The Discrete Logarithm in Logarithmic ℓ -Class Groups and its Applications in K-Theory

Sebastian Pauli and Florence Soriano-Gafiuk

Institut für Mathematik, Technische Universität Berlin and Département de Mathématiques, Université de Metz

Abstract. We present an algorithm for the computation of the discrete logarithm in logarithmic ℓ -Class Groups. This is applied to the calculation to the ℓ -rank of the wild kernel WK_2 of a number field F and in the determination of generators of the ℓ -part of $WK_2(F)$.

1 Introduction

A new invariant of number fields, called group of logarithmic classes, was introduced by J.-F. Jaulent in 1994 [J3]. The arithmetic of logarithmic classes is interesting because of its applicability to K-Theory. Indeed for a given prime number ℓ , the ℓ -rank of the logarithmic ℓ -class group of a number field F containing the 2ℓ -th roots of unity equals the ℓ -rank of the wild kernel.

In the present paper we give positive answers to the questions:

- If F does not contain the 2ℓ -th roots of unity, can we determine the ℓ -rank of its wild kernel by the arithmetic of the logarithmic divisor class groups ?
- Is it possible to give a complete logarithmic description of the wild kernel ?

First we recall the most important definitions from the theory of logarithmic ℓ class groups and the algorithm for their computation; we also give an algorithm for the computation of discrete logarithms in these groups (section 2). In section 3 we give a short introduction to the wild kernel and derive the algorithms for the computation of its ℓ -rank in a general setting. Section 4 contains the complete description of the ℓ -part of the wild kernel through the logarithmic ℓ -class group. This is followed by some examples.

In the following, ℓ denotes a fixed prime number and \mathbb{Z}_{ℓ} the completion of \mathbb{Z} with respect to the non-archimedian exponential valuation v_{ℓ} . F denotes a number field.

2 The Logarithmic *l*-Class Group

For a detailed presentation of logarithmic theory see [J3]. A first algorithm for the computation of the group of logarithmic classes of a number field F was developed by F. Diaz y Diaz and F. Soriano in 1999 [DS]. We use the algorithm from $[DJ^+]$ as it removes the restriction to Galois extensions of \mathbb{Q} . This algorithm uses the ideal theoretic description of the logarithmic ℓ -class groups. Before we discuss it we need some definitions.

Let p be a prime number and let \mathfrak{p} be a prime ideal of F over p. For $a \in \mathbb{Q}_p^{\times} \cong p^{\mathbb{Z}} \times \mathbb{F}_p^{\times} \times (1 + 2p\mathbb{Z}_p)$ denote by $\langle a \rangle$ the projection of a to $(1 + 2p\mathbb{Z}_p)$. Let $F_{\mathfrak{p}}$ be the completion of F with respect to \mathfrak{p} . For $\alpha \in F^*$ we define

$$g_{\mathfrak{p}}(\alpha) := \frac{\mathrm{Log}_p \langle \mathrm{N}_{F_{\mathfrak{p}}/\mathbb{Q}_p}(\alpha) \rangle}{[F_{\mathfrak{p}} : \mathbb{Q}_p] \cdot \mathrm{deg}_p p}$$

The logarithmic ramification index $\tilde{e}_{\mathfrak{p}}$ can be described as follows. The *p*-part of the logarithmic ramification index $\tilde{e}_{\mathfrak{p}}$ is $[g_{\mathfrak{p}}(F_{\mathfrak{p}}^*):\mathbb{Z}_p]$. For all primes q with $q \neq p$ the q part of $\tilde{e}_{\mathfrak{p}}$ is the q part of the ramification index $e_{\mathfrak{p}}$ of \mathfrak{p} . The logarithmic inertia degree $\tilde{f}_{\mathfrak{p}}$ is defined by the relation $\tilde{e}_{\mathfrak{p}}\tilde{f}_{\mathfrak{p}} = e_{\mathfrak{p}}f_{\mathfrak{p}} = \deg(F/\mathbb{Q})$, where $f_{\mathfrak{p}}$ is the classic inertia degree. We use it for the definition of the logarithmic degree of a place \mathfrak{p} :

