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HALF DERIVATIVES OF THE RIEMANN ZETA FUNCTION

S. PAULI & F. SAIDAK

Abstract. For the real parts of fractional derivatives of the Riemann zeta function ζ(s) we prove:

<
(
ζ(k+

1
2
)(σ)

)
= −

Γ(k + 1
2

+ 1)

(1− σ)k+
1
2
+1
,

an expression valid for all k ∈ N0 and σ < 1, where Γ(s) denotes the gamma function.

1. Introduction: special values of Γ(s) and ζ(s)

The topic of special values and exact formulas for the functions Γ(s) and ζ(s) has a long and
interesting history. Before we discuss our contribution to the subject, we briefly summarize some
of its main highlights, so that the relevance of our results can be understood in proper context.

Let Γ(s) =
∫∞
0 xs−1e−x dx be the Legendre [23] integral for the Γ-function, defined by Euler [8]

in a 1730 letter to Goldbach. Clearly, Γ(1) =
∫∞
0 e−x dx = [−e−x]∞0 = 1 and, integrating by parts,

Γ(s+ 1) =

∫ ∞
0

xse−x dx =
[
−xse−x

]∞
0

+

∫ ∞
0

sxs−1e−x dx = sΓ(s), (1)

the so-called functional equation of Γ(s) (the uniqueness of which is known as the Bohr-Mollerup
theorem [4]); it readily implies that Γ(s) = (s − 1)!, for all s ∈ N. The integral representation of
Γ(s) is correct only for complex s with <(s) > 0, but the function can be analytically continued
to the complex plane C\{0,−1,−2, · · · } (e.g. via the formula of Mittag-Leffler [29]), avoiding
the poles of Γ(s) at the non-positive integers. Moreover, Γ(s) satisfies Euler’s reflection formula
Γ(s)Γ(1 − s) = πs/ sin(πs), valid as long as s /∈ N (see [2]), a result that implies that Γ(s) has
no zeros in C. With s = 1

2 , and a little help from the normal distribution integral of Gauss [18]

(namely
∫ +∞
−∞ e−x

2
dx =

√
π), this shows that Γ(12) =

√
π, as well as Γ(32) = 1

2

√
π and Γ(52) = 3

4

√
π,

and ultimately also (applying the functional equation (1)): Γ(s+ 1
2) = (2s)!

4ss!

√
π, valid for all s ∈ N0.

Many other explicit formulas for, and special values of, Γ(s) have been discovered (see [35], for
example), and its various derivatives have also been studied. We have (Euler [13] of 1765):

Γ′(1) =

∫ ∞
0

e−x log x dx = −γ and Γ′′(1) =

∫ ∞
0

e−x(log x)2 dx =
π2

6
+ γ2,

where γ is the Euler-Mascheroni constant ([10] & [27]): γ = limn→∞
(∑n

m=1
1
m − log n

)
= 0.57721 · · ·

and, by taking the logarithmic derivative of the functional equation of Γ(s), it easily follows that

Γ′(s+ 1)

Γ(s+ 1)
=

Γ′(s)

Γ(s)
+

1

s
=⇒ Γ′(2) = 1− γ. (1′)

These formulas play a central role not just in the theory of Γ(s), but are closely related to results
concerning ζ(s), defined by Euler [11] in 1737. Euler proved that, for real s > 1, ζ(s) satisfies

ζ(s) :=

∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1
, (2)
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with the so-called Euler product extended over all primes p. Moreover, in the same region (see [22]):

d(1/ns)

ds
=
d(e−s logn)

ds
=
− log n

ns
=⇒ ζ(k)(s) = (−1)k

∞∑
n=1

(log n)k

ns
, (2′)

true for derivatives of all orders k ∈ N. Now, ζ(s) can be, by a process of analytic continuation,
extended to a meromorphic functions, with a pole at s = 1; and , as Stieltjes [32] proved in 1885,

ζ(s) =
1

s− 1
+

∞∑
n=0

(−1)nγn
n!

