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Abstract. Let K be an extension of the p-adic numbers with uniformizer

π. Let ϕ and ψ be Eisenstein polynomials over K of degree n that generate

isomorphic extensions. We show that if the cardinality of the residue class
field of K divides n(n−1), then v(disc(ϕ)−disc(ψ)) > v(disc(ϕ)). This makes

the first (non-zero) digit of the π-adic expansion of disc(ϕ) an invariant of

the extension generated by ϕ. Furthermore we find that non-cyclic extensions
of degree p of the field of p-adic numbers are uniquely determined by this

invariant.

1. Introduction

This paper is concerned with the classification of extensions of p-adic fields using
invariants. We introduce a new invariant and show how it is related to other
invariants of the extension.

For a field extension of finite degree, the discriminant of an integral basis yields
invariants of the extension. A change of integral basis results in the multiplication of
the discriminant by the square of a unit in the base ring; namely, by the determinant
of the transformation matrix. Because the only units in the ring of integers Z are
±1 and because −1 is not a square, the discriminant is an invariant of an extension
of the rational numbers Q.

When we consider extensions of the p-adic field Qp, the ring of p-adic numbers
Zp takes the place of Z. As Zp contains infinitely many units, the discriminant of
an integral basis is not an invariant of an extension of Qp. However, since changing
integral bases changes the discriminant by the square of a unit, the discriminant
modulo the square of units does produce an invariant of the extension; see [Cas86,
chapter 7, section 6] for details. Nevertheless, commonly only the valuation of the
discriminant is used as an invariant of extensions of Qp, since it yields information
about the ramified part of the extension.

It is natural to ask whether this invariant can be refined by considering not the
complete discriminant but possibly some of the digits of its p-adic expansion. To
this end we restrict our investigation to discriminants of integral bases of a certain
form; namely, power integral bases, which are bases of the form 1, α, α2,. . . ,αn−1

where n is the degree of the extension. In the case of totally ramified extensions,
the discriminants of such a power integral bases is the same as the discriminant of
the Eisenstein polynomial with root α.

We find that the first digit of the p-adic expansion of the discriminant of gener-
ating Eisenstein polynomials is an invariant for most extensions. This allows for a
finer classification of totally ramified extensions. Most of our results also hold over
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extensions of Qp; in this case we consider the π-adic expansion of the discriminant
where π is a uniformizing element of the base field. As an application we show that
for extensions of Qp of degree p this new invariant already yields the Galois group.

Notation. We introduce the notation that we use throughout the paper and recall
some results about totally ramified extensions.

For a prime number p we denote by Qp the completion of the rational numbers
Q with respect to the p-adic exponential valuation vp, by Zp its valuation ring,

and by Qp a fixed algebraic closure of Qp. By K we denote a finite extension of
Qp with valuation ring OK , uniformizing element π, and maximal ideal (π). The
exponential valuation vπ on K is normalized such that vπ(π) = 1. The extensions
of vp and vπ to Qp are also denoted by vp and vπ. We write K for the residue class
field OK/(π) of K and for β ∈ OK we set β = β + (π) ∈ K.

The extensions that we consider are totally ramified extensions. In the following
the ground field K will either be the p-adic field Qp or a finite extension of Qp.
Totally ramified extensions L/K can be generated by an Eisenstein polynomial
ϕ ∈ OK [x]. For a root α of ϕ we have OL = OK(α). The discriminant disc(ϕ)
of the generating polynomial ϕ is equal to the discriminant of the integral basis
1, α, . . . , αn−1 of OL/OK where n is the degree of ϕ and thus the degree of L/K.
The root α is a uniformizing element of OL. We write vα for the valuation on OL
that is normalized such that vα(α) = 1. For γ ∈ K we have vα(γ) = n · vπ(γ).
The minimal polynomial of any uniformizing element of OL, that is of any β ∈ OL
with vα(β) = 1 is also a uniformizing element of L and its minimal polynomial is
an Eisenstein polynomial.

