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Abstract. We give an algorithm that constructs a minimal set of polynomials defining
all extension of a (π)-adic field with given, inertia degree, ramification index, discriminant,
ramification polygon, and residual polynomials of the segments of the ramification polygon.

1. Introduction

It follows from Krasner’s Lemma that a local field has only finitely many extensions of a
given degree and discriminant. Thus it is natural to ask whether one can generate a list of
polynomials such that each extension is generated by exactly one of the polynomials.

For abelian extensions local class field theory, gives a one-to-one correspondence between
the abelian extensions of K and the open subgroups of the unit group K× of K. An algorithm
that constructs the wildly ramified part of the class field as towers of extensions of degree p
was given in [17]. Recently Monge [11] has published an algorithm that, given a subgroup
of K× of finite index, directly constructs the generating polynomial of the corresponding
totally ramified extension.

In the non-abelian case, such a complete description is not yet known. However, a de-
scription of all tamely ramified extensions is well known and all extensions of degree p have
been described completely by Amano [1]. Krasner [8] gave a formula for the number of
totally ramified extensions, using his famous lemma as a main tool. Following his approach
Pauli and Roblot [19] presented an algorithm that returned a set of generating polynomials
for all extensions of a given degree and discriminant. They used the root-finding algorithm
described by Panayi [16] to obtain one generating polynomial for each extension. A new ap-
proach for determining whether two polynomials generate the same extension was recently
presented by Monge [11]. He introduces reduced polynomials that yield a canonical set of
generators for totally ramified extensions of K.

Monge’s methods also considerably reduce the number of generating polynomials that need
to be considered when computing a set of polynomials defining all totally ramified extensions
of K. We present an algorithm that for each extension with given invariants constructs a
considerably smaller set of defining polynomials than the set obtained with Krasner’s bound.
In many cases this eliminates the need to check whether two polynomials generate the same
extension. The polynomials constructed are reduced in Monge’s sense.

Overview. In the first three sections of the paper, we examine extension invariants and
how specifying each invariant reduces the number of polynomials ϕ to be considered. We
recall some of Krasner’s results [8] that are based on degree and discriminant (Section 2)
and then add the ramification polygon as an additional invariant (Section 3). Krasner’s
results allow us to set coefficients high enough in the π-adic expansion of the coefficients of
ϕ to 0 and the ramification polygon determines or gives a lower bound for the valuations of
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coefficients of the ϕ. In Section 4 we introduce an invariant based on the residual polynomials
of the ramification polygon, a set containing tuples which consist of a polynomial over the
residue class field for each segment of the ramification polygon. This invariant determines
the leading coefficients of the π-adic expansion of the coefficients of the ϕ. The residual
polynomials together with ideas of Monge [11] yield conditions on the coefficients of two
polynomials that determine whether the polynomials generate isomorphic fields (Section
5). These conditions allow us to set further coefficients in the π-adic expansion of the
coefficients of the polynomials ϕ. Thus reducing the number of polynomials to be considered
considerably. In Section 6 we give an algorithm that uses the results of the previous sections
to return a set of polynomials that generate all extensions with given invariants. In many
cases this set contains exactly one polynomial for each extension. Section 7 contains examples
and comparisons with the implementations of the algorithm by Pauli and Roblot [19].

Notation. By convention fractions denoted h/e or hi/ei are always taken to be in lowest
terms. We denote by Qp the field of p-adic numbers and by vp the (exponential) valuation
normalized such that vp(p) = 1. By K we denote a finite extension of Qp, by OK the
valuation ring of K, and by π a uniformizer of OK .

We write vπ for the valuation of K that is normalized such that vπ(π) = 1 and also denote
the unique extension of vπ to an algebraic closure K of K (or to any intermediate field) by

vπ. For γ ∈ K× and δ ∈ K× we write γ ∼ δ if

v(γ − δ) > v(γ)

and make the supplementary assumption 0 ∼ 0.
For γ ∈ OK we denote by γ the class γ + (π) in K = OK/(π), by RK a fixed set of

representatives of K in OK , and by R×K the set RK without the representative for 0 ∈ K.

For a polynomial ϕ ∈ OK [x] of degree n we denote its coefficients by ϕi (0 ≤ i ≤ n) such
that ϕ(x) = ϕnx

n + ϕn−1x
n−1 + · · ·+ ϕ0 and write ϕi =

∑∞
j=0 ϕi,jπ

j. where ϕi,j ∈ RK .
In examples we use a table to represent sets of polynomials. Each cell contains a set

from which the corresponding coefficient ϕi,j of the π-adic expansion of the coefficient ϕi =∑∞
j=0 ϕi,jπ

j of the polynomial ϕ(x) = ϕnx
n + ϕn−1x

n−1 + · · ·+ ϕ0 can be chosen. We use ∗,
†, and ‡ to indicate which conditions determine which coefficient in the π-adic expansion.

Example 1.1. If ϕ ∈ OK [x] is Eisenstein then ϕn = 1∗, ϕi,0 = 0 for 0 ≤ i < n†, and
ϕ0,1 6= 0‡. The Eisenstein polynomials of degree n over OK are represented by the template:

xn xn−1 xn−2 · · · x4 x3 x2 x1 x0

...
...

...
...

...
...

...
...

...
π2 {0} RK RK · · · RK RK RK RK RK

π1 {0} RK RK · · · RK RK RK RK R×K
‡

π0 {1}∗ {0}† {0}† · · · {0}† {0}† {0}† {0}† {0}†

2. Discriminant

We recall some of the results Krasner used to obtain his formula for the number of ex-
tensions of a p-adic field [8]. These can also be found in [19]. The possible discriminants of
finite extensions are given by Ore’s conditions [14]:
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Proposition 2.1 (Ore’s conditions). Let K be a finite extension of Qp, OK its valuation
ring with maximal ideal (π). Given J0 ∈ Z let a0, b0 ∈ Z be such that J0 = a0n + b0 and
0 ≤ b0 < n. Then there exist totally ramified extensions L/K of degree n and discriminant
(π)n+J0−1 if and only if

min{vπ(b0)n, vπ(n)n} ≤ J0 ≤ vπ(n)n.

The proof of Ore’s conditions yields a certain form for the generating polynomials of
extensions with given discriminant.

Lemma 2.2. An Eisenstein polynomial ϕ ∈ OK [x] with discriminant (π)n+J0−1 where J0 =
a0n+ b0 with 0 ≤ b0 < n fulfills Ore’s conditions if and only if

vπ(ϕi) ≥ max{2 + a0 − vπ(i), 1} for 0 < i < b0,

vπ(ϕb0) = max{1 + a0 − vπ(b0), 1},
vπ(ϕi) ≥ max{1 + a0 − vπ(i), 1} for b0 < i < n.

Krasner’s Lemma yields a bound over which the coefficients of the π-adic expansion of the
coefficients of a generating polynomial can be chosen to be 0 [8].

Lemma 2.3. Each totally ramified extension of degree n with discriminant (π)n+J0−1 where
J0 = a0n+ b0 with 0 ≤ b0 < n can be generated by an Eisenstein polynomial ϕ ∈ OK [x] with
ϕi,j = 0 for 0 ≤ i < n and j > 1 + 2a0 + 2b0

n
.

With Lemma 2.2 and Lemma 2.3 we obtain a finite set of polynomials that generate all
extensions of a given degree and discriminant. In [19] this set in conjunction with Kras-
ner’s mass formula [8] and Panayi’s root finding algorithm is used to obtain a generating
polynomial for each extension of a given degree and discriminant.

Example 2.4. We want to find generating polynomials for all totally ramified extensions L
of Q3 of degree 9 with v3(disc (L)) = 18. Denote by ϕ =

∑9
i=0 ϕix

i an Eisenstein polynomial
generating such a field L. By Lemma 2.2 with J0 = 10, a0 = 1, and b0 = 1 we get
vπ(ϕ1) = 2† and vπ(ϕi) = 2 − vπ(i) for 1 < i < n∗. Furthermore by Lemma 2.3
ϕi,j = 0 for 0 ≤ i ≤ 9 and j > 3‡. Thus the template for the polynomials ϕ is:

x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

34 {0} {0}‡ {0}‡ {0}‡ {0}‡ {0}‡ {0}‡ {0}‡ {0}‡ {0}‡
33 {0} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2}
32 {0} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {1, 2}† {0, 1, 2}
31 {0} {0}∗ {0}∗ {0, 1, 2} {0}∗ {0}∗ {0, 1, 2} {0}∗ {0}† {1, 2}
30 {1} {0} {0} {0} {0} {0} {0} {0} {0} {0}

3. Ramification Polygons

To distinguish totally ramified extensions further we use an additional invariant, namely
the ramification polygon.

Definition 3.1. Assume that the Eisenstein polynomial ϕ defines L/K. The ramification
polygon Rϕ of ϕ is the Newton polygon N of the ramification polynomial ρ(x) = ϕ(αx +
α)/(αn) ∈ K(α)[x] of ϕ, where α is a root of ϕ.
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The ramification polygon Rϕ of ϕ is an invariant of L/K (see [4, Proposition 4.4] for
example) called the ramification polygon of L/K denoted by RL/K . Ramification polygons
have been used to study ramification groups and reciprocity [20], compute splitting fields
and Galois groups [4], describe maximal abelian extensions [10], and answer questions of
commutativity in p-adic dynamical systems [9].

Let ϕ(x) =
∑n

i=0 ϕix
i ∈ K[x] be an Eisenstein polynomial, denote by α a root of ϕ, and

set L = K(α). Let ρ(x) =
∑n

i=0 ρix
i ∈ L[x] be the ramification polynomial of ϕ. Then the

coefficients of ρ are

(1) ρi =
n∑
k=i

(
k

i

)
ϕk α

k−n

As vα(α) = 1 and vα(ϕi) ∈ nZ we obtain

(2) vα(ρi) = min
i≤k≤n

{
vα

((
k

i

)
ϕk α

k

)
− n

}
= min

i≤k≤n

{
n

[
vπ

((
k

i

)
ϕk

)
− 1

]
+ k

}
.

Lemma 3.2 ([20, Lemma 1]). Let ϕ(x) =
∑n

i=0 ϕix
i ∈ K[x] be an Eisenstein polynomial and

n = e0p
m with p - e0. Denote by α a root of ϕ and set L = K(α). Then the following hold

for the coefficients of the ramification polynomial ρ(x) =
∑n

i=0 ρix
i = ϕ(αx+α)/αn ∈ OL[x]

of ϕ:

(a) vα(ρi) ≥ 0 for all i;
(b) vα(ρpm) = vα(ρn) = 0;
(c) vα(ρi) ≥ vα(ρps) for ps ≤ i < ps+1 and s < m.