(s− 1)n, with γn := lim
s→1

∣∣∣∣(−1)nζ(n)(s)− n!

(s− 1)n+1

∣∣∣∣ ,
where γn are the Stieltjes constants, with γ0 = γ. Euler’s (2) continued his earlier work, on the Basel

problem (Euler [9] of 1734), which he solved by proving: ζ(2) = π2

6 , ζ(4) = π4

90 , ζ(6) = π6

945 , and most

spectacularly: ζ(2m) = (−1)m+1 22m−1B2m
(2m)! π2m, valid for all m ∈ N, where B2m are the Bernoulli

numbers (defined in Bernoulli [3] of 1713): B0 = 1, B1 = −1
2 , B2 = 1

6 , B3 = 0, B4 = − 1
30 , B5 = 0, · · ·

all of which are rational numbers that can be computed via their generating function

x

ex − 1
=

∞∑
n=0

Bn
n!
xn.

And, as Abel [1] noticed in 1823, since e−x + e−2x + e−3x + · · · = 1/(ex − 1), we can write

1

ns
Γ(s) =

1

ns

∫ ∞
0

(nx)s−1ne−nx dx =

∫ ∞
0

xs−1e−nx dx =⇒ ζ(s)Γ(s) =

∫ ∞
0

xs−1

ex − 1
dx.

This formula is a starting point for at least 3 proofs (see Titchmarsh [34], §2.4, §2.7 and §2.8) of
the functional equation (conjectured by Euler [12] in 1749, and proved by Riemann [31] in 1859):

ζ(s) = ζ(1− s)2sπs−1Γ(s− 1) sin
(πs

2

)
, (3)

valid for 1 6= s ∈ C. The quasi-symmetry of (3) implies that (letting s → 1): ζ(0) = −1
2 and

(using the aforementioned special values Γ(12) =
√
π,Γ(−1

2) = −2Γ(12) and ζ(2) = π2

6 ) it also gives:

ζ(−1) = − 1
12 . Similarly, one can apply (3) to prove that ζ(−3) = 1

120 , ζ(−5) = − 1
252 , ζ(−7) = 1

240

and, for all m ∈ N, ζ(−2m+ 1) = (−1)mB2m
2m and ζ(−2m) = 0, the last result establishing that the

even negative integers are the trivial zeros of ζ(s). Taking the logarithmic derivative of (3), we get

−ζ
′(1− s)
ζ(1− s)

= − log 2π +
ζ ′(s)

ζ(s)
+

Γ′(s)

Γ(s)
− π

2
tan

(πs
2

)
s→1−−−→ ζ ′(0) = −1

2
log 2π.

The alternating Dirichlet [6] eta function η(s) := (1 − 21−s)ζ(s) =
∑∞

n=1(−1)n+1n−s can be
used to give an even simpler proof of this result, as well as a justification of the following general

formula: ζ ′(−2m) = (−1)m (2m)!
2(2π)2m

ζ(2m+ 1), for all m ∈ N.

2. New Extensions: Fractional Derivatives

There are several ways one can generalize (2′), and investigate the fractional derivatives of the
Riemann zeta function ζ(s). Like in most of our previous work (see [14], [15], [17] and [30]), we
will employ the Grünwald-Letnikov fractional derivatives (originally introduced in [19] and [25] &
[26]), which, for α > 0, define the α-th derivative of the Riemann zeta function as:

ζ(α)(s) := (−1)α
∞∑
n=1

logα(n+ 1)

(n+ 1)s
, (2′′)
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an expression that is valid only for <(s) > 1, but – like in the classical case of ζ(s) – admits an
analytic continuation to C via the following Laurent series expansion:

ζ(α)(s) = (−1)α

(
Γ(α+ 1)

(s− 1)α+1
+

∞∑
n=0

(−1)nγn+α
n!