$$\deg_{\ell} \mathfrak{p} := \widetilde{f}_{\mathfrak{p}} \deg_{\ell} p \quad \text{where} \quad \deg_{\ell} p = \begin{cases} \log_{\ell} p & \text{for } p \neq \ell; \\ \ell & \text{for } p = \ell \neq 2; \\ 4 & \text{for } p = \ell = 2. \end{cases}$$

Furthermore we set

$$\widetilde{v}_{\mathfrak{p}}(x) := -\frac{\mathrm{Log}_{\ell}(\mathrm{N}_{F_{\mathfrak{p}}/\mathbb{Q}_{p}}(x))}{\mathrm{deg}_{\ell}(\mathfrak{p})} \text{ for } x \in \mathcal{R}_{F} = \mathbb{Z}_{\ell} \otimes_{\mathbb{Z}} F^{*}$$

We define the group of ℓ -ideals

$$\mathcal{I}d_{F,\ell} := \left\{ \mathfrak{a} = \prod_{\mathfrak{p} \nmid \ell} \mathfrak{p}^{\alpha_{\mathfrak{p}}} \mid \alpha_{\mathfrak{p}} = 0 \text{ for almost all } \mathfrak{p}
ight\},$$

denote by

$$\mathcal{I}d_{F,\ell} := \{\mathfrak{a} \in \mathcal{I}d_{F,\ell} | \deg_{\ell} \mathfrak{d}_F(\mathfrak{a}) = 0\}$$

the subgroup of ℓ -ideals of degree 0, and denote by

$$\widetilde{\mathcal{P}r}_{F,\ell} := \left\{ \prod_{\mathfrak{p} \nmid \ell} \mathfrak{p}^{v_{\mathfrak{p}}(a)} \mid \mathfrak{a} \in \mathcal{R}_F \text{ and } \widetilde{v}_{\mathfrak{p}}(a) = 0 \,\,\forall \mathfrak{p} \mid \ell \right\}$$

the subgroup of principal ℓ -ideals having logarithmic valuations 0 at all ℓ -adic places. The group of logarithmic ℓ -classes is isomorphic to the quotient of the latter two:

$$\widetilde{\mathcal{C}\ell}_{F,\ell} \cong \widetilde{\mathcal{I}d}_{F,\ell} / \widetilde{\mathcal{P}r}_{F,\ell}.$$

The generalized Gross conjecture (for the field F and the prime ℓ) asserts that the logarithmic class group $\widetilde{\mathcal{C}\ell}_{F,\ell}$ is finite (cf. [J3]). This conjecture, which is a consequence of the *p*-adic Schanuel conjecture, was only proved in the abelian case and a few others (cf. [FG,J4]). Nevertheless, since $\widetilde{\mathcal{C}\ell}_{F,\ell}$ is a \mathbb{Z}_{ℓ} -module of finite type (by the ℓ -adic class field theory), the Gross' conjecture just claims the existence of an integer *m* such that ℓ^m kills the logarithmic class group. In $[DJ^+]$ we present a method for the computation of an upper bound for m. That algorithm does not terminate in general if Gross' conjecture is false. This upper bound can be used as the ℓ -adic precision in the computation of the logarithmic class group.