2. Main Results

In this section we present our main results. The proofs can be found in the
following sections. We start by investigating the number of common digits of the
discriminants is related to the distance between the two polynomials.

For a given n ∈ N there are finitely many totally ramified extensions of K of
degree n. Marc Krasner has presented a formula for the number of the extensions
with given degree and valuation of the discriminant [Kra66]. To this end he intro-
duces a distance function d on the set of Eisenstein polynomials of a fixed degree
and valuation of the discriminant, also see [PR01, Section 4].

Definition 2.1. Let ϕ, ψ ∈ OK [x] be Eisenstein of degree n with vπ(disc(ϕ)) =
vπ(disc(ψ)). Let α ∈ Qp be a root of ϕ and define the distance between ϕ and ψ
as d(ϕ,ψ) = vπ(ψ(α)).

This distance is symmetric with respect to the input polynomials and is inde-
pendent of the choice of root. It satisfies the ultrametric inequality, and clearly
d(ϕ,ψ) =∞ if and only if ϕ = ψ.

We find that when we choose two polynomials ϕ and ψ that generate isomorphic
extensions such that they are close enough, that is when d(ϕ,ψ) is large enough, we
can ensure that arbitrarily many digits of the π-adic expansion of their discriminants
coincide.

Theorem 2.2. Let ϕ, ψ ∈ OK [x] be Eisenstein of degree n with vπ(disc(ϕ)) =

vπ(disc(ψ)) = n+ j − 1. If d(ϕ,ψ) > n+2j
n , then
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vπ(disc(ϕ)− disc(ψ)) ≥
(

1− 1

n

)
vπ(disc(ϕ)) + d(ϕ,ψ).

From now on we concentrate on the first digit of the π-adic expansion of the
discriminants of polynomials. We use this notation:

Definition 2.3. For β ∈ OK we set tc (β) = (β/πvπ(β)) ∈ K. This is the first

nonzero digit (or the trailing coefficient) of the π-adic expansion of β as an element
of K.

Clearly we have:

Lemma 2.4. For α, β ∈ K we have tc (α · β) = tc (α) · tc (β).

We find that this first π-adic digit of the valuation of the generating Eisenstein
polynomial is an invariant in many cases.

Theorem 2.5. Let ϕ,ψ ∈ OK [x] be Eisenstein and of degree n such thatK[x]/(ϕ) ∼=
K[x]/(ψ). If (#K − 1)|(n(n− 1)) then tc (disc(ϕ)) = tc (disc(ψ)).

In these cases, the trailing coefficient of the discriminant is independent of the
generating Eisenstein polynomial and thus is an invariant of power integral bases
of a totally ramified extension. Thus, if (#K − 1)|(n(n − 1)), then the trailing
coefficient of the discriminant is an invariant of the extension. Some classes of
extensions always have the same invariant.

Proposition 2.6. Let p be odd and ϕ ∈ Qp[x] be Eisenstein of degree pm such
that Qp[x]/(ϕ) is cyclic. Then

tc (disc(ϕ)) =

 1 if m is even
−1 if m is odd and p ≡ 1 mod 4

1 if m is odd and p ≡ 3 mod 4.

We end with examples of information that can be obtained from this invariant.
Extensions of Qp of degree p have been described in detail, see [Ama71] or [JR06].
We show that they can also be classified using the discriminant and its trailing
coefficient, that is, the first non-zero coefficient of its p-adic expansion.

Theorem 2.7. Let ϕ be an Eisenstein polynomial of degree p in Qp such that
Gal(ϕ) 6∼= Cp and vp(disc(ϕ)) 6= 2p−1. Then the isomorphism class of the extension
generated by ϕ is uniquely determined by vp(disc(ϕ)) and tc (disc(ϕ)).

The Galois group of an Eisenstein polynomial ϕ of degree p over Qp can be
determined from the valuation of its discriminant disc(ϕ) and its trailing coefficient
tc (disc(ϕ)).

