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Abstract. We describe new zero-free regions for the derivatives ζ(k)(s)
of the Riemann zeta function: they take form of vertical strips in the right
half-plane; and we show that the zeros located in the narrow comple-
ments of these zero-free regions – which, in analogy with the classical
case, we call “critical strips” – tend to converge to their central “critical
lines” and exhibit surprising vertical periodicities that enable one to give
exact formulas for their number. An immediate corollary of the method
is the fact that all the zeros contained inside these new critical strips are
simple.

1. Introduction

In this paper we investigate the distribution of zeros of higher derivatives
of the Riemann zeta function. In order to put our main results in perspective,
we first give a brief summary of some of the most important results and
outstanding conjectures in this area.

Let s = σ + it. For all k ∈ N, the k-th derivative of the Riemann zeta
function ζ(k)(s) is

(1.1) ζ(k)(s) = (−1)k
∞
∑

n=2

logk n

ns
, for σ > 1,

and can be extended to a meromorphic function on C, with a single pole (of
order k) at the point s = 1. However, unlike ζ(s) itself, the functions ζ(k)(s)
have neither Euler products nor functional equations. Thus their nontrivial
zeros do not lie on a line, but appear to be distributed (seemingly at random)
to the right of the critical line σ = 1

2
. Speiser [8] was the first to show, in

1934, that the Riemann Hypothesis (RH) is equivalent to the fact that ζ ′(s)
has no zeros with 0 < σ < 1

2
. Levinson and Montgomery [5] gave a simpler

and more instructive proof of this and also showed that ζ ′(s) can vanish
on the critical line only at a multiple zero of ζ(s) if ever such a zero exists.
They also showed, assuming the Riemann Hypothesis (RH), that ζ(k)(s) has
at most a finite number of non-real zeros with σ < 1

2
, for k ≥ 1. For k = 1

they proved unconditionally that ζ ′(s) has only real zeros in the closed left
half-plane. For k = 2 and k = 3, Yıldırım [14] established, assuming RH,
that ζ(k)(s) has no zeros with 0 ≤ σ < 1

2
, and that both ζ ′′(s) and ζ ′′′(s)

have exactly one pair of nontrivial zeros with σ < 0. Namely ζ ′′(s) has
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zeros at approximately s = −0.35508433021 ± 3.590839324398i and ζ ′′′(s)
at approximately s = −2.110145792653± 2.58422477204i.

Figure 1. Zeros of ζ ′(s) in C, with the zero-free region.
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In regions to the right of the critical line, i.e. for σ ≥ 1
2
, the total number

of zeros of ζ(k)(s) does not differ by much from the number of zeros of ζ(s).
In fact, if we let N(T ) and Nk(T ) denote the number of such zeros ρ, with
0 ≤ ℑ(ρ) ≤ T , of ζ(s) and ζ(k)(s), respectively, then according to a theorem
of Berndt [1]

(1.2) Nk(T ) = N(T )− T

2π
log 2 +O(log T ),

where, by the classical Riemann-von Mangoldt formula (see Landau [4]),

N(T ) =
T

2π
log

T

2π
− T

2π
+O(log T ).

It should also be noted that most nontrivial zeros of ζ(k)(s) are located
relatively close to the line s = 1

2
+ it. In fact, in recent years, in a series

of improvements, Soundararajan [7], Zhang [15], and Feng [2], succeeded
in showing (conditionally) that, for k = 1, a positive portion of the zeros
ρ of ζ ′(s) satisfies ℜ(ρ) < 1

2
+ c/ log T . Nevertheless, for all k ∈ N, many

of the zeros of ζ(k)(s) lie much farther to the right, even though their real
parts can still be effectively bounded from above by absolute constants (see
Figure 1 for illustration of the bound in the case k = 1). For k ≥ 3 such
general upper bounds were first given by Spira [9] in 1965, and they were
later improved by Verma and Kaur [13] (see Table 1):

ζ(k)(σ + it) 6= 0 for σ > (1.13588 . . .)k + 2

In this work we explicate some new, unexpected properties of the location
of zeros of ζ(k)(s) in the intermediate regions 1

2
≤ ℜ(s) < (1.13588 . . .)k+2.
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Table 1. Lower real bounds for zero-free regions in the right
half-plane.

ζ ζ ′ ζ ′′ ζ(k) for k ≥ 3
Hadamard [3],
de la Vallée-Poussin [12] 1
Titchmarsh [11] E < 3
Spira [9] 7

4
k + 2

Verma & Kaur [13] (1.13588 . . .)k + 2
Skorokhodov [6] 2.93938 4.02853

In particular we dispel the notion of the apparent randomness of these zeros
by proving the existence of a sequence of zero-free regions for ζ(k)(s), and by
showing that all zeros found in the strips between them exhibit a fascinating
vertical periodicity. This enables us to give exact formulas for their number,
while also proving that all the zeros of ζ(k)(s) inside them are simple.