This gives the typical shape of the ramification polygon (see Figure 1).

Remark 3.3. Throughout this paper we describe ramification polygons by the set of points
P = {(1, J0), (ps1 , J1), . . . , (psu−1 , Ju−1), (p

su , 0), . . . , (n, 0)} where not all points in P have to
be vertices of the polygon R. We write R = P . This gives a finer distinction between fields
by their ramification polygons and also allows for an easier description of the invariant based
on the residual polynomials of the segments of the ramification polygon, see Section 4.

We now investigate the points on a ramification polygon further.

Lemma 3.4. Let ρ =
∑n

i=1 ρix
i be the ramification polynomial of an Eisenstein polynomial

ϕ(x) =
∑n

i=0 ϕix
i ∈ OK [x]. Denote by

{(1, J0), (ps1 , J1), . . . , (psu−1 , Ju−1), (p
su , 0), . . . , (n, 0)} ⊆ {(i, vα(ρi)) : 1 ≤ i ≤ n}

the points on the ramification polygon of ϕ and write Ji = ain+ bi with 0 ≤ bi < n.

(a) For psu ≤ i ≤ n we have vα(ρi) = 0 if and only if vα
(
n
i

)
= 0.

(b) If vα(ρi = 0) for some psu ≤ i ≤ n then ρi ≡
(
n
i

)
mod (α).

(c) For 0 ≤ i ≤ u we have

ρpsi ∼

{
ϕbi
(
bi
psi

)
αbi−n if bi 6= 0

ϕn
(
n
psi

)
if bi = 0.
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Proof. (a) Suppose vα(ρi) = 0 for some psu ≤ i ≤ n. By Equation (2) there is a unique
i ≤ k ≤ n such that

0 = n

[
vπ

((
k

i

)
ϕk

)
− 1

]
+ k.

Thus n | k and since k ≤ n we have k = n. As v(ϕn) = 0 we must have vα
(
n
i

)
= 0.

Suppose vα
(
n
i

)
= 0 for some psu ≤ i ≤ n. By Equation (2)

vα(ρi) = min
i≤k≤n

{
vα

((
k

i

)
ϕk α

k

)
− n

}
≤ vα

((
n

i

)
ϕnα

n

)
− n = 0.

So vα(ρi) ≤ 0, and, by Lemma 3.2(a), vα(ρi) ≥ 0. Thus, vα(ρi) = 0.
(b) With (a), Equation (1), and φn = 1, we obtain ρi ≡

(
n
i

)
mod (α).

(c) For a point (psi , ain+ bi) where 0 < bi < n, we have by Equation (2),

ain+ bi = min
psi≤k≤n

{
n

[
vπ

((
k

psi

)
ϕk

)
− 1

]
+ k

}
.

in which the minimum must be obtained at k = bi. Thus,

vα(ρpsi ) = vα

((
bi
psi

)
ϕbi α

bi

)
− n = vα

((
bi
psi

)
ϕbi α

bi−n
)
.

For a point (psi , ain), that is where bi = 0, we have by Equation (2),

ain = min
psi≤k≤n

{
n

[
vπ

((
k

psi

)
ϕk

)
− 1

]
+ k

}
,

in which we have n | k, so k = n. Thus,

vα(ρpsi ) = vα

((
n

psi

)
ϕn α

n

)
− n = vα

((
n

psi

)
ϕn

)
.

�

It follows from Lemma 3.4(b) that, modulo (α), the coefficients of the ramification poly-
nomial that correspond to the horizontal segment of its Newton polygon only depend on the
degree of ϕ.

Lemma 3.5. If the ramification polygon of an Eisenstein polynomial ϕ ∈ OK [x] has the
points {(1, J0), (ps1 , J1), . . . , (psu−1 , Ju−1), (p

su , 0), . . . , (n, 0)} where Ji = ain + bi with 0 ≤
bi ≤ n− 1. Then for 0 ≤ t ≤ u, we have

vπ(ϕi) ≥

 2 + at − vπ
(
i
pst

)
for pst ≤ i < bt

1 + at − vπ
(
i
pst

)
for bt ≤ i ≤ n− 1

and vπ(ϕbt) = at + 1− vπ
(
bt
pst

)
if bt 6= 0.

Proof. By Equation (2), for all k with pst ≤ k ≤ n,

Jt = atn+ bt ≤ n

[
vπ

((
k

pst

)
ϕk

)
− 1

]
+ k,
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i

vα(ρi)

1 ps1 ps2 ps3 psu−1 psu = pvp(n) n

−λ1

−λ2

−λ`

(1, J0)

(ps1 , J1)

(ps2 , J2)
(ps3 , J3)

(psu−1 , Ju−1) (psu , 0) (n, 0)

Figure 1. Ramification polygon of an Eisenstein polynomial ϕ of degree n
and discriminant (π)n+J0−1 with `+1 segments and u−1 points on the polygon
with ordinate above 0.

which solved for vπ(ϕk) gives

1 + at − vπ
(
k

pst

)
+
bt − k
n
≤ vπ(ϕk) for st ≤ k ≤ n.

As vπ(ϕk) is an integer, we may take the ceiling of the fraction. As 0 ≤ bt ≤ n − 1 and
pst ≤ k ≤ n, if k < bt, then

⌈
bt−k
n

⌉
= 1, and if k ≥ bt, then

⌈
bt−k
n

⌉
= 0. Therefore,

vπ(ϕi) ≥

 2 + at − vπ
(
i
pst

)
for pst ≤ i < bt

1 + at − vπ
(
i
pst

)
for bt ≤ i ≤ n− 1

.

For a point (pst , atn+ bt) with 0 < bt < n by Equation (2) we have

atn+ bt = min
pst≤k≤n

{
n

[
vπ

((
k

pst

)
ϕk

)
− 1

]
+ k

}
,

where the minimum is attained at k = bt. Hence at =
[
vπ

((
bt
pst

)
ϕbt

)
− 1
]

and vπ(ϕbt) =

at + 1− vπ
(
bt
pst

)
. �

From this, we can generalize Ore’s conditions (Proposition 2.1) from a statement about
the exponent of the discriminant, which is related to the ordinate of the point above 1, to
the ordinates of all points.

Lemma 3.6. Let Rϕ be the ramification polygon of ϕ as in Lemma 3.5. Then for each point
(psi , Ji) where Ji = ain+ bi with 0 ≤ bi ≤ n− 1,

min

{
vπ

(
bi
psi

)
n, vπ

(
n

psi

)
n

}
≤ Ji ≤ vπ

(
n

psi

)
n.
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Proof. The k = n term of Equation (2) is

Ji ≤ n
[
vπ

((
n
psi

)
ϕn

)
− 1
]

+ n = vπ
(
n
psi

)
n.

If bi 6= 0, then by Lemma 3.5, vπ(ϕbi) = ai+1−vπ
(
bi
psi

)
. So nvπ(ϕbi)+bi = nai+n−nvπ

(
bi
psi

)
+bi

and nvπ(ϕbi) + bi − n + nvπ
(
bi
psi

)
= nai + bi = Ji. As ϕ is Eisenstein we have vπ(ϕbi) ≥ 1,

hence nvπ(ϕbi)− n ≥ 0. This combined with bi > 0 gives us that

Ji = nvπ(ϕbi) + bi − n+ nvπ

(
bi
psi

)
≥ bi + nvπ

(
bi
psi

)
≥ nvπ

(
bi
psi

)
.

If bi = 0, then the minimum term of Equation (2) defining Ji must be such that k|n, which
only occurs in the k = n term, so Ji = vπ

(
n
psi

)
n, which is less than vπ

(
0
psi

)
n =∞. �

Lemma 3.7. Let Rϕ be the ramification polygon of an Eisenstein polynomial ϕ ∈ OK [x]
with points

Rϕ = {(1, J0), (ps1 , J1), . . . , (psu−1 , Ju−1), (p
su , 0), . . . , (n, 0)},

but no point with abscissa pi, where st < i < st+1 for some 1 ≤ t ≤ u. Then for k such that
pi ≤ k ≤ n,

vπ(ϕk) >
1

n

[
Jt+1 − Jt
pst+1 − pst

(pi − pst) + Jt − k
]

+ 1− vπ
(
k

pi

)
Proof. If there is no point on Rϕ with abscissa pi, then the point (pi, vα(ρpi)) must be above

the segment from (pst , Jt) to (pst+1 , Jt+1). Thus, Jt+1−Jt
pst+1−pst (p

i − pst) + Jt < vα(ρpi), and so by

Equation (2), for k in pi ≤ k ≤ n,

Jt+1 − Jt
pst+1 − pst

(pi − pst) + Jt < n

[
vπ

((
k

pi

)
ϕk

)
− 1

]
+ k.

Solving for vπ(ϕk) provides the result of the lemma. �

We collect the results of Lemmas 3.5 and 3.7 to define functions lRϕ(i, s) for 1 ≤ s ≤ su
and ps ≤ i ≤ n that give the minimum valuation of ϕi due to a point (or lack thereof) above
ps on the ramification polygon Rϕ of ϕ. By taking the maximum of these over all s, we
define LRϕ(i) so that vπ(ϕi) ≥ LRϕ(i) for 1 ≤ i ≤ n− 1.

Definition 3.8. Let Rϕ be the ramification polygon of ϕ with points

Rϕ = {(1, J0), (ps1 , J1), . . . , (psu−1 , Ju−1), (p
su , 0), . . . , (n, 0)},

and where Ji = ain+ bi with 0 ≤ bi ≤ n− 1. For 0 ≤ t ≤ u, let

lRϕ(i, st) =

 max{2 + at − vπ
(
i
pst

)
, 1} if pst ≤ i < bt,

max{1 + at − vπ
(
i
pst

)
, 1} if i ≥ bt.

If there is no point above pw with st < w < st+1, then for pw ≤ i ≤ n− 1, let

lRϕ(i, w) = max

{⌈
1

n

[
Jt+1 − Jt
pst+1 − pst

(pw − pst) + Jt − k
]

+ 1− vπ
(
k

pw

)⌉
, 1

}
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Finally, set

LRϕ(i) =

 1 if i = 0
max{lRϕ(i, t) : pt ≤ i} if 1 ≤ i ≤ n− 1
0 if i = n

.

So far we have described many necessary conditions for ramification polygons. We now
propose a necessary and sufficient description of a ramification polygon of an extension.