2.1 Generators and Relations of $\mathcal{C}\ell_{F,\ell}$

Let $\mathfrak{a}_1, \ldots, \mathfrak{a}_t$ be a basis of the ideal classgroup $\mathcal{C}\ell_F$ of F with $gcd(\mathfrak{a}_i, \ell) = 1$ for all $1 \leq i \leq t$. Denote by $\mathfrak{p}_1, \ldots, \mathfrak{p}_s$ the ℓ -adic places of F. Let $\alpha_1, \ldots, \alpha_s$ be elements of $\mathcal{R}_F = \mathbb{Z}_\ell \otimes F^*$ with $\widetilde{v}_{\mathfrak{p}_i}(\alpha_j) = \delta_{i,j}$ $(i, j = 1, \ldots, s)$ and $gcd((\alpha_i), \ell) = 1$ for all $1 \leq i \leq s$. Set $\mathfrak{a}_{t+i} := (\alpha_i)$ for $1 \leq i \leq s$. For an ideal \mathfrak{a} of F denote by $\overline{\mathfrak{a}}$ the projection of \mathfrak{a} from $\bigoplus_{\mathfrak{p}} \mathfrak{p}^{\mathbb{Z}_\ell}$ to $\bigoplus_{\mathfrak{p}^\dagger (\ell)} \mathfrak{p}^{\mathbb{Z}_\ell}$. We distinguish two cases:

- **I.** If $\deg_{\ell}(\mathfrak{a}_i) = 0$ for all $1 \leq i \leq t+s$ then set $\mathfrak{b}_i := \mathfrak{a}_i$. The group $\widetilde{\mathcal{C}\ell}_{F,\ell}$ is generated by $\overline{\mathfrak{b}}_1, \ldots, \overline{\mathfrak{b}}_{t+s}$.
- **II.** Otherwise let $1 \leq j \leq t+s$ such that $v_{\ell}(\deg_{\ell}(\mathfrak{a}_j)) = \min_{1 \leq i \leq t+s} v_{\ell}(\deg_{\ell}(\mathfrak{a}_i))$. If we have $\mathfrak{a} = \overline{\mathfrak{a}} \equiv \overline{\mathfrak{a}}_1^{a_1} \cdots \overline{\mathfrak{a}}_{t+s}^{a_{t+s}} \mod \widetilde{\mathcal{P}r}$ for an ideal $\mathfrak{a} \in \widetilde{\mathcal{I}d}$ then $0 = \deg(\overline{\mathfrak{a}}) = \sum_{i=1}^{t+s} a_i \deg_{\ell}(\overline{\mathfrak{a}}_i)$, thus $-a_j = \sum_{i \neq j}^{t+s} a_i \deg_{\ell}(\overline{\mathfrak{a}}_j) / \deg_{\ell}(\overline{\mathfrak{a}}_j)$. Set $\mathfrak{b}_i := \mathfrak{a}_i/\mathfrak{a}_j^{d_i}$ with $d_i \equiv \frac{\deg_{\ell}(\mathfrak{a}_i)}{\deg_{\ell}(\mathfrak{a}_j)} \mod \ell^m$ where $\ell^m > \exp(\widetilde{\mathcal{C}\ell}_{F,\ell})$. The group $\widetilde{\mathcal{C}\ell}_{F,\ell}$ is generated by $\overline{\mathfrak{b}}_1, \ldots, \overline{\mathfrak{b}}_{j+1}, \ldots, \overline{\mathfrak{b}}_{t+s}$.

Obviously the ideals $\overline{\mathfrak{a}}_1, \ldots, \overline{\mathfrak{a}}_t$ are representatives of generators of the group $\mathcal{C}\ell' := \mathcal{C}\ell_F / \langle \mathfrak{p}_1, \ldots, \mathfrak{p}_s \rangle$. Let $(a_{i,j})_{i,j}$ be the corresponding relation matrix. The relations between the generators $\overline{\mathfrak{a}}_1, \ldots, \overline{\mathfrak{a}}_t$ of $\mathcal{C}\ell'$ are of the form $\prod_{i=1}^t \overline{\mathfrak{a}}_i^{a_i} = \overline{(\alpha)}$ with $\alpha \in \mathcal{R}_F$. There exist integers c_1, \ldots, c_s such that $\overline{(\alpha)} \equiv \prod_{i=1}^s \overline{(\alpha_i)}^{c_i} \mod \widetilde{\mathcal{P}r}$. This yields the relation $\prod_{i=1}^t \overline{\mathfrak{a}}_i^{a_i} \equiv \prod_{i=1}^s \overline{(\alpha_i)}^{c_i} \mod \widetilde{\mathcal{P}r}$. We can derive all relations involving the generators $\overline{\mathfrak{a}}_i + \widetilde{\mathcal{P}r}$ from their relations as generators of the group $\mathcal{C}\ell'$ in this way.