Figure 2. Zeros of ζ(38)(s) in C, with zero-free regions (char-
acterized by the dominance of Q38

M(s) for M = 2 and 3)

M=2

M=3

�

t

10 20 30 40 50

250

500

750

1000

2. Statement of Main Results

In what follows, we restrict our treatment to the case k ≥ 3. To state our
results precisely, we introduce some notation and definitions. Let Qk

n(s) :=
(log n)k/ns denote the n-th term of the Dirichlet series (1.1) for (−1)kζ(k)(s).
All the previously known zero-free regions for ζ(k)(s) have been obtained by
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finding solutions to

∣

∣ζ(k)(s)
∣

∣ =
∣

∣

∣

∞
∑

n=2

Qk
n(s)

∣

∣

∣
≥ Qk

2(σ)−
∞
∑

n=3

Qk
n(σ) > 0,

or some variation thereof (see [6, 11, 13]); that is, by finding the regions
of the complex plane where the term Qk

2(s) dominates all the other terms
of the expansion (1.1) of ζ(k)(s) (i.e. Qk

2(s) is greater in modulus than the
rest of the terms combined), because then, evidently, ζ(k)(s) 6= 0. However,
an important new observation is that Qk

2(s) is not always the dominant
term; any other term can not only be the largest in modulus, but take the
dominant role as well. This is clear from the fact that |Qk

n(s)| = Qk
n(σ),

viewed as a function of n, has its global maximum at n = ek/σ. Using this
simple property one can show the existence of regions where Qk

n(s) (for any
n ≥ 2) becomes the dominant term of (1.1), which then provides us with a
new zero-free region of ζ(k)(s), for each n ∈ N, for every sufficiently large k.

Let us denote by Qk
M(s) the term of (1.1) which has the largest modulus.

One remarkable property is that if we fix some such M , then the moduli
of the terms of (1.1) will increase for m < M and decrease for m > M , in
monotone fashion (see section 3). Since no termQk

M(s) can attain dominance
on a line where its absolute value is equal to that of another term (and by
the aforesaid property this can only happen when Qk

M(σ) = Qk
M+1(σ) or

Qk
M(σ) = Qk

M−1(σ)), it is reasonable to expect that the zeros of ζ(k)(s) will
be located close to the lines where this equality occurs. Thus we define

(2.1) qM :=
log
(

logM
log(M+1)

)

log
(

M
M+1

) ,

so that Qk
M(σ) = Qk

M+1(σ) whenever σ = qMk. (Note that q2 = 1.13588 . . .,
q3 = 0.808484 . . ., q4 = 0.668855 . . ., where q2 is the constant that appears
in Table 1.) In the kσ-plane, σ = qMk defines a line of slope qM which will
be called the M -th critical line.

Our first main result describes zero free regions between these critical
lines for sufficiently large k:

Theorem 2.1. Let k ∈ N and c ∈ R
>0 a solution of 1− 1

ec−1
− 1

ec
(1+ 1

c
) ≥ 0.

(a) If q3k + 4 log 3 < q2k − 2, then ζ(k)(s) 6= 0 for

q3k + 4 log 3 ≤ σ ≤ q2k − 2.

(b) If M ∈ N, M > 3, and qMk + (M + 1)c ≤ qM−1k − Mc then
ζ(k)(s) 6= 0 for

qMk + (M + 1)c ≤ σ ≤ qM−1k −Mc.

Remark 2.2. The value for c ∈ R
>0 that gives the widest zero free regions

is the solution of

1− 1

ec − 1
− 1

ec

(

1 +
1

c

)

= 0,

namely c = 1.1879426249 . . . .
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Figure 3. Zero-free regions and horizontal zero-free line seg-
ments for ζ(100), ζ(200), ζ(400), and ζ(800).
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We call the region between two zero free regions critical strips. Thus the
M -th critical strip Sk

M related to ζ(k)(s) is the open set given by

Sk
M :=

{

σ + it
∣

∣ qMk − (M + 1)c < σ < qMk + (M + 1)c
}

.

So the zero-free regions are the connected components that remain after one
removes Sk

M from the right half-plane.
Another way to visualize the critical strips Sk

M is to consider them in the
kσ-plane (see Figure 4). In this representation, the wedges correspond to

the zero-free regions, i.e. the regions of dominance of the terms logk M
Ms (for

M = 2 this is treated by Verma and Kaur [13], for M ≥ 3 it is new), while
the critical strips Sk

M are the narrow regions centered around the critical
lines that separate the wedges. For M ≥ 3 the k-coordinates of the tips of
the wedges in the k-σ-plane are