Corollary 2.8. Let p be an odd prime, and let ϕ be an Eisenstein polynomial of de-
gree p over Qp. Let v = vp(disc(ϕ)), j = v−p+1, and γ = (−1)(p−1)/2 tc (disc(ϕ)).
Then

Gal(ϕ) ∼=


Cp o Cp−1 if v = 2p− 1
Cp if v = 2p− 2 and γ = p− 1
Cp o Cd otherwise

where d = p−1
gcd( p−1

m ,j)
with m being the order of aj in F×p for a = γ · (−1)j+1j−1.
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3. Proof of Theorem 2.2

We recall some of the results from the work of Krasner (see [Kra66] or [PR01])
about the distance function d. Assume that ϕ(x) =

∑n
i=0 ϕix

i ∈ OK [x] and ψ(x) =∑n
i=0 ψix

i ∈ OK [x] are Eisenstein polynomials whose discriminants have the same
valuation, say vπ(disc(ϕ)) = vπ(disc(ψ)) = n+ j − 1. Denote by α = α(1), . . . , α(n)

the roots of ϕ in Qp.
If d(ϕ,ψ) > n+2j

n then there is a root β ∈ Qp of ψ such that vπ(α − β) >
vπ(α−α(i)) for 2 ≤ i ≤ n. In this case Krasner’s lemma implies that K(α) = K(β).
So the assumption of Theorem 2.2 implies that the extensions generated by ϕ and
ψ are isomorphic.

Furthermore, again assuming that vπ(α− β) > vπ(α− α(i)) for some 2 ≤ i ≤ n,
we obtain another expression for the distance of two polynomials:

d(ϕ,ψ) =
n∑
i=1

min{vπ(α− β), vπ(α− α(i))} = vπ(α− β) +
n∑
i=2

vπ(α− α(i))

So we can write the valuation of α− β in terms of d(ϕ,ψ) and disc(ϕ):

vπ(α− β) = d(ϕ,ψ)−
n∑
i=2

vπ(α− α(i))

= d(ϕ,ψ)− vπ

(
n∏
i=2

(α− α(i))

)
(1)

= d(ϕ,ψ)− 1

n
vπ(disc(ϕ)).

We now are ready to prove Theorem 2.2.

Proof of Theorem 2.2. Let α = α(1), . . . , α(n) and β as above. As K(α) = K(β)
there is γ ∈ K(α) with vα(γ) = 0 such that β = α + γαm where m = vα(α − β).
We order the roots β(1), . . . , β(n) of ψ such that β(1) = β = α + γαm, β(2) =
α(2) + γ(2)α

m
(2) and so on. For the discriminant of ψ we get:

disc(ψ) =
∏
i<j

(
β(i) − β(j)

)2
=
∏
i<j

((
α(i) + γ(i)α

m
(i)

)
−
(
α(j) + γ(j)α

m
(j)

))2
=
∏
i<j

((
α(i) − α(j)

)
+
(
γ(i)α

m
(i) − γ(j)α

m
(j)

))2

=
∏
i<j

(
α(i) − α(j)

)2∏
i<j

(
1−

m∑
k=1

(
γ(j)α

m−k
(i) αk−1(j)

)
− αm(i)

γ(j) − γ(i)
α(j) − α(i)

)2

= disc(ϕ)
∏
i<j

(
1− γ(j)

m∑
k=1

(
αm−k(i) αk−1(j)

)
− αm(i)

γ(j) − γ(i)
α(j) − α(i)

)2

.
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Let Cij =
(

1− γ(j)
∑m
k=1

(
αm−k(i) αk−1(j)

)
− αm(i)

γ(j)−γ(i)
α(j)−α(i)

)2
. We have vα(Cij − 1) ≥

m− 1. With disc(ψ) = disc(ϕ)(
∏
i<j Cij) we get:

vπ(disc(ϕ)− disc(ψ)) = vπ

disc(ϕ)− disc(ϕ)

∏
i<j

Cij


= vπ(disc(ϕ)) + vπ

1−

∏
i<j

Cij


≥ vπ(disc(ϕ)) +

m− 1

n
.