The other relations between the generators of $C\ell$ are obtained as follows: A relation between the generators $\overline{\alpha}_i$ is of the form $\prod_{i=1}^s (\alpha_i)^{v_i} \equiv (1) \mod \mathcal{P}r$ or equivalently $\prod_{i=1}^s (\alpha_i)^{v_i} \cdot \prod_{i=1}^s \mathfrak{p}_i^{w_i} = (\alpha)$ for some $\alpha \in \mathcal{R}_F$. The last equality is fulfilled if and only if $\prod_{i=1}^s \mathfrak{p}_i^{w_i}$ is principal, *i.e.*, if $\prod_{i=1}^s \mathfrak{p}_i^{w_i}$ is an (ℓ) -unit. Let $\gamma_1, \ldots, \gamma_r$ be a basis of the (ℓ) -units of \mathcal{R}_F . Set $v_{i,j} := \tilde{v}_{\mathfrak{p}_j}(\gamma_i)$ $(1 \leq i \leq r, 2 \leq j \leq s)$. We obtain the relation matrix

$$M := \begin{pmatrix} b_{1,1} \dots b_{1,t} - c_{1,2} \dots - c_{1,s} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ b_{t,1} \dots b_{t,t} - c_{t,2} \dots - c_{t,s} \\ 0 & \dots & 0 & v_{1,2} & \dots & v_{1,s} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & v_{r,2} & \dots & v_{r,s} \end{pmatrix}$$

For the two cases we obtain:

- **I.** $((\overline{\mathfrak{b}}_1,\ldots,\overline{\mathfrak{b}}_{t+s}),M)$ are generators and relations of $\widetilde{\mathcal{C}\ell}$.
- II. Let j be chosen as above. Denote by N the matrix obtained by removing the *j*-th column from *M*. Then $((\overline{\mathfrak{b}}_1, \ldots, \overline{\mathfrak{b}}_{j-1}, \overline{\mathfrak{b}}_{j+1}, \ldots, \overline{\mathfrak{b}}_{t+s}), N)$ are generators and relations of $\mathcal{C}\ell$.

This gives the following algorithm:

Algorithm 1 (Logarithmic Classgroup)

Input: a number field F and a prime number ℓ

Output: generators g and and a relation matrix H for $\mathcal{C}\ell_{F,\ell}$

- Determine a bound ℓ^m for the exponent of $\widetilde{\mathcal{C}}_{\ell_{F,\ell}}$ and use it as the precision for the rest of the algorithm.
- Compute generators $\mathfrak{a}_1, \ldots, \mathfrak{a}_t$ of $\mathcal{C}\ell' = \mathcal{C}\ell_F / \langle \mathfrak{p}_1, \ldots, \mathfrak{p}_s \rangle$, where $\mathfrak{p}_1, \ldots, \mathfrak{p}_s$ are the ideals of F over ℓ .
- Determine $\mathfrak{a}_{t+1} = (\alpha_1), \ldots, \mathfrak{a}_{t+s} = (\alpha_s)$ with $\widetilde{v}_{\mathfrak{p}_i}(\alpha_j) = \delta_{i,j}$. Compute generators $g := (\overline{\mathfrak{b}}_1, \ldots, \overline{\mathfrak{b}}_{t+s})^T$ with $\deg(\mathfrak{b}_i) = 0$ from $\mathfrak{a}_1, \ldots, \mathfrak{a}_{t+s}$ $(i=1,\ldots,t+s).$
- Compute a relation matrix M between the generators g.
- In case II. remove the *j*-th column from M and the *j*-th generator from g.
- Compute the ℓ -adic Hermite normal form H of M.
- Return (g, H).