(2.2) k3 =
4 log 3 + 2

q2 − q3
and kM =

(2M + 1)c

qM−1 − qM
for M ≥ 4,

which immediately implies that the first critical strips Sk
2 can be observed

for all k ≥ 20, the second Sk
2 for all k ≥ 77, and the third Sk

3 for all k ≥ 163
and so on. With some extra work, these values can be improved to k ≥ 19
for Sk

2 , k ≥ 58 for Sk
3 , and k ≥ 123 for Sk

4 (see Remark 4.5).
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Figure 4. Zero-free regions of ζ(k)(σ + it), for M = 2, . . . , 9.
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Moreover, if one also considers the imaginary parts of the solutions of
Qk

M(qMk + it) +Qk
M+1(qMk + it) = 0, then one obtains

(2.3) t =
π(2j + 1)

log(M + 1)− log(M)

for j ∈ Z, showing that the location of the zeros ρ inside Sk
M is close to

k · qM +
π(2j + 1)i

log
(

M+1
M

)

for some j ∈ N. This suggests a vertical periodicity in the limit of the zeros
of ζ(k)(s) at the critical lines. (The computational data confirms that the
M -th period equals π/(log(M + 1) − log(M)).) With the help of Rouché’s
theorem, we are able to show that between every two consecutive lines
s = σ + 2πji

log(M+1)−logM
, that horizontally partition the critical strip Sk

M (see

Figure 3), there is exactly one zero of ζ(k)(s).

That is our second main result:

Theorem 2.3. Let c ∈ R
>0 be a solution of 1 − 1

ec−1
− 1

ec
(1 + 1

c
) ≥ 0. Let

M ∈ N, M > 3, and j ∈ N. If there is k ∈ N with

qM+1k + (M + 2)c ≤ qMk − (M + 1)c

then each rectangle Rj ⊂ Sk
M , consisting of all s = σ + it with

qMk − (M + 1)c < σ < qMk + (M + 1)c

and
2πj

log(M + 1)− log(M)
< t <

2π(j + 1)

log(M + 1)− log(M)
,

contains exactly one zero of ζ(k)(s). This zero is simple.
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The corresponding result also holds for the critical strips Sk
2 . Clearly,

Theorem 2.3 can be converted into an exact formula for the number of
zeros of ζ(k)(s) (for carefully chosen values of T ) inside any given critical
strip.

Corollary 2.4. Let Nk
M(T ) denote the number of zeros ρ of ζ(k)(s) which

are inside Sk
M and satisfy ℑ(ρ) ≤ T . Then, for all j ≥ 1,

Nk
M

(

2πj

log(M + 1)− log(M)

)

= j.

Remark 2.5. An immediate consequence is that for k ≥ 3 and T > 0,

Nk
M(T ) =

log(M + 1)− log(M)

π
T +O(1).

This, of course, implies that the total number of zeros contained within any
fixed critical strip is O(T ) = o(Nk(T )).

Spira [9] had already noticed that the zeros of ζ ′(s) and ζ ′′(s) seem to
come in pairs, where the zero of ζ ′′(s) is always located to the right of
the zero of ζ ′(s). More recently, with the help of extensive computations,
Skorokhodov [6] observed this behavior for higher derivatives as well. Our
observations support a straightforward one-to-one correspondence between
the zeros of ζ(k)(s) and ζ(m)(s) for all k,m ≥ 1 (Figure 5).

Figure 5. The consecutive zeros •(k) of the derivatives of
ζ(k)(σ + it) in the sample region: 40 < σ < 49 and 20 < t < 60.
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From (2.3) we see that the approximation of the imaginary part of a
zero of ζ(k)(s) depends on M but not on k. Therefore, it follows that, with
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growing k, the critical strips {Sk
M}∞k=2 undergo a shift to the right, and

the length of this horizontal shift is approximately qM for each increment
of k. In other words, by Theorem 2.3 all zeros of ζ(k)(s) contained in a
given Sk

M will keep shifting (almost) linearly, and with a (almost) fixed shift
qM to the right, as k → ∞ (see Figure 3). An interesting consequence of
this observation is that, in addition to the aforementioned vertical quasi-
periodicity, we also have a rigid horizontal pattern of zeros. Even more
surprisingly (although this is difficult to quantify via counting functions):
all derivatives of ζ(s) have exactly the same number of nontrivial zeros.

Conjecture 2.6. For k ∈ N and ℑ(s) > 1 there is a one-to-one correspon-
dence between the non-trivial zeros of ζ(k)(s) and ζ(k+1)(s), such that the
index M for two such corresponding zeros is the same, and their difference
is approximately qM .

Remark 2.7. The zero-free regions obtained in Theorem 2.1 easily gener-
alize to a large class of Dirichlet series. Since we only consider the absolute
values of the coefficients, it follows that if L(s) =

∑

∞

n=1
an
ns , and |aM | ≥ |an|

for some M ≥ 3 and all n ≥ 2, then Lk(s) 6= 0 for qMk + cM ≤ σ ≤
qM−1k− c(M −1), for a suitable constant c ≥ 0. Extensions and generaliza-
tion of the remaining results of this paper are more dependent on specific
parameters of Dirichlet series (such as the growth of |an|, as n → ∞); and
we relegate those investigations to a future project.

