fixes all points in Hi . So
σ2

i = id . It can also be checked that σiσj has order mij for i 6= j .
Hence the map si → σi defines a group homomorphism

ρ : W → GLn(R).

The map ρ is in fact injective. Hence all Coxeter groups are
linear.

Selberg’s lemma Finitely generated linear groups are virtually
torsion free (have torsion free subgroups of finite index).
Malcev’s Theorem Finitely generated linear groups are
residually finite.



Deletion and Exchange conditions

Let W be a group generated by a finite set of order 2 elements
S ⊂W . Then the following are equivalent:
1. (W ,S) is Coxeter system;
2. The deletion condition holds:
if s1s2 · · · sk is NOT a reduced word in S, then there are i < j
such that

s1 · · · sk = s1 · · · ŝi · · · ŝj · · · sk ,

where ŝi means si is removed.
3. The exchange condition holds:
if s1 · · · sk is a reduced word in S and s ∈ S, then either
l(sw) = k + 1 or there is some i such that w = ss1 · · · ŝi · · · sk .



Longest element in a finite Coxeter group

Let (W ,S) be a finite Coxeter group. Then:
1. There is unique element w0 with the maximal length;
2. Every reduced word in S arises as the initial word for w0; that
is, for any w ∈W , there is some w ′ ∈W satisfying:
l(w) + l(w ′) = l(w0) and ww ′ = w0;
3. w2

0 = 1 and w0Sw0 = S.