Proposition 3.9. Let P be a convex polygon with points

P = {(1, J0), (ps1 , J1), . . . , (psu−1 , Ju−1), (p
su , 0), . . . , (n, 0)},

where Ji = ain+bi with 0 ≤ bi ≤ n−1. There is an extension L/K with ramification polygon
P, if and only if

(a) For each Ji, min
{
vπ
(
bi
psi

)
n, vπ

(
n
psi

)
n
}
≤ Ji ≤ vπ

(
n
psi

)
n.

(b) If bi = bk, then ai = ak − vπ
(
b
psk

)
+ vπ

(
b
psi

)
where bi = bk.

(c) For each point (psi , ain+ bi), we have that

ai ≥

 1 + at − vπ
(
bi
pst

)
+
(
bi
psi

)
if pst ≤ bi < bt

at − vπ
(
bi
pst

)
+
(
bi
psi

)
if bi ≥ bt

for all other points (pst , Jt) with Jt = atn+ bt 6= 0.
(d) If there is no point of P above pi, with st < i < st+1, then for each point (psk , akn+bk)

of P with bk > pi,

ak >
1

n

[
Jt+1 − Jt
pst+1 − pst

(pi − pst) + Jt − bk
]
− vπ

(
bk
pi

)
+ vπ

(
bk
psk

)
.

(e) The points with abscissa greater than psu are (i, 0) where vπ
(
n
i

)
= 0.

Proof. Suppose P is the ramification polygon for L/K with generating Eisenstein polynomial
ϕ. Assumption (a) follows from Lemma 3.6. If bi = bk, then by Lemma 3.5

vπ(ϕbi) = ai + 1− vπ
(
bi
psi

)
= ak + 1− vπ

(
bi
psk

)
.

Thus ai = ak − vπ
(
bi
psk

)
+ vπ

(
bi
psi

)
, giving us assumption (b). Let (psi , ain + bi) be a point of

P , then by Lemma 3.5, we have that for all other points (pst , Jt),

vπ(ϕbi) = ai + 1− vπ
(
bi
psi

)
≥

 2 + at − vπ
(
bi
pst

)
for pst ≤ bi < bt

1 + at − vπ
(
bi
pst

)
for bi ≥ bt

,

from which we see assumption (c). If there no point of P above pi, with st < i < st+1, then
by Lemma 3.7, for each point (psi , ain+ bi) of P with bi > pi,

vπ(ϕbi) = ai + 1− vπ
(
bi
psi

)
≥ 1

n

[
Jt+1 − Jt
pst+1 − pst

(pi − pst) + Jt − bi
]

+ 1− vπ
(
bi
pi

)
,

from which we have assumption (d). Assumption (e) is given by Lemma 3.4. Thus, if P is
a ramification polygon of an extension L/K, then these properties are necessary.

Next we will show sufficiency by constructing a polynomial ψ(x) =
∑
ψix

i ∈ OK [x] such
thatRψ = P . First, we let ψn = 1 and ψ0 be an element of valuation 1 in OK . For each point
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(psi , ain+bi) in P , with bi 6= 0, let ψbi be an element of OK with valuation 1+ai−vπ
(
bi
psi

)
. By

assumption (b), ψbi is well defined even if it is given by multiple points as those definitions
coincide, and by assumption (a) we have that vπ(ψbi) ≥ 1. If ψj in 0 < j < n is not assigned
by some bi, we set ψj = 0. We now have an Eisenstein polynomial ψ, and we proceed by
computing Rψ.

Let Rψ be the ramification polygon of ψ, the Newton polygon N of the ramification
polynomial ρ(x) = ψ(αx + α)/(αn) ∈ K(α)[x], where α is a root of ψ. Let ρ(x) =

∑
ρix

i.
Let B be the set of nonzero bi in the points of P . For all 0 < i < n with i /∈ B, vπ(ψi) =∞,
so we can simplify Equation (2) by only needing to consider terms k ∈ B ∪ {n} to

vα(ρi) = min

{
min

k∈B,k≥i

{
n

[
vπ

((
k

i

)
ψk

)
− 1

]
+ k

}
, nvπ

(
k

i

)}
.

Substitution of our values for vπ(ψbt) gives

vα(ρi) = min

{
min

{(psk ,Jk)∈P:bk≥i}

{
n

[
ak − vπ

(
bk
psk

)
+ vπ

(
bk
i

)]
+ bk

}
, nvπ

(
n

i

)}
.

Consider (psi , ain+ bi) ∈ P and let us find vα(ρpsi ). For B = {(psk , Jk) ∈ P : bk ≥ psi} we
have

(3) vα(ρpsi ) = min

{
min
B

{
n

[
ak − vπ

(
bk
psk

)
+ vπ

(
bk
psi

)]
+ bk

}
, nvπ

(
n

psi

)}
If bi 6= 0, then the bk = bi term in the minimum is ain + bi. For (psk , akn + bk) ∈ P with
psi ≤ bk < bi, by assumption (c), we have ak ≥ 1 + ai − vπ

(
bk
psi

)
+
(
bk
psk

)
. Thus, for all of the

terms of (3) with psi ≤ bk < bi,

n

[
ak − vπ

(
bk
psk

)
+ vπ

(
bk
psi

)]
+ bk ≥ n [1 + ai] + bk ≥ ain+ bi

For points (psk , akn+ bk) on P with bk ≥ bi, by assumption (c), we have ak ≥ ai − vπ
(
bk
psi

)
+(

bk
psk

)
. Thus, for all of the terms of Equation (3) with bk ≥ bi,

n

[
ak − vπ

(
bk
psk

)
+ vπ

(
bk
psi

)]
+ bk ≥ ain+ bk ≥ ain+ bi

Thus vα(ρpsi ) = min
{
ain+ bi, nvπ

(
n
psi

)}
, which is ain+ bi by assumption (a). On the other

hand, if bi = 0, then ai = vπ
(
n
psi

)
, and for all of the terms of the inside minimum of Equation

(3), as ak ≥ ai − vπ
(
bk
psi

)
+
(
bk
psk

)
, we have

n

[
ak − vπ

(
bk
psk

)
+ vπ

(
bk
psi

)]
+ bk ≥ ain+ bk ≥ ain = nvπ

(
n

psi

)
So, vα(ρpsi ) = ain, and all of the points of P are points of Rψ.

Suppose there is no point on P with abscissa pi for some i with st < i < st+1. We take
assumption (d)

ak >
1

n

[
Jt+1 − Jt
pst+1 − pst

(pi − pst) + Jt − bk
]
− vπ

(
bk
pi

)
+ vπ

(
bk
psk

)
,

9



and substitute it into Equation (3). After simplifying we get

vα(ρpi) > min

{
min

{(psk ,Jk)∈P:bk≥psi}

{
Jt+1 − Jt
pst+1 − pst

(pi − pst) + Jt

}
, nvπ

(
n

psi

)}
.

As the vα(ρpi) must be greater than the ordinate above pi on the line segment between
(pst , Jt) and (pst+1 , Jt+1), there is no point on Rψ with abscissa pi. Finally, by Lemma 3.4,
Rψ has points satisfying assumption (e). Thus Rψ = P . �

Using the conditions of Proposition 3.9, we can enumerate all possible ramification poly-
gons for extensions over a p-adic field with given degree and discriminant. Such an algorithm
is described in [22].

Proposition 3.10. An Eisenstein polynomial ϕ has ramification polygon R with points

R = {(1, J0), (ps1 , J1), . . . , (psu−1 , Ju−1), (p
su , 0), . . . , (n, 0)},

where Ji = ain+ bi with 0 ≤ bi ≤ n− 1, if and only if

(a) vπ(ϕi) ≥ LR(i)
(b) For 0 ≤ t ≤ u, vπ(ϕbt) = LR(bt) if bt 6= 0.

where LR is as defined in Definition 3.8.

Proof. If ϕ has ramification polygon R, then this is the result of Lemmas 3.5 and 3.7.
Suppose ϕ satisfies these assumptions and ρ is the ramification polynomial of ϕ. If

(pst , Jt = atn+ bt) is a point of R, then substitution of lR(k, st) for vπ(ϕk) into Equation (2)
gives us

vα(ρpst ) = min

{
min

pst≤k<bt
{nat + n+ k}, min

bt≤k<n
{nat + k}, nvπ

(
n

pst

)}
If bt = 0, then this reduces to

vα(ρpst ) = min

{
nat + n+ pst , nvπ

(
n

pst

)}
= nvπ

(
n

pst

)
= Jt.

as nat + n+ pst ≥ Jt = nvπ
(
n
pst

)
, by Proposition 3.9 (a). If bt 6= 0, then this reduces to

vα(ρpst ) = min

{
nat + bt, nvπ

(
n

pst

)}
= nat + bt = Jt

as Jt ≤ nvπ
(
n
pst

)
, by Proposition 3.9 (a). So Rϕ contains the points of R.

If there is no point on R with abscissa pi, with st < i < st+1, then for k in pi ≤ k ≤ n,

vπ(ϕk) ≥ lR(k, i) >
1

n

[
Jt+1 − Jt
pst+1 − pst

(pi − pst) + Jt − k
]

+ 1− vπ
(
k

pi

)
.

Some algebraic manipulation of this inequality gives us

Jt+1 − Jt
pst+1 − pst

(pi − pst) + Jt < n

[
vπ

((
k

pi

)
ϕk

)
− 1

]
+ k,

which shows that vα(ρpi) = minpi≤k≤n

{
n
[
vπ

((
k
pi

)
ϕk

)
− 1
]

+ k
}

is greater than the value

above pi on the segment from (pst , Jt) to (pst+1 , Jt+1). So there is no point on Rϕ above pi,
and thus Rϕ = R. �

10
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Figure 2. Possible ramification polygons of extensions L of Q3 of degree 9
with v3(disc (L)) = 18: R1 = {(1, 10), (9, 0)}, R2 = {(1, 10), (3, 3), (9, 0)}, and
R3 = {(1, 10), (3, 6), (9, 0)}.

Definition 3.11. We call a polygon R with points

R = {(1, J0), (ps1 , J1), . . . , (psu−1 , Ju−1), (p
su , 0), . . . , (n, 0)},

that fulfills the conditions of Proposition 3.9 a ramification polygon. We call the function
φR : R>0 → R>0, λ 7→ min0≤i≤u{ 1n(Ji + λpsi)} the Hasse-Herbrand function of R.

Remark 3.12. The function φR in Definition 3.11 agrees with the connections between the
ramification polygon and the Hasse-Herbrand transition function as observed in [10, 9]. Note
that these works define the ramification polygon as the Newton polygon of ϕ(x + α). For
normal extensions L/K, our function φR agrees with the classical φL/K defined in [21, 3].
For non-Galois extensions, our function agrees with the transition function for ramification
sets defined by Helou in [7].