3. An Auxiliary Lemma

We consider the function z : R>0 → R, x 7→ logk x
xσ for fixed σ > 1 and

k ∈ N. We have

z′(x) =

(

(

log x

xσ

)k
)

′

= k

(

log x

xσ

)

′
(

log x

xσ

)k−1

= k

(

xσ−1 − σ(log x)xσ−1

x2σ

)(

log x

xσ

)k−1

.

Hence z(x) = 0 if xσ−1(1−σ log x) = 0, that is, x = e1/σ. Since z′(x) > 0 for
0 < x < e1/σ and z′(x) < 0 for x > e1/σ, the function z(x) has its maximum
at x = e1/σ.

Let Qk
n(σ) = logk n

nσ be the n-th term of (1.1). As we have chosen qM
such that Qk

M(σ) = Qk
M+1(σ) for σ = qMk, the maximum of z(x) (again for

σ = qMk) lies between x = M and x = M + 1. So the values of σ for which
Qk

M(σ) dominates ζ(k)(σ) are close to σ = qMk. Because the maximum of
z(x) is at x = e1/σ, the maximum of z(x) for σ > qMk is to the the right of
the maximum of z(x) for σ = qMk. Thus Qk

M(σ) dominates ζ(k)(σ) to the
right of σ = qMk.

We will use these monotonicity and dominance considerations implicitly
in the proofs of our theorems.
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Now, we consider the kσ-plane interpretation of Theorem 2.1. In general,
the wedges in Figure 4 are the sets containing all points (k, σ) that satisfy

qMk + b1 < σ < qM−1k + b2.

for some M ∈ N and b1, b2 ∈ R. Thus

(3.1) k ≥ b1 − b2
qM−1 − qM

,

with equality holding exactly if k = kM .
The growth properties of qM play an important role in understanding

the critical strips Sk
M .

Lemma 3.1. For all n ≥ 3 we have

1

log n
< qn−1 <

1

log(n− 1)
.

Proof. In order to prove the lower bound, we write

αn−1 :=
log(n− 1)

log n
= 1 +

log(n− 1)− log n

log n
= 1 +

log(n−1
n
)

log n
,

βn−1 := log(αn−1) = log

(

1 +
log(n−1

n
)

log n

)

<
log(n−1

n
)

log n
,

where the last inequality holds because log(1+x) < x whenever x > −1. The
desired lower bound now immediately follows from qn−1 = βn−1/ log((n −
1)/n).

In order to prove the upper bound, we write θn := − log
(

n−1
n

)

. Then we
have:

qn−1 =
log
(

log(n−1)
logn

)

log
(

n−1
n

) =
log
(

1− − log(n−1

n
)

log n

)

log
(

n−1
n

) =
log
(

1− θn
logn

)

log
(

n−1
n

)

=
1

log n
+

θn
2(log n)2

+
θ2n

3(log n)3
+

θ3n
4(log n)4

+ · · ·

<
1

log n
+

1

2 log n

(

θn
log n

+

(

θn
log n

)2

+

(

θn
log n

)3

+ · · ·
)

=
1

log n
+

1

2 log n

θn
log n− θn

=
1

log n
+

1

2 log n

log(1 + 1
n−1

)

log(n− 1)

<
1

log n
+

1

2(log n)(log(n− 1))(n− 1)
<

1

log(n− 1)
,

where the last inequality holds if and only if

log n− log(n− 1) >
1

2(n− 1)
,

which is true by the mean value theorem. �
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How many distinct critical strips of ζ(k)(s) are there inside the region
1/2 ≤ σ < q2k+2? Let c(k) denote that number. Then in view of Lemma 3.1
it seems reasonable to expect that, for all k ≥ 2, there exist positive con-
stants A and B, such that

A

√
k

log k
< c(k) < B

√
k

log k
.

Upper bounds of the desired order are easier to prove than lower bounds:
obviously, one can just count the number of wedges, with their tips located
at points described in (2.2), and then invert the relation. Since the difference
qM−1 − qM in the denominator of this fraction can be nicely bounded from
above (but not from below), using the estimates in our lemma, effective
upper bounds can be obtained.

4. Proof of Theorem 2.1

Now we are ready to prove our first main result. We will show that ζ(k)(s)
has no zeros if (k, σ) in the kσ-plane lies in one of the wedges given by an
inequality of the form

qMk + b1 ≤ σ ≤ qM−1k + b2

for suitably chosen b1, b2 ∈ R. We choose b1, b2 such that these wedges are

the regions where Qk
M(s) = logk M

Ms is the dominant term (in the modulus) of

ζ(k)(s). Everywhere hereafter we write Hk
M(s) for the “head” and T k

M(s) for
the “tail” of the series ζ(k)(s) split by Qk

M(s):

Hk
M(s) :=

M−1
∑

n=2

Qk
n(s) =

M−1
∑

n=2

logk n

ns

and

T k
M(s) :=

∞
∑

n=M+1

Qk
n(s) =

∞
∑

n=M+1

logk n

ns
.