(s− 1)n

)
, (4)

where γn+α are the fractional Stieltjes constants, for α ∈ R+ defined by Kreminski [21] in 2003.
Moreover, with the help the Euler-Maclaurin summation (see our [16]), (4) can be rewritten as:

ζ(α)(s) = (−1)α

(
m−1∑
k=2

logα k

ks
+

1

2

logαm

ms
−
bv/2c∑
j=1

B2j

(2j)!

(
logαm

ms

)(2j−1)
+

Γ(α+ 1, (s− 1) logm)

(s− 1)α+1

+
1

v!

∫ ∞
m

Pv(x)g(v)α,s(x) dx

)
,

where m ≥ 2 and v are positive integers, gα,s(x) = logα x
xs , and Pv(x) is the v-th periodic Bernoulli

function (see [20]). With these prerequisites we can now state and prove our main result:

Theorem 1. For all k ∈ N0 and real σ < 1,

<
(
ζ(k+

1
2
)(σ)

)
= −

Γ(k + 1
2 + 1)

(1− σ)k+
1
2
+1
. (∗)

Proof. We consider a special case of the above expression, with m = 2, v = 1, and α = k + 1
2 ,

ζ(k+
1
2
)(σ) = (−1)k+

1
2

(
1

2

logk+
1
2 2

2σ
+

Γ(k + 1
2 + 1, (σ − 1) log 2)

(σ − 1)k+
1
2
+1

+

∫ ∞
2
P1(x)g′

k+ 1
2
,σ

(x) dx

)
,

where, for the incomplete gamma function, we note that:

Γ
(
n+ 1

2 + 1, (σ − 1) log 2
)

= Γ
(
n+ 1

2 + 1
)
− γ

(
n+ 1

2 + 1, (σ − 1) log 2
)
,

and γ(n+ 1
2 + 1, (σ− 1) log 2) is purely imaginary (e.g. [33]). Also, <((−1)k+

1
2 r) = <(±ir) = 0 for

all r ∈ R, and both 1
2
log

1
2 2

2σ ∈ R, and the integrand P1(x)g′
k+ 1

2
,σ

(x) ∈ R, for x ∈ R. Therefore

<
(
ζ(k+

1
2
)(σ)

)
= <

(
(−1)k+

1
2

Γ(k + 1
2 + 1)

(σ − 1)k+
1
2
+1

)
= −

Γ(k + 1
2 + 1)

(1− σ)k+
1
2
+1
,

which confirms the statement of the theorem, and finishes its proof. �

3. Auxiliary Remarks

Remark 1. As noted in the Introduction, special values of Γ(s) and ζ(s) and their derivatives
have a special place in the history of mathematics. Simple formulas that yield new insights are rare,
which makes their existence for the “complicated” fractional derivatives that much more surprising,
even though in their complex environment the discovered patterns only concern their real values.

Remark 2. The special values of Γ(s) involved in (∗) have a closed form (see above), and imply:

<
(
ζ(k+

1
2
)(σ)

)
= − (2k + 2)!

4k+1(k + 1)!(1− σ)k+
1
2
+1

√
π.

Since this formula is valid for all real σ, it provides a variety of new interesting special cases.
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Remark 3. Fractional half derivatives of ζ at the origin (σ = 0):

<(ζ(
1
2
)(0)) = −Γ

(
1 +

1

2

)
= −1

2

√
π

<(ζ(3/2)(0)) = −Γ

(
1 +

3

2

)
= −3

4

√
π

<(ζ(5/2)(0)) = −Γ

(
1 +

5

2

)
= −15

8

√
π

<(ζ(7/2)(0)) = −Γ

(
1 +

7

2

)
= −105

16

√
π

Remark 4. Fractional half derivatives of ζ at the negative integers (σ = −n, with n ∈ N):

<(ζ(1/2)(−1)) = −
√

2π

8

<(ζ(1/2)(−2)) = −
√

3π

18

<(ζ(1/2)(−3)) = −
√

4π

32

<(ζ(1/2)(−4)) = −
√

5π

50
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du XVIII. siècle, l’Academie imperiale des sciences, St.-Pétersbourg, Vol. 1, 1843).
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