Example 3.13 (Example 2.4 continued). There are three possible ramification polygons
for extensions L of Q3 of degree 9 with v3(disc (L)) = 18, namely R1 = {(1, 10), (9, 0)},
R2 = {(1, 10), (3, 3), (9, 0)}, and R3 = {(1, 10), (3, 6), (9, 0)} (see Figure 2).

Since by Lemma 3.5 we have v(ϕ3) = 1†, the polynomials ϕ generating extensions with
ramification polygon R2 are given by:

x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

34 {0} {0} {0} {0} {0} {0} {0} {0} {0} {0}
33 {0} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2}
32 {0} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {1, 2} {0, 1, 2}
31 {0} {0} {0} {0, 1, 2} {0} {0} {1, 2}† {0} {0} {1, 2}
30 {1} {0} {0} {0} {0} {0} {0} {0} {0} {0}

4. Residual Polynomials of Segments

Residual (or associated) polynomials were introduced by Ore [15]. They yield information
about the unramified part of the extension generated by the factors of a polynomial. This
makes them a useful tool in the computation of ideal decompositions and integral bases
[5, 12, 13] and the closely related problem of polynomial factorization over local fields [6, 18].
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Definition 4.1 (Residual polynomial). Let L be a finite extension of K with uniformizer α.
Let ρ(x) =

∑
i ρix

i ∈ OL[x]. Let S be a segment of the Newton polygon of ρ of length l with
endpoints (k, vα(ρk)) and (k + l, vα(ρk+l)), and slope −h/e = (vα(ρk+l)− vα(ρk)) /l then

A(x) =

l/e∑
j=0

ρje+kα
jh−vα(ρk)xj ∈ K[x]

is called the residual polynomial of S.

Remark 4.2. The ramification polygon of a polynomial ϕ and the residual polynomials of
its segments yield a subfield M of the splitting field N of ϕ, such that N/M is a p-extension
[4, Theorem 9.1].

From the definition we obtain some of the properties of residual polynomials.

Lemma 4.3. Let L be a finite extension of K with uniformizer α. Let ρ ∈ OL[x]. Let N
be the Newton polygon of ρ with segments S1, . . . ,S` and let A1, . . . , A` be the corresponding
residual polynomials.

(a) If Si has integral slope −h ∈ Z with endpoints (k, vα(ρk)) and (k + l, vα(ρk+l)) then

Ai(x) =
∑l

j=0 ρj+kα
jh−vα(ρk) xj = ρ(αhx)α−k−vα(ρk) xn−l ∈ K[x].

(b) If for 1 ≤ i ≤ ` − 1 the leading coefficient of Ai is denoted by Ai,degAi and Ai+1,0 is
the constant coefficient of Ai+1 then Ai,degAi = Ai+1,0.

(c) If ρ is monic then A` is monic.

From now on we consider the residual polynomials of the segments of a ramification
polygon. From the definition of the residual polynomials and Lemma 3.4 we obtain:

Proposition 4.4. Let ϕ ∈ OK [x] be Eisenstein of degree n = pre0 with gcd(p, e0) = 1, let α
be a root of ϕ, ρ the ramification polynomial, and Rϕ the ramification polygon of ϕ.

(a) If e0 6= 1 thenRϕ has a horizontal segment of length pr(e0−1) with residual polynomial

A =
∑n−pr

i=0 Aix
i where Ai =

(
n
i

)
6= 0 if and only if vα

(
n
i

)
= 0.

(b) If (psk , Jk), . . . , (p
sl , Jl) are the points on a segment S of Rϕ of slope −h

e
, then the

residual polynomial of S is

A(x) =
l∑

i=k

ρpsiα
−Ji x(p

si−psk )/e =
l∑

i=k

ϕbi
(
bi
psi

)
α−ain−n x(p

si−psk )/e.

We now give criteria for the existence of polynomials with given ramification polygon R
and given residual polynomials.

Proposition 4.5. Let n = pre0 with gcd(p, e0) = 1 and let

R = {(1, J0), (ps1 , J1), . . . , (psk , Jk), . . . , (pr, 0), . . . , (pre0, 0)}.
be a ramification polygon. Write Jk = akn + bk with 0 ≤ bk ≤ n. Let S1, . . . ,S` be the
segments of R with endpoints (pki , Jki) and (pli , Jli) and slopes −hi/ei (1 ≤ i < `). For

1 ≤ i < ` let Ai(x) =
∑(pli−pki )/ei

j=0 Ai,jx
j ∈ K.

There is an Eisenstein polynomial of degree pre0 with ramification polygon R and segments
S1, . . . ,S` with residual polynomials A1, . . . , A` ∈ K[x] if and only if

(a) Ai,degAi = Ai+1,0 for 1 ≤ i < `,
12



(b) Ai,j 6= 0 if and only if j = (q − pski )/ei for some q ∈ {ps1 , . . . , pr} with pki ≤ q ≤ pli,
(c) if for some 1 ≤ t, q ≤ u we have bt = bq and ski ≤ st ≤ sli and skj ≤ sq ≤ slj then

Ai,(pst−pski )/ei =
(
bt
pst

)(
bt
psq

)−1
(−ϕ0)

aq−atA
j,(psq−p

skj )/ej
.

Proof. Suppose that ϕ is an Eisenstein polynomial of degree pre0 with ramification polygon
R and segments S1, . . . ,S` with residual polynomials A1, . . . , A` ∈ K[x]. Property (a) is
given by Lemma 4.3 (b) and property (b) is given by Proposition 4.4 (b). To establish
property (c), suppose that for some 1 ≤ t, q ≤ u we have bt = bq and ski ≤ st ≤ sli and
skj ≤ sq ≤ slj . From Proposition 4.4, we have that

Ai,(pst−pski )/ei = ϕbt
(
bt
pst

)
α−atn−n and A

j,(psq−p
skj )/ej

= ϕbq
(
bq
psq

)
α−aqn−n.

As bt = bq, we have that ϕbt = ϕbq . Since

Ai,(pst−pski )/ei
(
bt
pst

)−1
αatn+n = ϕbt = ϕbq = A

j,(psq−p
skj )/ej

(
bt
psq

)−1
αaqn+n,

we have

Ai,(pst−pski )/ei =
(
bt
pst

)(
bt
psq

)−1
(−ϕ0)

aq−atA
j,(psq−p

skj )/ej
.

Conversely, suppose that R is a ramification polygon with segments S1, . . . ,S` with resid-
ual polynomials A1, . . . , A` ∈ K[x] with properties (a), (b), and (c) of the proposition. Let
ψ ∈ OK [x] with ψe0pr = 1, vπ(ψ0) = 1, and

ψ
bt,1+at−vπ( btpst)

= Ai,(pst−pski )/ei

(
bt
pst

)−1
(−ψ0,1)

at+1πvπ(
bt
pst)

for i with pki ≤ pst ≤ pli for each point (pst , atn + bt) in R. For ψ to be well defined, we
must check that the same coefficient is not assigned different values. Multiple assignments
occur at vertices (when one point contributes to two Ai) and when multiple points have the
same bt. If (pst , atn+ bt) is a vertex of R, then we have

ψ
bt,1+at−vπ( btpst)

= Ai,(pst−pski )/ei

(
bt
pst

)−1
(−ψ0,1)

at+1πvπ(
bt
pst)

= A
i+1,(pst−p

ski+1 )/ei+1

(
bt
pst

)−1
(−ψ0,1)

at+1πvπ(
bt
pst).

Cancellation gives us Ai,(pst−pski )/ei = A
i+1,(pst−p

ski+1 )/ei+1
. As a vertex, pst is the abscissa of

both the right endpoint of Si (psli = pst) and the left endpoint of Si+1 (pski+1 = pst). Thus
(pst − pski )/ei = degAi and (pst − pski+1 )/ei+1 = 0. So, Ai,degAi = Ai+1,0, which is property

(a). On the other hand, if for some 1 ≤ t, q ≤ u, we have bt = bq, with ski ≤ st ≤ sli and
skj ≤ sq ≤ slj , then let b = bt = bq and we have

ψ
b,1+at−vπ( btpst)

= Ai,(pst−pski )/ei

(
b

pst

)−1
(−ψ0,1)

at+1πvπ(
b
pst)

ψ
b,1+aq−vπ( b

psq)
= A

j,(psq−p
skj )/ej

(
b

psq

)−1
(−ψ0,1)

aq+1πvπ(
b
psq).
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As R is a ramification polygon, by Proposition 3.9 (b), bt = bq implies that at = aq −
vπ
(
b
psq

)
+ vπ

(
b
pst

)
, so we have that 1 + at− vπ

(
b
pst

)
= 1 + aq − vπ

(
b
psq

)
. These two assignments

of coefficients of ψb set the same coefficient, and by property (c), they have the same value.
Thus, ψ is well-defined, and we have set at most one π-adic coefficient for each polynomial
coefficient.

By property (b), none of the assigned coefficients are zero and no others are non-zero.
Thus, vπ(ψbt) = 1 + at− vπ

(
bt
pst

)
, and as per the construction in the proof of Proposition 3.9,

ψ is an Eisenstein polynomial with ramification polygon R.
Next we consider the residual polynomials of the segments of R as given by ψ. Let Si be a

segment of R containing points (psk , Jk), . . . , (p
sl , Jl) of slope −hi/ei. Let A∗i be the residual

polynomial of Si. From Proposition 4.4, for each point (pst , atn + bt) with sk ≤ st ≤ sl, we
get

A∗i,(pst−psk )/e = ψbt

(
bt
pst

)
α−atn−n.

We need the right side to reduce to our intended value. By our assignment,

ψ
bt

= Ai,(pst−pski )/ei

(
bt
pst

)−1
(−ψ0,1)

at+1πvπ(
bt
pst)π1+at−vπ( btpst).

With αn ∼ −NK(α)/K(α) = −ψ0 ∼ −ψ0,1π we get

A∗i,(pst−psk )/e = ψbt
(
bt
pst

)
α−atn−n =

Ai,(pst−pski )/ei
(
bt
pst

)−1
(−ψ0,1)

at+1πvπ(
bt
pst)π1+at−vπ( btpst)

(
bt
pst

)
(−ψ0,1π)−at−1

from which cancellation gives us our desired result A∗i,(pst−psk )/e = Ai,(pst−psk )/e. �

4.1. The invariant A of L/K. We introduce an invariant of L/K, that is compiled from
the residual polynomials of the segments of the ramification polygon of ϕ. From the proof
of [4, Proposition 4.4] we obtain:

Lemma 4.6. Let ϕ ∈ OK [x] be Eisenstein and α a root of ϕ and L = K(α). Let S be a
segment of the ramification polygon of ϕ of slope −h/e and let A be its residual polynomial.
Let β = δα with vα(δ) = 0 be another uniformizer of L and ψ its minimal polynomial. If
γ
1
, . . . , γ

m
are the (not necessarily distinct) zeros of A then γ

1
/δh, . . . , γ

m
/δh are the zeros

of the residual polynomial of the segment of slope −h/e of the ramification polygon of ψ.