Our goal will be to show that

|ζ(k)(s)| ≥ Qk
M(σ)−Hk

M(σ)−T k
M(σ) = Qk

M(σ)

(

1− Hk
M

Qk
M

(σ)− T k
M

Qk
M

(σ)

)

> 0

for our choice of b1 and b2, keeping in mind that

QM+1

QM

(qMk+ b1) =

(

M

M + 1

)b1

and
QM−1

QM

(qM−1k+ b2) =

(

M

M − 1

)b2

,

as one can easily verify.

The Tails. We first find an upper bound for the tails T k
M(σ).

Lemma 4.1. Fix some integer M ≥ 2, and assume k − 1 < (σ − 1) logM.
Then

(4.1) T k
M(σ) =

∞
∑

n=M+1

logk n

nσ
≤
∫

∞

M

logk x

xσ
dx < Qk

M(σ)Rk
M(σ),
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where

Rk
M(σ) =

M

σ − 1

(

1 +
k

(σ − 1) logM − k + 1

)

.

Proof. For k ∈ Z, the integral in (4.1) can be written in a closed form.
Applying recursively the general formula (for all b,−a 6= −1)

∫

(log x)a

xb
dx = − (log x)a

(b− 1)xb−1
+

a

b− 1

∫

(log x)a−1

xb
dx,

we obtain
∫

∞

M

logk x

xσ
dx =

logk M

Mσ

M

σ − 1

k
∑

r=0

k!

(k − r)!

log−r M

(σ − 1)r

≤ Qk
M(σ)

M

σ − 1

(

1 +
k
∑

r=1

k(k − 1)r−1
( 1

(σ − 1) logM

)r)

< Qk
M(σ)

M

σ − 1

(

1 +
k

(σ − 1) logM

∞
∑

r=0

( k − 1

(σ − 1) logM

)r)

= Qk
M(σ)

M

σ − 1

(

1 +
k

(σ − 1) logM − k + 1

)

,

where the convergence of the geometric series is implied by k − 1 < (σ −
1) logM . �

It is clear why estimating Rk
M(σ) will be vital for the proofs of our

theorems. We note:

Lemma 4.2. If a1k + b1 ≤ σ and k ≥ kM , then

(4.2) Rk
M(σ) ≤ Rk

M(a1k + b1) ≤ RkM
M (a1kM + b1),

as long as the following two conditions are satisfied:

a1 >
1

logM
and (a1 logM − 1)kM + 1 + (b1 − 1) logM > 0,

and in the case of b1 < 1− 1/ logM also:

kM ≥ 1

a1 logM

(

−(b1 − 1) logM − 1 +

√

|(b1 − 1) logM + 1|
a1 logM − 1

)

.

Proof. The left-hand inequality of (4.2) is evident from the fact that Rk
M(σ)

is decreasing when viewed as a function of σ alone. The right-hand inequality
of (4.2) is equivalent to saying that Rk

M(σ) is decreasing as a function of k.
To see this we rewrite 1

M logM
Rk

M(a1k + b1) in the form

y(k) =
1

(c+ 1)k + d− 1

(c+ 1)k + d

ck + d
,

where c := a1 logM − 1 > 0 and d := 1 + (b1 − 1) logM , then clearly

y′(k) = −c(1 + c)2k2 + 2cdk(1 + c) + d(1 + cd)

((c+ 1)k + d− 1)2(ck + d)2
,
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from which it is easy to see that y′(k) can change sign only if d < 0 (oth-
erwise it remains non positive). However, the condition d < 0 translates to
b1 < 1− 1/ logM , in which case one requires kM ≥ z0, where

z0 := − d

1 + c
+

1

1 + c

√

|d|
c

is the right zero of the numerator of the above expression for y′(k). �

We will use the estimate for T k
M(σ) from Lemma 4.1 in the proof of

Theorem 2.1 via the separation:

T k
M(σ) = Qk

M+1(σ) + T k
M+1(σ)

≤ Qk
M+1(σ)(1 +Rk

M+1(σ))

≤ Qk
M(qMk + b1)(1 +Rk

M+1(qMk + b1)),

since Qk
M+1(σ) ≤ Qk

M(σ). The series with the remainder Rk
M+1(qMk+b1) will

converge because qM > 1/ log(M+1) by Lemma 3.1, if b1 is suitably chosen.
Verma and Kaur’s bound (see Table 1) follows directly from Lemma 4.1 and
Lemma 4.2. We include a proof of their result because it exemplifies several
of the important ideas and illustrates key workings of our general method,
being the special case of M = 2 (representing the dominance of the term
Qk

2(σ)).

