Retraction, curvatue aspects of buildings

Xiangdong Xie
Department of Mathematics and Statistics
Bowling Green State University

June 25, 2019 University of North Carolina, Greensboro

The plan

- 1. retractions;
- 2. curvature aspects of buildings;
- 3. Spherical building at infinity of Euclidean buildings

Another definition of building

This is historically the first definition. It is equivalent to the one in terms of *W*-distance metric.

- **Def.** A simplicial complex Δ is a building if it contains a collection of subcomplexes (called apartments) isomorphic to the Coxeter complex of a fixed Coxeter system, that satisfies the following two conditions:
- 1. Given any two simplices B_1 , B_2 , there is an apartment that contains both B_1 , B_2 ;
- 2. Given two apartments A, A' that contain a common chamber there is an isomorphism from A to A' that fixes $A \cap A'$ pointwise.

Example: simplicial trees where each vertex is incident to at least two edges.

Retraction

Let Δ be a building, A an apartment of Δ and c a chamber in A. The retraction $r_{A,c}:\Delta\to A$ is defined as follows. For any chamber c', let A' be an apartment containing both c and c'. Then there is an isomorphism $f:A'\to A$ fixing c pointwise. Define $r_{A,c}|_{c'}=f|_{c'}$.

If c_1 , c_2 are adjacent chambers, then either $r_{A,c}(c_1)$ and $r_{A,c}(c_2)$ are adjacent or $r_{A,c}(c_1) = r_{A,c}(c_2)$. So retraction sends galleries to galleries (with possibly repeated chambers).

Equality above is possible, example: trees.

Applications of retraction

Convexity of Apartment: Let A be an apartment, and c, c' two chambers in A. Then every minimal gallery from c to c' lies in A.

Gate property: Let c be a chamber and R a residue. Then there exists a chamber \tilde{c} in R such that $d(c, \tilde{c}) < d(c, D)$ for every chamber D in R different from \tilde{c} .

Curvature bounds in metric spaces

Let X be a geodesic metric space. X is called a CAT(0) space if every geodesic triangle in X is at least as thin as in the Euclidean space. One similarly defines CAT(1) and CAT(-1) spaces by comparing triangles with those in the round sphere and real hyperbolic planes.

Fact: Spherical buildings are CAT(1), Euclidean building are CAT(0), hyperbolic buildings are CAT(-1).

Davis complex admits a metric making it a CAT(0) space. Every building also admit a geometric realization (Davis realization) with a CAT(0) metric.

Boundary at infinity of a CAT(0) space

Let X be a CAT(0) space. Two rays in X are equivalent if the distance between them is finite. ∂X is the set of equivalence classes of rays in X.

When X is locally compact, given any $\xi \in \partial X$ and any p, there is a ray starting from p and belonging to ξ .

Examples: Euclidean spaces, other examples(product of trees with Euclidean spaces).

Boundary at infinity of Euclidean buildings

Let Δ be a locally finite Euclidean building. The boundary of each apartment A is a sphere with a triangulation cut out by the finite number family of parallel hyperplanes in A. Each maximal simplex in ∂A will be called an ideal chamber.

Each ray is contained in an apartment. Hence every point in $\partial \Delta$ is contained in a sphere. By considering a ray starting at a chamber c and ending in an ideal chamber S, we see that given any chamber c and any ideal chamber S, there is an apartment A containing C and such that ∂A contains S.

Retraction based on an ideal chamber

Let S be an ideal chamber and A an apartment such that ∂A contains S. We now define a retraction $r_{A,S}: \Delta \to A$ as follows.

For any chamber c, let A' be an apartment containing c and s.t. $\partial A'$ contains S. Then there is an isomorphism $f:A'\to A$ fixing $A\cap A'$ pointwise. Define $r_{A,S}|_{\mathcal{C}}=f|_{\mathcal{C}}$.

Spherical building at infinity of an Euclidean building

As observed above, the ideal boundary of each apartment is a sphere which is a union of ideal chambers, and $\partial \Delta$ is a union of spheres. One can check $\partial \Delta$ satisfies the two conditions of a building, with apartments being ∂A for apartments A of Δ . This is the spherical building at infinity of an Euclidean building.

Condition 2:

Let A_1 , A_2 be two apartments so that $\partial A_1 \cap \partial A_2$ contains an ideal chamber S. The retraction $r_{A_1,S}: \Delta \to A_1$ restricted to A_2 is an isomorphism, so induces and isomorphism $\partial A_2 \to \partial A_1$ that fixes $\partial A_1 \cap \partial A_2$ pointwise.

Condition 1 can also be verified.

Note the building $\partial \Delta$ is NOT locally finite when Δ is a thick building.