Thus the zeros of the residual polynomials of all segments of the ramification polygon
change by powers of the same element δ when transitioning from a uniformizer α to a
uniformizer δα. With Proposition 4.5 we obtain:

Theorem 4.7. Let S1, . . . ,S` be the segments of the ramification polygon R of an Eisenstein
polynomial ϕ ∈ OK [x]. For 1 ≤ i ≤ ` let −hi/ei be the slope of Si and Ai its residual
polynomial. Then

(4) A =
{(
γδ,1A1(δ

h1x), . . . , γδ,`A`(δ
h`x)

)
: δ ∈ K×

}
where γδ,` = δ−h` degA` , and γδ,i = γδ,i+1δ

−hi degAi for 1 ≤ i ≤ ` − 1 is an invariant of the
extension K[x]/(ϕ).
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Example 4.8. Let ϕ(x) = x9 + 6x3 + 9x+ 3. The ramification polygon of ϕ consists of the
two segments with end points (1, 10), (3, 3) and (3, 3), (9, 0) and residual polynomials 1 + 2x
and 2 + x3. We get

A = {(1 + 2x, 2 + x3), (1 + x, 1 + x3)}.

4.2. Generating Polynomials. We show how the choice of a representative of the invariant
A determines some of the coefficients of the generating polynomials with this invariant.

Lemma 4.9. Let ϕ ∈ OK [x] be Eisenstein of degree n. Let S be a segment of the ramification
polygon of ϕ with endpoints (psk , akn+ bk) and (psl , aln+ bl) and residual polynomial A(x) =∑psl−psk

j=1 Ajx
j ∈ K[x]. If (psi , ain+bi) is a point on S with bi 6= 0 then the leading coefficient

ϕbi,j of the π-adic expansion of ϕbi is

ϕ
bi,j

= A(psi−psk )/e
(
bi
psi

)−1
(−ϕ0,1)

ai+1π
vπ( bipsi)

where j = ai + 1− vπ
(
bi
psi

)
.

Proof. By Lemma 3.5, vπ(ϕbi) = j and by Proposition 4.4

A(x) =
l∑

i=k

ϕbi
(
bi
psi

)
α−ain−n x(p

si−psk )/e.

Thus A(psi−psk )/e = ϕbi
(
bi
psi

)
α−ain−n. With αn ∼ −NK(α)/K(α) = −ϕ0 ∼ −ϕ0,1π we get

A(psi−psk )/e = ϕbi
(
bi
psi

)
(−ϕ0)

−ai−1.

As by Lemma 3.4 vα(ϕbi) = vα(ρpsi ) − vα
(
bi
psi

)
− bi + n = ain + bi − vα

(
bi
psi

)
− bi + n =

n(ai + 1)− vα
(
bi
psi

)
we have ϕbi ∼ ϕbi,jπ

ai+1−vπ( bipsi). Therefore

A(psi−psk )/e = ϕbi,j
(
bi
psi

)
(−ϕ0,1π)−ai−1π

ai+1−vπ( bipsi)

= ϕ
bi,j

(−ϕ
0,1

)−ai−1
(
bi
psi

)
π
−vπ( bipsi).

�

A change of the uniformizer α of L = K(α) to δα with v(δ) = 0 that determines the
representative (A1, . . . , A`) ∈ A also effects the constant coefficient of the generating poly-
nomial. Namely since L/K is totally ramified we can find γ ∈ K such that δ ∼ γ. Now if
the Eisenstein polynomial ϕ(x) = xn +

∑n−1
i=0 ϕix

i ∈ OK [x] is the minimal polynomial of α
then

ψ(x) = γnϕ

(
x

γ

)
= xn +

n−1∑
i=0

ϕiγ
n−ixi.

with ψ0,1 = γnϕ0,1 is the minimal polynomial of γα.

Lemma 4.10. Let ϕ ∈ OK [x] be Eisenstein of degree n and S0 : K → K, a 7→ an.

(a) If and only if δ ∈ S0(K), there is ψ ∈ OK [x] Eisenstein with ψ
0,1

= δϕ
0,1

such that

K[x]/(ψ) ∼= K[x]/(ϕ).
15



(b) If n = pr for some r ∈ Z>0 then S0 is surjective and there is ψ ∈ OK [x] Eisenstein
with ψ

0,1
= 1 such that K[x]/(ψ) ∼= K[x]/(ϕ).

This corresponds to the reduction step 0 in Monge’s reduction [11, Algorithm 1]. If
n = pre0 with gcd(p, e0) = 1 then ϕ

0,1
determines the tamely ramified subextensions of

K[x]/(ϕ), that can be generated by xe0 + ϕ0,1π.
If we fix ϕ0,1 then the set of representatives of A becomes

(5) A∗ =
{(
γδ,1A1(δ

h1x), . . . , γδ,`A`(δ
h`x)

)
: δ ∈ K×, δn = 1

}
where γδ,` = δ−h` degA` , and γδ,i = γδ,i+1δ

−hi degAi for 1 ≤ i ≤ `− 1. Thus fixing ϕ0,1 yields a
partition of A. Also, if n is a power of p then A∗ contains exactly one representative of A.

Remark 4.11. Let R be a ramification polygon and let A1, . . . , A` ∈ K[x] satisfying Propo-
sition 4.5. Let A as in Theorem 4.7 and A = A∗1 ∪ · · · ∪ A∗k be the partition of A into sets
as in Equation (5). Let γ ∈ K×. Then there is no transformation δα of the uniformizer α

of an extension with R and residual polynomials in A∗i for some 1 ≤ i ≤ k generated by
ϕ ∈ OK [x] with ϕ

0,1
= γ such that the residual polynomials of the segments of Rϕ = R is

not in A∗i. Thus the construction of generating polynomials for all extensions with R and
A can be reduced to constructing polynomials with residual polynomials in the sets A∗i.

Lemma 4.12. Let (A1, . . . , A`) ∈ A∗. If ψ ∈ OK [x] is a polynomial with residual polynomials
in A∗, then there is a polynomial ϕ ∈ OK [x] with residual polynomials (A1, . . . , A`) such that
K[x]/(ψ) ∼= K[x]/(ϕ).

Proof. Let A′1, . . . , A
′
` be the residual polynomials of ψ. As (A′1, . . . , A

′
`) ∈ A∗ there exists a

δ ∈ K× with δn = 1 so that

(A1, . . . , A`) =
(
γδ,1A

′
1(δ

h1x), . . . , γδ,`A
′
`(δ

h`x)
)
.

where γδ,` = δ−h` degA` , and γδ,i = γδ,i+1δ
−hi degAi for 1 ≤ i ≤ `− 1.

Let α be a root of ψ and ϕ(x) = δnψ(δ−1x) be the minimal polynomial of δα. This gives
us that K[x]/(ψ) ∼= K[x]/(ϕ).

Let us find the residual polynomials of ϕ. From Proposition 4.4, we have that the residual
polynomial for a segment Si of slope h/e with endpoints (pski , Jki = akin+bki) and (psli , Jli =
alin+ bli) is

li∑
j=ki

ϕbj
( bj
psj

)
α−ajn−n x(p

sj−pski )/e.

Performing our substitution we have that this polynomial is

li∑
j=ki

δn−bjψbj
( bj
psj

)
(δα)−ajn−n x(p

sj−pski )/e =

li∑
j=ki

δn−bj−ajn−n A′i,j =

li∑
j=ki

δ−Jj A′i,j.

Next, let us perform the deformation of A′i by δ. First, we consider γδ,i. Notice that for
the A′i, the residual polynomial of the segment Si with endpoints (pski , Jk) and (psli , Jl),

δ−hi degA
′
i = δλi(p

sli−pski ) = δJli−Jki =


δJl1−Jk1 if i = 1

δJli−Jli−1 if 2 ≤ i < `

δ−Jl`−1 = δ−Jk` if i = `

.
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This shows us that for 1 ≤ i ≤ `−1, γδ,i = γδ,i+1δ
−hi degA′i = δ−Jki , and in general, γδ,i = δ−Jki .

So the deformation of A′i by δ is

Ai = γδ,iA
′
i,j(δ

hix) = δ−Jki
li∑

j=ki

A′i,jδ
−λi(psj−p

ski )

= δ−Jki
li∑

j=ki

A′i,jδ
−Jj+Jki =

li∑
j=ki

δ−Jj A′i,j.

Thus, ϕ has residual polynomials (A1, . . . , A`) and K[x]/(ψ) ∼= K[x]/(ϕ). �

Example 4.13 (Example 3.13 continued). Let R2 = {(1, 10), (3, 3), (9, 0)}. There are two
choices for the invariant A, namely A2,1 = {(1+2x, 2+x3), (1+x, 1+x3)} (compare Example
4.8) and A2,2 = {(2 + 2x, 2 + x3), (2 + x, 1 + x3)}.

By Lemma 4.10 all extensions of Q3 with ramification polygon R can be generated by
polynomials ϕ ∈ Z3[x] with ϕ0 ≡ 3 mod 9‡. Fixing ϕ0,1 = 1 gives the partition A2,1 =
A∗12,1 ∪ A∗22,1 with A∗12,1 = {(1 + 2x, 2 + x3)} and A∗22,1 = {(1 + x, 1 + x3)}.

For the generating polynomials of the fields with A∗12,1 by Lemma 4.9 we get, from the

point (1, 10) = (30, 1 · 9 + 1) on R2 that ϕ1,2 = 1∗ and from the point (3, 3) = (31, 0 · 9 + 3)
on R2 that ϕ3,1 = 2†. The polynomials given by R2 and A∗1 are described by:

x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

34 {0} {0} {0} {0} {0} {0} {0} {0} {0} {0}
33 {0} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2}
32 {0} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {0, 1, 2} {1}∗ {0, 1, 2}
31 {0} {0} {0} {0, 1, 2} {0} {0} {2}† {0} {0} {1}‡
30 {1} {0} {0} {0} {0} {0} {0} {0} {0} {0}

By Remark 4.11 proceeding as above withA∗22,1 yields a template for generating polynomials
for the remaining extensions with ramification polygon R and invariant A.