Theorem 4.3 ([13, Theorem (A)]). For all σ ≥ q2k+2 we have ζ(k)(s) 6= 0.

Proof. First write

|ζ(k)(s)| ≥ logk 2

sσ
− T k

2 (σ) ≥ Qk
2(σ)

(

1− Qk
3

Qk
2

(σ)− Qk
4

Qk
2

(σ)
(

1 +Rk
4(σ)

)

)

.

By Lemma 4.2 we have Rk
4(σ) ≤ Rk

4(q2k+2) < 1.57, for k ≥ 3. Furthermore,

Qk
4

Qk
2

(σ) = 2k−σ ≤ 2k−q2k+2 ≤ 23(1−q2)−2 ≤ 0.19.

The quotient
Qk

3

Qk

2

(σ) is decreasing in σ, and hence
Qk

3

Qk

2

(σ) ≤ Qk

3

Qk

2

(q2k+2) = 4
9
.

So we obtain

1− Qk
3

Qk
2

(σ)− Qk
4

Qk
2

(σ)
(

1 +Rk
4(σ)

)

≥ 1− 4

9
− 0.19(1 + 1.57) > 0,

which establishes the result. �

Since Theorem 2.1 (a) deals with the next case of M = 3 (corresponding
to the dominance of the term Qk

3(σ)), and only a little bit of extra effort is
needed to prove it, we give a proof of it right now.

Proof of Theorem 2.1 (a). For a zero free region to exist we must have

q3k + 4 log 3 ≤ q2k − 2,
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which implies k ≥ 20. Separating the dominant term Qk
3(σ), we get

|ζ(k)(s)| ≥ Qk
3(σ)−Qk

2(σ)− T k
3 (σ)

≥ Qk
3(σ)

(

1− Qk
2

Qk
3

(σ)− Qk
4

Qk
3

(σ)
(

1 +Rk
4(σ)

)

)

.

Therefore we only need to show that

1− Qk
2

Qk
3

(σ)− Qk
4

Qk
3

(σ)
(

1 +Rk
4(σ)

)

> 0.

From Lemma 4.2, Rk
4(σ) ≤ Rk

4(q3k + 4 log 3) ≤ Rk3
4 (q3k3 + 4 log 3) < 0.72,

for q3k+4 log 3 ≤ σ and k ≥ k3 =
4 log 3+2
q2−q3

. Also,
Qk

4

Qk

3

(σ) ≤ Qk

4

Qk

3

(q3k+4 log 3) <

0.29 and
Qk

2

Qk

3

(σ) ≤ Qk

2

Qk

3

(q2k − 2) < 0.45. Hence

1− Qk
2

Qk
3

(σ)− Qk
4

Qk
3

(σ)
(

(1 +Rk
4(σ)

)

> 1− 0.45− 0.29(1 + 0.72) > 0,

as desired. �

Theorem 2.1 (b) deals with the dominance of the general term Qk
M(σ),

and consequently requires knowledge of the behavior of the sum of all the
terms preceding it.

The Heads. We rewrite the heads of the series (1.1) in the following form:

Hk
M(σ) = Qk

M(σ)

(

Qk
M−1

Qk
M

(σ) +
Qk

M−2

Qk
M

(σ) + · · ·+ Qk
2

Qk
M

(σ)

)

(4.3)

= Qk
M(σ)

(

Qk
M−1

Qk
M

(σ)

(

1 +
Qk

M−2

Qk
M−1

(σ)

(

1 + . . .

(

1 +
Qk

2

Qk
3

(σ)

)

. . .

)))

,

(4.4)

and we will find upper bounds for all the above quotients
Qk

n−1

Qk
n

(σ) of con-

secutive terms. Clearly
Qk

n−1

Qk
n

(σ) =
(

log(n−1)
logn

)k
(

n
n−1

)σ
and therefore

Hk

M

Qk

M

(σ)

increases with σ. For 2 ≤ n ≤ M and σ ≤ qM−1k + b2 we get

Qk
n−1

Qk
n

(σ) ≤ Qk
n−1

Qk
n

(qM−1k + b2) ≤
Qk

n−1

Qk
n

(qn−1k + b2) =

(

n

n− 1

)b2

,

where the second inequality holds because qM−1 < qn for all n < M−1, while
the equality holds because σ = qn−1k is the solution of Qk

n(σ) = Qk
n−1(σ).

Thus, in order for
Hk

M

Qk

M

(σ) to stay bounded, we must choose b2 < 0.

Lemma 4.4. Let c ∈ R be positive. Then y(n) =
(

n−1
n

)cn
is monotonously

increasing with asymptote 1/ec.