With m = vα(α− β) = n · vπ(α− β) and (1) we obtain

vπ(disc(ϕ)− disc(ψ)) ≥ vπ(disc(ϕ)) +
n · vπ(α− β)− 1

n

= vπ(disc(ϕ)) + d(ϕ,ψ)− 1

n
(vπ(disc(ϕ)) + 1). �

4. Proof of Theorem 2.5

Proof of Theorem 2.5. Let α be a root of ϕ. Since ϕ and ψ generate isomorphic
extensions, there exists β ∈ K(α) such that ψ(β) = 0. So β =

∑n−1
k=0 bkα

k for some
bk ∈ OK . As vα(β) = vα(α) = 1 we have v(b1) = 0. Let α(1), α(2), . . . , α(n) be the
conjugates of α and let σ1, σ2, . . . , σn be the isomorphisms such that σi(α) = α(i).
Let β(1), β(2), . . . , β(n) be the roots of ψ, defined by

β(i) = σi(β) = σi

(
n−1∑
k=0

bkα
k

)
=
n−1∑
k=0

σi(bk)σi(α)k =
n−1∑
k=0

bkα
k
(i).

We now compute the discriminant of ψ, with the goal of writing it in terms of the
discriminant of ϕ.

disc(ψ) =
∏
i<j

(
β(i) − β(j)

)2
=
∏
i<j

(
n−1∑
k=1

bk

(
αk(i) − α

k
(j)

))2

=
∏
i<j

(
α(i) − α(j)

)2∏
i<j

[
n−1∑
k=1

(
bk

k−1∑
`=0

α
(k−1−`)
(i) α`(j)

)]2

= disc(ϕ) ·
∏
i<j

[
n−1∑
k=1

(
bk

k−1∑
`=0

α
(k−1−`)
(i) α`(j)

)]2
.

We write disc(ϕ)− disc(ψ) = disc(ϕ) · (1− γ) where

γ =
∏
i<j

[
n−1∑
k=1

(
bk

k−1∑
`=0

α
(k−1−`)
(i) α`(j)

)]2
.

Note that γ is a symmetric polynomial in α(1), . . . , α(n). Let e1, . . . , en denote the
elementary symmetric polynomials in α(1), . . . , α(n). By the fundamental theorem
of symmetric polynomials, there is a polynomial γ∗ ∈ OK [x1, . . . , xn] such that
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γ = γ∗(e1, . . . , en). If we expand γ∗, all terms consist of sums of products of

α(1), . . . , α(n) except for the constant term, b
n(n−1)
1 . So

γ∗ = m(1)e1 +m(2)e2 + · · ·+m(n)en +m(n+1)e
2
1 +m(n+2)e1e2 + · · ·+ b

n(n−1)
1

for some m(1), . . . ,m(n(n−1)−1) ∈ OK . Note that e1, . . . , en are exactly the coeffi-
cients of ϕ. Since the coefficients of ϕ have π-adic valuation greater than or equal

to 1, π divides all of its coefficients. This implies γ = b
n(n−1)
1 .

The next step is to show b
n(n−1)
1 = 1. Since both ϕ and ψ are Eisenstein and

generate the same extension, vα(β) = 1. So

1 = vα(β) = vα

(
n−1∑
k=0

bkα
k

)
= min

0≤k≤n−1
{vα(bkα

k)}.

Equality holds because each bk has α-adic valuation 0 or a positive multiple of n,
so each term has a different valuation. For all k, vα(bkα

k) ≥ 1. For k ≥ 1, this
is obviously true. For k = 0, vα(b0) = 0 or a positive multiple of n. As vα(b0)
must be at least 1, the lowest multiple of n it can be is n. We now have that for
k 6= 1, vα(bkα

k) ≥ 2. Thus vα(b1α) = 1, implying vα(b1) = 0, i.e. b1 /∈ (π). By the

generalization of Fermat’s little theorem, b1 /∈ (π) ⇒ b
#K−1
1 = 1. By assumption

(#K − 1)|n(n− 1), so this implies b
n(n−1)
1 = 1.