5. Residual Polynomials of Components

We now apply some results of Monge [11] to reduce the number of polynomials that we
need to consider to generate all extensions with given invariants.

Definition 5.1. Let N be a Newton polygon. For λ ∈ Q we call

Nλ =
{

(k, w) ∈ N | λk + w = min{λl + u | (l, u) ∈ N}
}

the λ-component of N .

Remark 5.2. If N has a segment with slope λ then Nλ contains that segment. Otherwise
Nλ consists of only one point.

To each component of integral slope of a ramification polygon we attach a residual poly-
nomial.

Definition 5.3. Let ϕ ∈ OK [x] be Eisenstein, α a root of ϕ, ρ the ramification polynomial
of ϕ, and R the ramification polygon of ϕ. For λ ∈ Z>0 the residual polynomial of the
(−λ)-component of R is

Sλ(x) = ρ(αλx)/ contα
(
ρ(αλx)

)
17



where contα
(
ρ(αλz)

)
denotes the highest power of α dividing all coefficients of ρ(αλz).

The quantity contα(ρ(αmz)) only depends on the ramification polygon. Namely if ρ(x) =∑n
i=1 ρix

i we have ρ(αλx) =
∑n

i=0 ρi(α
λx)i =

∑n
i=0 ρi(α

λ)ixi and obtain

nφR(λ) = min
0≤i≤n

v(ρi) + iλ = contα
(
ρ(αλx)

)
for the Hasse-Herbrand function φR of R (Definition 3.11). Thus [11, Proposition 1] yields

nφR(λ) = contα
(
ρ(αλx)

)
= nφL/K(λ).

To calculate nφR(λ), we only have to take the minimum of the v(ρi) + iλ for the points
(v(ρi), i) on the polygon. For ps < i < ps+1, we have vα(ρps) ≤ vα(ρi) (Lemma 3.2 (c)) and
ps < i, which gives us that vα(ρps) + psλ < vα(ρi) + iλ. This demonstrates the formula for
φR from Definition 3.11.

Lemma 5.4. Let R be the ramification polygon of ϕ.

(a) If R has a segment S of integral slope −m ∈ Z, with left endpoint (k, w) and residual
polynomial A then Sm(x) = xkA(x).

(b) If R has no segment of slope −m ∈ Z then Sm(x) = xp
s

where 0 ≤ s ≤ vp(n) such
that v(ρps) + ps ·m = min0≤r≤vp(n) v(ρpr) + pr ·m.

(c) For all m ∈ Z>0 the residual polynomial Sm of R−m is an additive polynomial.
(d) Sm : K → K is Fp-linear.

Proof. (a) By Remark 5.2 the component R(−m) contains S and by Remark 4.3((a))
Sm(x) = xkA(x).

(b) As mentioned in Remark 5.2 N(−m) and R only have one point in common. By
Lemma 3.2 this point is of the form (ps, v(ρps)). It follows from Lemma 3.2 that if
the ramification polygon R of ϕ has no segment of slope −m then

v (contα(ρ(αmx))) = min
0≤i≤n

v(ρi) + i ·m = min
0≤r≤vp(n)

v(ρpr) + pr ·m

and Sm(x) = xp
s

where 0 ≤ s ≤ vp(n) such that v(ρps)+ps ·m = min0≤r≤vp(n) v(ρpr)+
pr ·m.

(c) By Lemma 3.2 the abscissa of each point on R is of the form ps. Thus the residual
polynomial of R(−m) is the sum of monomials of the form xp

s
which implies that Sm

is additive.
(d) Is a direct consequence of (c).

�

We now investigate the effect of changing the uniformizer α of K(α) on the coefficients of
its minimal polynomial (compare [11, Lemma 3]).

Proposition 5.5. Let ϕ ∈ OK [x] be Eisenstein of degree n, let α be a root of ϕ and let ρ be
the ramification polynomial of ϕ. Let β = α+ γαm+1 where γ ∈ L = K(α) with v(γ) = 0 be
another uniformizer of L and ψ ∈ OK [x] its minimal polynomial.

(a) If 0 ≤ j < n and j ≡ vα (ρ(γαm)) mod n then ϕj − ψj ∼ αnρ(γαm)
(b) If 0 ≤ k < n and k ≡ vα(contα(ρ(αmx))) mod n then

(ϕk − ψk)/(αn−k contα(ρ(αmx))) = Sm(γ).
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Proof. (a) By Definition 3.1 we have

(6)
n−1∑
i=0

(ϕi − ψi)βi = ϕ(β)− ψ(β) = ϕ(β) = αnρ(β/α− 1) = αnρ(γαm).

Since vπ(ϕi) ∈ Z and vπ(ψi) ∈ Z and vπ(βi) = i
n

we have

vπ

(
n−1∑
i=0

(ϕi − ψi)βi
)

= min
0≤i<n−1

vπ
(
(ϕi − ψi)βi

)
.

Thus for 0 ≤ j < n and j ≡ vπ (ρ(γαm)) mod n we have ϕj − ψj ∼ αnρ(γαm).
(b) Dividing Equation (6) by αn contα(ρ(αmx)) yields(

ϕ(β)− ψ(β)

αn contα(ρ(αmx))

)
=

(
αnρ(γαm)

αn contα(ρ(αmx))

)
= Sm(γ).

For 0 ≤ k < n with k ≡ v(contα(ρ(αmx))) mod n we get

(ϕk − ψk)βk/(αn contα(ρ(αmx))) = Sm(γ).

With β ≡ α mod (α2) we obtain the result.
�

5.1. Generating Polynomials. Using the results from above we can reduce the set of
generating polynomials with given invariants considerably. We show how the coefficients of
a generating polynomial can be changed by changing the uniformizer. The coefficients that
we can change arbitrarily this way we set to 0, thus reducing the number of polynomials to
be considered.

Corollary 5.6. Let ϕ ∈ OK [x] be Eisenstein of degree n, let α be a root of ϕ, let L = K(α),
and let ρ be the ramification polynomial of ϕ. Let m ∈ Z>0, c = vα(contα(ρ(αmx))), 0 ≤
k < n with k ≡ c mod n, and j = n−k+c

n
.

(a) If δ ∈ Sm(K) then for the minimal polynomial ψ ∈ OK [x] of β = α + γαm+1 where
γ ∈ S−1m ({δ}) we have ψ

k,j
= ϕ

k,j
− δ.

(b) If Sm : K → K is surjective we can set δ = ϕ
k,j

and obtain ψ
k,j

= 0.

(c) If Sm(γ) = 0 and d = vα(αnρ(γαm)), 0 ≤ l < n with l ≡ d mod n, and i = n−l+d
n

then ψ
l,i

= ϕ
l,i
− π−iαnρ(γαm).

The next Lemma follows directly from Corollary 5.6.

Lemma 5.7. Let ϕ ∈ OK [x] be Eisenstein of degree n, R its ramification polygon. Assume

there is m ∈ Z>0 such that k ≡ nφR(m) mod n and j = n+nφR(m)−k
n

and let Sm be the
residual polynomials of R(−m).

(a) If Sm is surjective then there is an Eisenstein polynomial ψ ∈ OK [x] with ψk,j = 0.
such that K[x]/(ψ) ∼= K(α).

(b) If ψ ∈ OK [x] has the same ramification polygon with the same residual polynomials
as ϕ and ϕk,j − ψk,j /∈ Sm(K) then K[x]/(ψ) 6∼= K[x]/(ϕ).
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Example 5.8 (Example 4.13 continued). The ramification polygonR2 = {(1, 10), (3, 3), (9, 0)}
has no segments with integral slope. We get S1 = x3, S2 = x3, and S3 = x3, with 9φ(1) = 6,
9φ(2) = 9, and 9φ(3) = 12. Thus ϕ6,1 = 0†, ϕ0,2 = 0†, and ϕ3,2 = 0†. Furthermore
Sm = x with 9φ(m) = 10 + m for m ≥ 4. Thus by Lemma 5.7 we can set ϕk,j = 0‡ for
k + 9(j − 1) ≥ 14.

For the generating polynomials with A∗12,1 we get the template:

x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

34 {0} {0} {0} {0} {0} {0} {0} {0} {0} {0}
33 {0} {0}‡ {0}‡ {0}‡ {0}‡ {0}‡ {0}‡ {0}‡ {0}‡ {0}‡
32 {0} {0}‡ {0}‡ {0}‡ {0}‡ {0, 1, 2} {0}† {0, 1, 2} {1} {0}†
31 {0} {0} {0} {0}† {0} {0} {2} {0} {0} {1}
30 {1} {0} {0} {0} {0} {0} {0} {0} {0} {0}

Since changing the uniformizer cannot change ϕ2,2 and ϕ4,2 independently from the other
coefficients of ϕ we obtain a unique generating polynomial of each extension with ramification
polygon R2 and A∗12,1.

6. Enumerating Generating Polynomials

We use the results from the previous sections to formulate an algorithm that returns
generating polynomials of all extensions with given ramification polynomials and residual
polynomials. In certain cases this set will contain exactly one polynomial for each extension.

Algorithm 6.1 (AllExtensionsSub).

Input: A π-adic field K, a convex polygon R with points (1, a0n + b0), (ps1 , a1n +
b1),. . . ,(psu , aun + bu) = (psu , 0),. . . ,(n, 0) satisfying Proposition 3.9 where 0 ≤
bi < n for 1 ≤ i ≤ u = vp(n), S1, . . . ,S` the segments of R, a representative δ0 of
a class in K×/(K×)n, and A1, . . . , A` ∈ K[x] satisfying Proposition 4.5.

Output: A set that contains at least one Eisenstein polynomial for each totally ramified
extension of degree n, that can be generated by a polynomial ϕ with ramification
polygon R, ϕ

0,1
= δ0, and residual polynomials A1, . . . , A`.

(a) c←
⌈
1 + 2a0 + 2b0

n

⌉
− 1 [Lemma 2.3]

(b) Initialize template (τi,j)0≤i≤n−1,1≤j≤c with τi,j = {0} ⊂ K
(c) For 0 ≤ i ≤ n− 1 and LR(i) ≤ j ≤ c: [Definition 3.8]

• If there is no m ∈ Z>0 with i ≡ nφR(m) mod n and j = n−i+nφR(m)
n

:
◦ τi,j ← K.