Proof. As limn→∞

(

1 + 1
n

)cn
= ec, we evidently have limn→∞

(

n−1
n

)cn
= 1/ec.

Finally,

y′(n) = c · y(n)
(

log

(

1− 1

n

)

+
1

n− 1

)

> 0
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proves the monotonicity assertion. �

Thus for 2 ≤ n ≤ M and σ ≤ qM−1k − cM we have

Qk
n−1

Qk
n

(σ) ≤
(

n

n− 1

)

−cM

≤
(

M

M − 1

)

−cM

≤ 1

ec
.

Now (4.4) yields

(4.5)
Hk

M

Qk
M

(σ) ≤
∞
∑

n=1

1

(ec)n
=

1

1− 1
ec

− 1 =
1

ec − 1
.

Proof of Theorem 2.1 (b). Similar to the proof of Theorem 2.1 (a) we write
∣

∣ζ(k)(s)
∣

∣ ≥ Qk
M(σ)−Hk

M(σ)− T k
M(σ)

≥ Qk
M(σ)

(

1− Hk
M

Qk
M

(σ)− Qk
M+1

Qk
M

(σ)
(

1 +Rk
M+1(σ)

)

)

.

Now, notice that

Rk
M(σ) :=

M

σ − 1

(

1 +
k

(σ − 1) logM − k + 1

)

<
1

c

is equivalent to: (σ− 1)2 logM − (σ− 1)(cM logM + k− 1)− cM > 0; and
this quadratic inequality is satisfied whenever

σ > 1 +
(cM logM + k − 1) +

√

(cM logM + k − 1)2 + 4M logM

2 logM

> 1 +
2(cM logM + k − 1)

2 logM
= 1 + cM +

k − 1

logM
.

Thus, by Lemma 4.2, for σ ≥ qMk + c(M + 1), k ≥ kM = (2M+1)c
qM−1−qM

, and

M ≥ 4, we have

Rk
M+1(σ) ≤ RkM

M+1(qMkM + c(M + 1)) <
1

c
.

By Lemma 4.4 we also have

Qk
M+1

Qk
M

(qMk + c(M + 1)) =

(

M

M + 1

)c(M+1)

<
1

ec
,

thus, with (4.5), we obtain, for M ≥ 4 and qMk+ c(M +1) ≤ σ ≤ qM−1k+
cM ,

1− Hk
M

Qk
M

(σ)− Qk
M+1

Qk
M

(σ)
(

1 +Rk
M(σ)

)

> 1− 1

ec − 1
− 1

ec

(

1 +
1

c

)

≥ 0,

which proves the theorem. �

Remark 4.5. The zero-free regions we have given are not the largest pos-
sible. For example, if one considered the lines σ = 1

2
((qM + qM−1)k + c)

through the centers of the wedges and searches for the lowest k for which
there were no zeros on those lines, then one would obtain the following
values for kM (which are lower than the values we have for the tips of the
wedge-shaped regions):
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M 3 4 5 6 7 8 9 10
kM on line 19 58 123 220 354 529 748 1014
kM at the tip 20 77 163 291 465 691 971 1313

5. Proof of Theorem 2.3

Because of the property of the quasi-periodicity of the zeros of ζ(k)(s)
inside Sk

M we are able to count the zeros by individual separation. In order
for our approach to work, we first find horizontal, periodically-spaced zero-
free line segments within the critical strips (in Lemma 5.1). Then we show
that there is always exactly one zero of ζ(k)(s) in the rectangles Rj (for
j ∈ N) that are delimited by the vertical edges of two neighboring zero-free
regions and two horizontal zero-free lines (see Figure 6).

As already mentioned above, in the critical strips Sk
M , which are located

between two consecutive zero-free regions, where the expansion of ζ(k)(s) is
dominated by the terms Qk

M(s) and Qk
M+1(s) respectively, one can obtain

values of the imaginary parts t of expected zeros by solving the equation
Qk

M(σ + it) = Qk
M+1(σ + it) (an act of balancing the real and imaginary

parts of two largest terms), and then choosing the horizontal lines of sep-
aration exactly halfway between them, thus managing to avoid even the
most irregular of zeros inside Sk

M . That is exactly what we do below. It is a
consequence of this that all zeros of ζ(k)(s) inside Sk

M are simple.

Lemma 5.1. Let M ≥ 2 and k ∈ N. If s ∈ Sk
M , then ζ(k)(s) 6= 0 for

s = σ + i · 2πj

log(M + 1)− logM
.