We have (1− γ) = (1− bn(n−1)1 ) = (1− 1) = 0. Because π|(1− γ) we can write

1− γ = π · c for some c. So

disc(ϕ)− disc(ψ) = disc(ϕ) · (1− γ) = disc(ϕ) · π · c.
Therefore, vπ(disc(ϕ)−disc(ψ)) ≥ vπ(disc(ϕ))+1 and thus tc (disc(ϕ)) = tc (disc(ψ)).

�

5. Proof of Proposition 2.6

Because of Lemma 2.4 we only need to consider the trailing coefficients of the
differences of roots in our considerations.

In the proof of the proposition we will use information obtained from the rami-
fication polygon of the polynomial ϕ ∈ Qp[x] under consideration. We recall some
of the information that can be obtained from the ramification polygon, see [GP12]
for details.

Let α be a root of ϕ. The ramification polynomial of an Eisenstein polynomial
ϕ of degree n

ρ(x) = ϕ(αx+ α)/(αn) =

n∑
i=0

ρix
i ∈ Qp(α)[x]

has the roots α∗−α
α where α∗ is a root of ϕ. The Newton polygon of the ramification

polynomial is called the ramification polygon of ϕ, it is independent of the choice
of α and an invariant of the extension Qp(α) ≡ Qp[x]/(ϕ). Its breaks can only be
at powers of p and The negatives of the slopes λ of the segments are the valuations
of the differences of the roots of ϕ. The length of the segment (in direction of the
horizontal axis) with slope λ is the number of roots α∗ of ϕ such that vα(α−α∗) =
λ+ 1.

When Qp[x]/(ϕ) is normal the differences of the roots of ϕ are in Qp[x]/(ϕ)
and thus the slopes λi of the segments of the ramification polygon are integral.
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i

vα(ρi)

1 p p2 pm−1 pm

−λ1

−λ2

−λm

(1, j)

(pm, 0)

Figure 1. Ramification polygon of an Eisenstein polynomial ϕ ∈
Qp[x] of degree pm with disc(ϕ) = pm + j − 1 generating a normal

cyclic extension, where ρ(x) = ϕ(αx + α)/(αp
m

) =
∑pm

i=0 ρix
i ∈

Qp(α)[x] with α a root of ϕ is the ramification polynomial of ϕ.

Furthermore the roots of the residual polynomials of the segment of slope λ are of
the form

γ =

(
α∗ − α
αλ+1

)
and thus tc (α∗ − α) = γ. As Qp[x]/(ϕ) is normal we have γ ∈ Fp. The normality

also implies that the lengths of the segments of the ramification polygon are pi−pi−1
for 1 ≤ i ≤ m and that all elements of F×p are roots of the residual polynomial of
each segment.

Proof of Proposition 2.6. The polynomial ϕ is an Eisenstein polynomial of degree
pm. As the extension generated by ϕ is normal, the slopes of the segments are inte-
gers. It follows from the symmetry of the roots and the normality of the extension
that the breaks in the polygon are exactly at 1, p, p2, . . . ,pm−1, see Figure 1. So
the lengths of the segments with finite slope are p− 1, p2 − p, . . . , pm − pm−1.

As Q×p = F×p only has p − 1 distinct elements it follows from the symmetry of

the roots that we get for any root α of ϕ that:

(2)
∏

vp(α−α∗)=λ1

tc (α− α∗) =
∏
γ∈F×

p

γ = −1

where the α∗ are roots of ϕ and −λ1 is the slope of the first segment of the ramifi-
cation polygon from Figure 1. Similarly, again because of normality and symmetry,
taking into consideration the lengths of the segment for the second to the n-th
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segments with slopes λi of length pi − pi−1 using that p is odd, we get:

(3)
∏

vp(α−α∗)=λi

tc (α− α∗) =

 ∏
γ∈F×

p

γ


pi−1

= (−1)p
i−1

= −1.