(d) For 1 ≤ m ≤
⌊
(a1n+b1)−(a0n+b0)

ps1−1

⌋
:

• i← nφR(m) mod n, j ← n−i+nφR(m)
n

• τi,j ← R where R is a set of representatives of K/Sm(K). [Lemma 5.7]
(e) For 1 ≤ i ≤ u:

• Find a segment St of R such that (psi , ain+ bi) is on St.
• j ← ai + 1− vπ

(
bi
psi

)
• τbi,j ←

{
At,(psi−psk )/e(−δ0)ai+1

(
bi
psi

)−1
π
vπ( bipsi)

}
. [Lemma 4.9]

where (psk , akn+ bk) is the left end point of St and −h/e is the slope of St.
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(f) τ0,1 ← {δ0} [Lemma 4.10]

(g) Return
{
xn +

∑n−1
i=0

(∑c
j=1 ϕi,jπ

j
)
xi ∈ OK [x] : ϕi,j ∈ RK such that ϕ

i,j
∈ τi,j

}
As is evident from the following example Algorithm 6.1 may return more than one gener-

ating polynomial for some extensions.

Example 6.2. The polygon R3 = {(1, 10), (3, 6), (9, 0)} has segments with slopes 10−6
1−3 = −2

and 6−0
3−9 = −1. With the choice ϕ0 ≡ 3 mod 9 the possible pairs of residual polynomials

are A3,1 = {(2 + x2, 1 + x6)}, A3,2 = {(2 + 2x2, 2 + x6)}, A3,3 = {(1 + 2x2, 2 + x6)}, and
A3,4 = {(1 + x2, 1 + x6)}.

For A3,2 = {(2 + 2x2, 2 + x6)} we get ϕ1,2 = 2 and furthermore this choice also gives
S1 = (2 + x6)x3, S2 = (2x2 + 2)x = 2(x3 + x), and Sm = x for m ≥ 3 with S1(F3) = {0},
S2(F3) = F3, and Sm(F3) = F3. As S2 is surjective we can set ϕ3,2 = 0‡. As Sm is surjective
for m ≥ 3 we can set ϕk,j = 0‡ for k + 9(j − 1) ≥ 14 where 0 ≤ k < 9. As the image of
S1 is {0} changing the uniformizer does not affect ϕ0,2

†. Thus Algorithm 6.1 generates the
template:

x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

34 {0} {0}‡ {0}‡ {0}‡ {0}‡ {0}‡ {0}‡ {0}‡ {0}‡ {0}‡
33 {0} {0}‡ {0}‡ {0}‡ {0}‡ {0}‡ {0}‡ {0}‡ {0}‡ {0}‡
32 {0} {0}‡ {0}‡ {0}‡ {0}‡ {0} {0}‡ {0, 1, 2} {2}∗ {0, 1, 2}†
31 {0} {0} {0} {2}∗ {0} {0} {0} {0} {0} {1}
30 {1} {0} {0} {0} {0} {0} {0} {0} {0} {0}

Of the corresponding polynomials ϕc,d = x9+6∗x6+9c·x2+18∗x+3+9d† (c, d ∈ {1, 2}) more
than one polynomial generates each extension. Let α be root of ϕc,d and ρ its ramification

polynomial . For γ ∈ {1, 2} we have vα(ρ(γα)) = 11. If ψ(x) =
∑9

i=0 ψix
i denotes the

minimal polynomial of α + γα2 then by Proposition 5.5 (a) we have ϕ2 − ψ2 = α9ρ(γα).
and hence ψ2,2 = ϕ2,2 − ρ(γα)/α9 6≡ 0 mod α. As γ + (α) 7→ ρ(γα)/α11 + (α) = 2γ + (α)
is surjective, changing the uniformizer from α to α + γα results in a change of ϕ2,2. Thus
we can choose γ such that ϕ2,2 = 0 and get that all extensions with ramification polygon
R3 and residual polynomials A3,2 are generated by exactly one polynomial of the form

ϕd = x9 + 6∗x6 + 18∗x+ 3 + 9d† where (d ∈ {1, 2}).

Theorem 6.3. Let F be the set of polynomials returned by Algorithm 6.1 given K and a
ramification polygon R, δ0 ∈ K and polynomials A1, . . . , A` ∈ K[x].

(a) F contains at least one Eisenstein polynomial for each totally ramified extension
of degree n, that can be generated by a polynomial ϕ with ramification polygon R,
ϕ
0,1

= δ0, and residual polynomials A1, . . . , A`.

(b) If Sm : K → K is surjective for all segments with integral slope −m, then no two
polynomials in F generate isomorphic extensions.

(c) If there is exactly one Sm : K → K that is non-surjective, and for all integers
k > nφR(m), there is an m′ ∈ Z>0 such that nφR(m′) = k, then no two polynomials
in F generate isomorphic extensions.

Proof. (a) Let ϕ ∈ F . In Algorithm 6.1 step (c) we have ensured that vπ(ϕi) ≥ LR(i)
and in step (e) we assign nonzero values to ϕbi,j so that vπ(ϕbi) = LR(bi) for points
(psi , ain + bi) with bi 6= 0. So by Proposition 3.10, ϕ has ramification polygon
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R. By Lemma 4.9, the values assigned in step (e) ensure that Rϕ has residual
polynomials (A1, . . . , A`). Thus each extension generated by a polynomial with the
input invariants is generated by a polynomial in F and all polynomials in F have
these invariants.

(b) If Sm : K → K is surjective for all segments with integral slope −m, then all of the
nonzero coefficients in our template τ are either fixed by δ0 or A, or free because they
are not set by a choice of element in the image of some Sm. Any deformation of the
uniformizer that might result in two polynomials in F to generate the same extension
would have to change one of these free coefficients, but such a change cannot be made
independently of the choices we made in order to set coefficients to zero by Lemma
5.7. So no two polynomials in F generate isomorphic extensions.

(c) Suppose there is exactly one Sm : K → K that is non-surjective, and for all integers
k > nφR(m), there is an m′ ∈ Z>0 such that nφR(m′) = k. As Sm : K → K is
non-surjective, there will be more than one choice for ϕi,j where jn + i = nφR(m).
By Proposition 5.5, the corresponding change of uniformizer (from α to α+ γαm+1)
can change ϕi′,j′ where j′n + i′ > jn + i. Since there exists m′ ∈ Z>0 such that
nφR(m′) = j′n + i′, then Algorithm 6.1 will assign ϕi′,j′ based on Sm′ . Given that
m 6= m′, Sm′ is surjective, ϕi′,j′ can be set to zero by Lemma 5.7. As all coefficients
ϕi′,j′ with j′n + i′ ≥ jn + i are assigned by the residual polynomials of components,
no two polynomials generate isomorphic extensions.

�

As in general the algorithm returns more than one polynomial generating each exten-
sion with the given invariants, the output needs to be filtered by comparing the generated
extensions by

(a) using the set of all reduced polynomials as computed by [11, Algorithm 3] or
(b) a root finding algorithm (compare [19]).

Suppose F is a set of non-isomorphic extensions with the given invariants. For the first
method, the set of all reduced polynomials generating each extension in F is computed. Since
the polynomials generated by our algorithm are reduced, checking whether a polynomial φ
generates an extension isomorphic to an extension in F only requires comparing φ to the
reduced generating polynomials for all extensions in F . Although the computation of the
reduced polynomials requires the expensive computation of characteristic polynomials, the
efficient comparison makes this method cheaper than the root finding method, where the
existence of a root of φ is checked over each extension in F . When using either method to
compare polynomials, the process can be accelerated by terminating when the number of
extensions with the given invariants computed with the mass formulas from [22, 23] is found.

The product
∏∞

m=0 # kerSm is an upper bound for the number of automorphisms of L/K.
This together with the number of reduced polynomials of ϕ gives the number of automor-
phisms of L/K ([11, Theorem 1]). Alternatively the number extensions generated by each
polynomial can be computed using root finding.

Now we present an algorithm to enumerate all extensions with a given invariants. It may
require multiple calls to Algorithm 6.1 AllExtensionsSub depending the structure of A and
the number of tamely ramified subextension.

Algorithm 6.4 (AllExtensions).
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Input: A π-adic field K, a ramification polygon R, and invariant A
Output: A set F that contains one generating Eisenstein polynomial for each totally ram-

ified extension of K with ramification polygon R and invariant A

(a) S0 ← a set of representatives of K×/(K×)n.
(b) For δ ∈ S0 do

(i) Partition A into disjoint sets A∗1, . . . ,A∗k by Equation (5).
(ii) For A∗ ∈ {A∗1, . . . ,A∗k} do

• Let A be a representative of A∗.
• F ′ ← AllExtensionsSub(K,R, A, δ). [Alg. 6.1]
• Unless avoidable by Theorem 6.3, filter F ′ so that no two polynomials gen-

erate the same extension using method of choice.
• F ← F ∪ F ′.

(c) Return F .

Theorem 6.5. Let F be the set of polynomials returned by Algorithm 6.4. For each extension
L/K with ramification polygon R and invariant A, the set F contains exactly one generating
polynomial.

Proof. Let L/K be a totally ramified extension with ramification polygon R and invariant
A. Let ψ ∈ OK [x] be an Eisenstein polynomial generating L with ψ0,1 ∈ S0. Let A(ψ)

be the residual polynomials of segments of R given ψ. As ψ generates L with invariant
A, A(ψ) belongs to some A∗ in our partition of A. If A is our choice of representative
of A∗, then by Lemma 4.12, there is a ϕ ∈ OK [x] with residual polynomials A such that
K[x]/(ψ) ∼= K[x]/(ϕ). Thus, L/K can be generated by an Eisenstein polynomial ϕ with
residual polynomials A, and ϕ0,1 = ψ0,1, and by Theorem 6.3, there is at least one ϕ ∈ F ′
with F ′ returned by AllExtensionsSub(K,Rψ, A, ψ0,1) generating L/K. The output F
contains one generator for every extension that can be generated by any polynomial in any
F ′ produced, and so there is a polynomial in F generating L/K.