Figure 6. The curve γ is the boundary of the rectangle Rj.
The point • represents a zero of Z(s) = Qk

M(s)+Qk
M+1(s) on

the critical line σ = qMk.

qM+1k+(M+2)c

M+1

qM k�(M+1)c qM k

S k
M

qM k+(M+1)c

M

qM	1k�Mc

2(j+1)


log(M+1)�logM

(2j+1)


log(M+1)�logM

2j


log(M+1)�logM

�




t

1 2 3 4 5 6

1

2

3

4
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Proof. In the center of the critical strip Sk
M , that is on the critical line

σ = qMk we have |Qk
M(s)| = |Qk

M+1(s)|. We consider the line segments in
Sk
M with

qMk − (M + 1)c ≤ σ ≤ qMk + (M + 1)c.

and

t =
2πj

log(M + 1)− logM
, where j ∈ Z,

see Figure 6. Our choice of t gives Qk
M(qMk + it) = Qk

M+1(qMk + it) (com-
pare equation 2.3) and therefore cos(t logM) = cos(t log(M + 1)) and
sin(t logM) = sin(t log(M + 1)). We set s = σ + it, with t and σ as above,
and consider the real and imaginary parts of

ζ(k)(s) =
∞
∑

n=2

(cos(t log n)− i · sin(t log n))Qk
n(σ).

With |ℑ(Qk
n(s)| ≤ Qk

n(σ) and |ℜ(Qk
n(s)| ≤ Qk

n(σ) we obtain

|ℜ(ζ(k)(s))| ≥| cos(t logM)Qk
M(σ) + cos(t log(M + 1))Qk

M+1(σ)|
−Hk

M(σ)− T k
M+1(σ),

|ℑ(ζ(k)(s))| ≥| sin(t logM)Qk
M(σ) + sin(t log(M + 1))Qk

M+1(σ)|
−Hk

M(σ)− T k
M+1(σ).

If t = 0, the situation is trivial. If t 6= 0, then we either have | sin(t logM)| ≥
sin(π/4) = 1/

√
2 or | cos(t logM)| ≥ cos(π/4) = 1/

√
2. Because |ζ(k)(s)| ≥

|ℜ(ζ(k)(s))| and |ζ(k)(s)| ≥ |ℑ(ζ(k)(s))| we get

|ζ(k)(s)| ≥ 1√
2

(

Qk
M(σ) +Qk

M+1(σ)
)

−Hk
M(σ)− T k

M+1(σ)

= Qk
M(σ)

(

1√
2
+

1√
2

Qk
M+1

Qk
M

(σ)− Hk
M

Qk
M

(σ)− Qk
M+2

Qk
M

(σ)− T k
M+2

Qk
M

(σ)

)

= Qk
M(σ)

(

1√
2
− Hk

M

Qk
M

(σ) +
Qk

M+1

Qk
M

(σ)

(

1√
2
− Qk

M+2

Qk
M+1

(σ)− T k
M+2

Qk
M+1

(σ)

))

.

From the proof of Theorem 2.1 (b) we know that for σ ≥ qM+1k+(M +2)c
and c = 1.1879426249 . . . (see Remark 2.2)

1√
2
− Qk

M+2

Qk
M+1

(σ)− T k
M+2

Qk
M+1

(σ) ≥ 1√
2
− Qk

M+2

Qk
M+1

(σ) (1 +RM+2(σ))

≥ 1√
2
− 1

ec

(

1 +
1

c

)

> 0.

Similarly, since
Hk

M

Qk

M

(σ) is increasing in σ (see equation (4.4)) and because

σ < qM−1k −Mc, we get with (4.5) that

1√
2
− Hk

M

Qk
M

(σ) ≥ 1√
2
− Hk

M

Qk
M

(qM−1k −Mc) ≥ 1√
2
− 1

ec − 1
> 0,

which concludes the proof of the lemma. �
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Proof of Theorem 2.3. Let Z(s) = Qk
M(s) + Qk

M+1(s). It is easy to check
that the function Z(s) has exactly one (simple) zero in Rj, namely

s = qMk + i · (2j + 1)π

log(M + 1)− logM
.

In order to be able to apply Rouché’s Theorem we need to show that
|ζ(k)(s)− Z(s)| < |Z(s)| for all s on Rj.

The vertical sides of Rj are in the zero free regions for M and M + 1.
As shown in the proof of Theorem 2.1 the term Qk

M(s) dominates ζ(k)(s)
on the right vertical side of Rj and the term Qk

M+1(s) dominates ζ(k)(s) on

the left vertical side of Rj. Thus |ζ(k)(s) − Z(s)| < |Z(s)| on the vertical
sides of Rj. Furthermore we have seen in the proof of Lemma 5.1 that
Z(s) = Qk

M(s) + Qk
M+1(s) dominates ζ(k)(s) on the horizontal sides of Rj.

Hence |ζ(k)(s)− Z(s)| < |Z(s)| on the horizontal sides of Rj.
Therefore, by Rouché’s Theorem, Z(s) and ζ(k)(s) have the same number

of zeros inside Rj, for every j ∈ N. This proves both the simplicity of all
zeros of ζ(k)(s) inside Sk

M , and the sharp formula for Nk
M(T ), as given in

Corollary 2.4. �
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