Equations (2) and (3) yield:

tc (disc(ϕ)) = (−1)
pm(pm−1)

2

∏
α∗ 6=α

tc (α− α∗)

= (−1)
pm(pm−1)

2

∏
α

m∏
i=1

∏
vp(α−α∗)=λi

tc (α− α∗)

= (−1)
pm(pm−1)

2 ((−1)m)
pm

= (−1)m+
pm(pm−1)

2 .

Recall that p is odd. When m is even we have pm ≡ 1 mod 4 so pm−1
2 ≡ 0 mod 4

which implies tc (disc(ϕ)) = 1. Similarly, when m is odd and p ≡ 1 mod 4 then
pm−1

2 ≡ 0 mod 4, so tc (disc(ϕ)) = −1 and when m is odd and p ≡ 3 mod 4 then
pm−1

2 ≡ 1 mod 4, so tc (disc(ϕ)) = 1. �

6. Proof of Theorem 2.7 and Corollary 2.8

Before we get to the proof of the theorem and corollary we give some auxiliary

results. In the proofs below we use that tc (Res(ϕ,ϕ′)) = tc (disc(ϕ)) (−1)
n(n−1)

2

where Res(ϕ,ϕ′) denotes the resultant of ϕ and ϕ′ and the degree of ϕ is n.
To determine the trailing coefficient of the discriminant of Eisenstein polynomials

ϕ of degree p over Qp for p odd we distinguish the three cases presented in Table
1. The case vpdisc(ϕ) = 2p− 2 in which Galϕ ∼= Cp is covered by Proposition 2.6.

Lemma 6.1. Let p be an odd prime, and ϕ ∈ Qp[x] be of degree p, with vp(disc(ϕ)) =

2p− 1. Then tc (disc(ϕ)) = (−1)
p(p−1)

2 .

Proof. If ϕ is a degree p polynomial with vp(disc(ϕ)) = 2p−1, it must be of the form
ϕ(x) = xp+p(1 +ap) for a ∈ {1, . . . , p−1}, or generate an isomorphic extension to
such a polynomial [JR06, Table 2.1]. However, using Theorem 2.5, we can reduce to
the case where the polynomials are exactly of this form since we are only concerned
with the trailing coefficient of the discriminant. We compute ϕ′(x) = pxp−1. Then

0 is a root of ϕ′ with multiplicity p− 1. To show tc (disc(ϕ)) = (−1)
p(p−1)

2 we show
tc (Res(ϕ,ϕ′)) = 1. We have

Res(ϕ,ϕ′) = pp(p(1 + ap))p−1 = p2p−1(1 + ap)p−1.

Thus

tc (Res(ϕ,ϕ′)) = (1 + ap)
p−1

= 1p−1 = 1. �

Lemma 6.2. Let ϕ be an Eisenstein polynomial in Qp of the form xp + apxj + p
for a, j ∈ {1, . . . , p−1} and j and a not both equal to p−1. Then tc (Res(ϕ,ϕ′)) =
(−1)j+1aj.

Proof. As ϕ(x) = xp + apxj + p we have ϕ′(x) = pxp−1 + apjxj−1 = pxj−1(xp−j +
aj). The polynomial ϕ′ has 0 as a root with multiplicity j − 1 and p − j roots

r0, . . . , rp−j−1 with rp−jk = −aj for 0 ≤ k ≤ p− j − 1 of multiplicity 1.
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Table 1. Families of generating polynomials of extensions of de-
gree p of Qp for p odd with their Galois group. We have d =

p−1
gcd( p−1

m ,j)
where m is the order of aj in F×p for a = γ · (−1)j+1j−1.

See [JR06].