To show that no two polynomials in F generate the same extension, it suffices to show that
no polynomials produced by different calls to Algorithm 6.1 generate the same extension.
Let ϕ and ψ be in two such polynomials. By Lemma 4.10, if ϕ0,1 6= ψ0,1, then as ϕ0,1, ψ0,1 ∈
K×/(K×)n, K[x]/(ψ) � K[x]/(ϕ). Now suppose ϕ0,1 = ψ0,1. By Remark 4.11, if the residual
polynomials of ϕ and ψ are not in the same A∗ then K[x]/(ψ) � K[x]/(ϕ). Thus, if two
polynomials are generated by Algorithm 6.1 with different inputs of δ or residual polynomials
returned by Algorithm 6.4, they cannot generate the same extension. �

7. Examples

In Figure 3 we compare the implementation of the algorithm from [19] in Magma [2]
(AllExtensions) with our implementation of Algorithm 6.4 in Magma. In the implementa-
tion of the method from [19], we replaced the deterministic enumeration of polynomials by
random choices, which yields a considerable performance improvement. Cases are separated
into those where filtering was required for Algorithm 6.4 and where it was not. To filter the
set of polynomials to obtain a minimal set when required, our implementation of Algorithm
6.4 uses Magma’s root finding without the mass formula from [23] as a termination criterion.
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Filtering not needed Filtering needed
K n v(disc ) [19] Alg. 6.4 K n v(disc ) [19] #Pol #Ext Alg. 6.4
Q2 8 10 0.016 s 0.015 s Q2 8 16 2.079 s 30 128 0.201 s
Q3 9 16 3.329 s 0.010 s Q2 8 17 3.968 s 32 128 0.579 s
Q3 9 25 69.17 s 0.016 s Q2 8 18 3.421 s 28 128 0.141 s
Q3 27 36 125.70 s 0.031 s Q2 8 20 10.36 s 64 256 0.875 s
Q3 27 43 27.8 hr 0.313 s Q2 8 27 121.14 s 512 512 42.92 s
Q5 25 41 39.4 hr 0.281 s Q2 8 30 533.48 s 512 512 177.55 s
Q5 125 135 8.9 hr 0.219 s Q2 16 45 1272.25 s 5120 32768 10.98 s

Figure 3. Time needed to compute a minimal set of generating polynomials
of all extensions of K of degree n with discriminant exponent v(disc ) with the
implementation of the algorithm from [19] and Algorithm 6.4in Magma. In
the cases where filtering was needed we also give the number of polynomials
obtained with our construction and the number of distinct extensions. All
timings were obtained on a computer with an Intel Core i5 at 2.6GHz and 4Gb
RAM.

We now present generating polynomials for totally ramified extensions of degree 15 over Q5

(Example 7.1), totally ramified extensions of degree 8 over an unramified extension of degree
2 over Q2 (Example 7.2), totally ramified extensions of degree 9 over a ramified extension
of Q3 of degree 3 (Example 7.3), and an example over Q3 that shows that in general not all
extensions with the same ramification polygon and invariantA have the same mass (Example
7.4).

Example 7.1. We find generating polynomials for all totally ramified extensions L of Q5 of
degree 15 with v5(disc (L)) = 29, the highest possible valuation by Proposition 2.1. There
is only one possible ramification polygon R = {(1, 15), (5, 0), (10, 0), (15, 0)} and only one
possible set of residual polynomials A = {(3z+2, z10 +3z5 +3)} for such extensions. Denote
by ϕ(x) =

∑15
i=0 ϕix

i an Eisenstein polynomial generating such a field L.
By Lemma 4.10 all extensions of Q5 with ramification polygon R can be generated by

polynomials ϕ ∈ Z5[x] with ϕ0 ≡ 5 mod 25. As bt = 0 for all points (pst , atn + bt) ∈ R,
Proposition 3.10 only gives us restrictions on ϕ based on LR and no coefficients are set by
Lemma 4.9. This provides the following template for ϕ:

x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

52 {0} RF5 RF5 RF5 RF5 RF5 RF5 RF5 RF5 RF5 RF5 RF5 RF5 RF5 RF5 RF5

51 {0} {0} {0} {0} {0} RF5
{0} {0} {0} {0} RF5

{0} {0} {0} {0} {1}
50 {1} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0}

The ramification polygon R2 has no segments with non-zero integral slope. We get S1 =
x15, S2 = x15, and S3 = x15, with 15φ(1) = 5, 15φ(2) = 10, and 15φ(3) = 15. Thus ϕ5,1 = 0,
ϕ10,1 = 0, and ϕ0,2 = 0. Further, for m ≥ 4, Sm = x. As 15φ(m) = 15 + m for m ≥ 4, by
Lemma 5.7, we can set ϕk,j = 0 for k+ 9(j−1) ≥ 19. Therefore, the generating polynomials
ϕ of the fields over Q5 with invariants R and A follow this template:
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x15 x14 x13 x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

52 {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} RF5 RF5 RF5 {0}
51 {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {1}
50 {1} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0}

As all of the Sm are surjective, by Theorem 6.3 (b), no two of these 125 polynomials generate
isomorphic extensions of Q5.

Example 7.2. Let K be the unramified extension of Q2 generated by y2 + y + 1 ∈ Q2[y].
Let γ be a root of y2 + y + 1, so K = F2(γ). We want to find generating polynomials
for all totally ramified extensions L of K of degree 8 with v2(disc (L)) = 16, ramification
polygon with points R = {(1, 9), (2, 6), (8, 0)}, and A containing (γz+ γ, z6 + γ). Denote by
ϕ =

∑8
i=0 ϕix

i an Eisenstein polynomial generating such a field L.
By Proposition 3.10, we have v(ϕ1) = 2 and v(ϕ6) = 1, and that v(ϕi) ≥ 2 for i ∈
{2, 3, 4, 5, 7}. By Lemma 4.9, the point (1, 9) = (20, 1 · 8 + 1) on R gives us that ϕ1,2 = γ
and the point (2, 6) = (21, 0 · 8 + 6) on R gives us that ϕ6,1 = γ. We set ϕ0,1 = 1 by Lemma
4.10 and the template for the polynomials ϕ is:

x8 x7 x6 x5 x4 x3 x2 x1 x0

23 {0} RK RK RK RK RK RK RK RK
22 {0} RK RK RK RK RK RK {γ} RK
21 {0} {0} {γ} {0} {0} {0} {0} {0} {1}
20 {1} {0} {0} {0} {0} {0} {0} {0} {0}

It remains to consider the Sm. Our ramification polygon R has two segments of integral
slope, −3 and −1, respectively. So by Lemma 5.4, S1(z) = z2A2 = z2(z6 + γ) and S3(z) =
zA1 = z(γz + γ). As S1 is surjective and nφ(1) = 8, we may set ϕ0,2 = 0. As R has no
segment of slope −2, S2 is surjective, so with nφ(2) = 10, we may set ϕ2,2 = 0. On the
other hand, S3 is not surjective and has image {0, γ}. By Lemma 5.7 and as nφ(3) = 12,
ϕ4,2 ∈ RK/{0, γ} = {0, 1}. For m ≥ 4, nφ(m) = 9 + m, and so we can set ϕk,j = 0 for
k + 8(j − 1) ≥ 13. This gives us the following template for polynomials ϕ:

x8 x7 x6 x5 x4 x3 x2 x1 x0

23 {0} {0} {0} {0} {0} {0} {0} {0} {0}
22 {0} {0} {0} {0} {0, 1} RK {0} {γ} {0}
21 {0} {0} {γ} {0} {0} {0} {0} {0} {1}
20 {1} {0} {0} {0} {0} {0} {0} {0} {0}

As S3 is the only non-surjective Sm, and for all integers k greater than nφ(3) = 12, nφ(k −
9) = k, we have by Theorem 6.3 (c) that no two of these 8 polynomials generate the same
extension.

Example 7.3. Let K = Q3[x]/(x2−3) and let π be a uniformizer of the valuation ring of K.
As in Example 3.13, there are three possible ramification polygons for extensions L of K of
degree 9 with v3(disc (L)) = 18, namely R1 = {(1, 10), (9, 0)}, R2 = {(1, 10), (3, 3), (9, 0)},
and R3 = {(1, 10), (3, 6), (9, 0)} (compare Figure 2).

Let us again choose to investigate R2. By Lemma 3.5 we have vπ(ϕ3) = 1 and by Lemma
4.10 we can set ϕ0,1 = 1. As K = Q3, we have the same four choices for the invariant
A: A2,1 = {(1 + 2x, 2 + x3)}, A2,2 = {(2 + x, 1 + 2x3)}, A2,3 = {(1 + x, 1 + x3)}, and
A2,4 = {(2 + 2x, 2 + x3)}.
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Let us choose A2,1. By Lemma 4.9 we get from the point (1, 10) = (30, 1 · 9 + 1) on R2

that ϕ1,2 = 1 and from the point (3, 3) = (31, 0 · 9 + 3) on R2 that ϕ3,1 = 2.
The ramification polygon R2 has no segments with integral slope. We get S1 = x3,

S2 = x3, and S3 = x3, with 9φ(1) = 6, 9φ(2) = 9, and 9φ(3) = 12. Thus ϕ6,1 = 0, ϕ0,2 = 0,
and ϕ3,2 = 0. Furthermore Sm = x for with 9φ(m) = 10 + m for m ≥ 4. Thus by Lemma
5.7 we can set ϕk,j = 0 for k + 9(j − 1) ≥ 14.

Proceeding as in Examples 3.13, 4.13, and 5.8 we obtain a familiar template for the
polynomials generating fields over K with ramification polygon R2 and invariant A2,1:

x9 x8 x7 x6 x5 x4 x3 x2 x1 x0

π4 {0} {0} {0} {0} {0} {0} {0} {0} {0} {0}
π3 {0} {0} {0} {0} {0} {0} {0} {0} {0} {0}
π2 {0} {0} {0} {0} {0} {0, 1, 2} {0} {0, 1, 2} {1} {0}
π1 {0} {0} {0} {0} {0} {0} {2} {0} {0} {1}
π0 {1} {0} {0} {0} {0} {0} {0} {0} {0} {0}

As all of the Sm are surjective, we obtain a unique generating polynomial of each degree 9
extension of K with v3(disc (L)) = 18, ramification polygon R2, and invariant A2,1.

As mentioned in the previous section, our choice of residual polynomials relate to the size
of the automorphism group of the extensions generated by our polynomials. However, the
polynomials generated by Algorithm 6.4 (and in general, those generating extensions of the
same degree, discriminant, ramification polygon, and A) do not generate extensions with
the same automorphism group size.

Example 7.4. Over Q3[x], let ϕ(x) = x9 + 6x6 + 18x5 + 3 and ψ(x) = x9 + 18x8 + 9x7 +
6x6 +18x5 +3. Both are Eisenstein polynomials generating degree 9 extensions over Q3 with
ramification polygonR = {(1, 14), (3, 6), (9, 0)} and having residual polynomials A1 = 2z2+1
and A2 = z6 + 2. Using root-finding, we see that over Q3[x]/(ϕ), ϕ has 3 roots, while over
Q3[x]/(ψ), ψ has 9 roots. Thus ψ generates a normal extension, while ϕ generates three
extensions with automorphism groups of size 3 which shows that not all extension with the
same ramification polygon and residual polynomials have the same mass.
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