ϕ ∈ Qp[x] Parameters vp(disc(ϕ)) Gal(ϕ)
1 ≤ a ≤ p− 1

xp + apxj + p 1 ≤ j ≤ p− 1 p+ j − 1 Cp o Cd
(j, a) 6= (p− 1, p− 1)

xp − pxp−1 + p(1 + ap) 0 ≤ a ≤ p− 1 2p− 2 Cp
xp + p(1 + ap) 0 ≤ a ≤ p− 1 2p− 1 Cp o Cp−1

Let ξ ∈ Qp be a primitive (p− j)th root of unity and fix a non zero root r0 of ϕ′

then the other non zero roots are of the form rk = ξkrp−j where k = 1, . . . , p−j−1.
Writing ϕ(x) = xj(xp−j + ap) + p and evaluating ϕ at the roots of ϕ′ we obtain:

Res(ϕ,ϕ′) = pppj−1
p−j−1∏
k=0

[(
ξkr0

)j (
rp−j0 + ap

)
+ p
]
.

Hence

tc (Res(ϕ,ϕ′)) =

p−j−1∏
k=0

[(
ξk(r0

)j · (r0p−j + ap
)

+ p
]

=

p−j−1∏
k=0

[
ξkj · r0j+p−j

]
= r0

p(p−j) ·
p−j−1∏
k=0

ξkj

= (r0)p−j · ξj
∑p−j−1

0 k = (−aj) · ξj
(p−j)(p−j−1)

2

= −aj · (ξ
p−j
2 )j(p−j−1) = (−1)j+1aj. �

Proof of Theorem 2.7. Let ϕ ∈ Qp[x] be Eisenstein of degree p such that Gal(ϕ) 6=
Cp and vp(disc(ϕ)) 6= 2p − 1. For each of these extensions, there is exactly one
polynomial of the form xp + apxj + p for a, j ∈ {1, . . . , p − 1} where p + j − 1 is
the valuation of the discriminant and j and a are both not equal to p − 1 [JR06,
Proposition 2.3.1].

Thus there exists some ψ(x) = xp + apxj + p (for fixed a and j) that generates
an extension isomorphic to ϕ. By Theorem 2.5, vp(Res(ϕ,ϕ′)) = vp(Res(ψ,ψ′))
and tc (Res(ϕ,ϕ′)) = tc (Res(ψ,ψ′)). With Table 1 and Lemma 6.2 we get

j = vp(Res(ϕ,ϕ′))− p+ 1 and a = tc (Res(ϕ,ϕ′)) = (−1)j+1j−1.

No two distinct j ∈ {1, . . . , p − 1} have the same multiplicative inverse modulo
p. Also for a fixed j, no two distinct possible values of tc (Res(ϕ,ϕ′)) give the
same value of a. Thus vp(Res(ϕ,ϕ′)) and tc (Res(ϕ,ϕ′)) uniquely determine ψ, and
therefore the extension. �

Proof of Corollary 2.8. If vp(Res(ϕ,ϕ′)) = 2p− 1, then Gal(ϕ) = Cp o Cp−1.
Suppose vp(Res(ϕ,ϕ′)) = 2p − 2 and tc (Res(ϕ,ϕ′)) = −1. Then ϕ is either in

the first or second family in Table 1, since vp(Res(ϕ,ϕ′)) = 2p − 2. By Lemma
6.2 we have tc (Res(ϕ,ϕ′)) = (−1)j+1aj. Since j = p − 1, −1 = tc (Res(ϕ,ϕ′)) =
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(−1)pa(p− 1) = a. Hence ϕ must be in the second row of the table, that is,

Gal(ϕ) = Cp.

Otherwise, compute a and j as in Theorem 2.7. In Table 1, d = (p−1)/ gcd(p−1m , j)
where m is the order of aj in F×p [JR06]. The size of the Galois group is p · d and
the Galois group is Cp o Cd. �
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dances Géom. en Algèbre et Théorie des Nombres, Editions du Centre National de la

Recherche Scientifique, Paris, 1966, pp. 143–169. MR 0225756 (37 #1349)

[PR01] Sebastian Pauli and Xavier-François Roblot, On the computation of all extensions of a
p-adic field of a given degree, Math. Comp. 70 (2001), no. 236, 1641–1659 (electronic).

MR 1836924 (2002e:11166)

Elon University

Princeton University

University of North Carolina Greensboro

University of North Carolina Greensboro

Carnegie Mellon University

Aurora University