The Smith normal form of H and the respective transformations of the generators yield a basis representation of $\mathcal{C}\ell_{F,\ell}$.

The Discrete Logarithm in $\widetilde{\mathcal{C}\ell}_{F,\ell}$ $\mathbf{2.2}$

Let $\mathfrak{a} \in \widetilde{\mathcal{I}d}$. Let $g = (\overline{\mathfrak{b}}_1, \dots, \overline{\mathfrak{b}}_r)^T$ be a vector of generators of $\widetilde{\mathcal{C}\ell}$. The discrete logarithm algorithm returns a vector $c = (c_1, \ldots, c_r)$ such that

$$c^T g = \overline{\mathfrak{b}}_1^{c_1} \dots \overline{\mathfrak{b}}_r^{c_r} \equiv \mathfrak{a} \mod \widetilde{\mathcal{P}r}$$

We use the notation from above and proceed as follows:

Let $\mathfrak{a} \in \mathcal{I}d$. There exist $\gamma \in \mathcal{R}_F$ and $a_1, \ldots, a_t \in \mathbb{Z}_\ell$ such that $\mathfrak{a} = \prod_{i=1}^t \mathfrak{a}_i^{a_i}$. (γ) . Set $g_i := \widetilde{v}_{\mathfrak{p}_i}(\gamma)$ for $1 \leq i \leq s$. Now

$$\mathfrak{a} = \prod_{i=1}^{s} \mathfrak{a}_{i}^{a_{i}} \cdot \left((\gamma) \cdot \prod_{j=1}^{s} (\alpha_{i})^{-g_{i}} \right) \cdot \left(\prod_{j=1}^{s} (\alpha_{i})^{g_{i}} \right).$$

By the definition of $\mathcal{I}d$ we have

$$\mathfrak{a} = \overline{\mathfrak{a}} = \prod_{i=1}^{t} \overline{\mathfrak{a}}_{i}^{a_{i}} \cdot \left(\overline{(\gamma) \cdot \prod_{j=1}^{s} (\alpha_{j})^{-g_{j}}} \right) \cdot \left(\prod_{j=1}^{s} \overline{(\alpha_{j})^{g_{j}}} \right)$$

As $\widetilde{v}_{\mathfrak{p}_i}((\gamma) \prod_{j=1}^s (\alpha_j)^{-g_j}) = 0$ for $i = 1, \ldots, s$ we obtain

$$\mathfrak{a} \equiv \prod_{i=1}^{t} \mathfrak{a}_{i}^{a_{i}} \cdot \left(\prod_{j=1}^{s} \overline{(\alpha_{j})}^{g_{j}}\right) \mod \widetilde{\mathcal{P}r}$$

For the two cases we obtain:

- **I.** $(a_1, \ldots, a_t, g_1, \ldots, g_s)$ is a representation of \mathfrak{a} in $\widetilde{\mathcal{C}\ell}_{F,\ell}$.
- **II.** Let $(c_1, \ldots, c_{t+s}) = (a_1, \ldots, a_t, g_1, \ldots, g_s)$ then $(c_1, \ldots, c_{j-1}, c_{j+1}, \ldots, c_{t+s})$ is a representation of \mathfrak{a} in $\mathcal{C}\ell_{F,\ell}$.

3 The Wild Kernel

Let F be a number field. J. Milnor [Mi] introduced the K-groups

$$K_n(F) := (F^* \otimes_{\mathbb{Z}} \cdots \otimes_{\mathbb{Z}} F^*) / I_n$$

where I_n is the subgroup of $F^* \otimes_{\mathbb{Z}} \cdots \otimes_{\mathbb{Z}} F^*$ generated by the element $x_1 \otimes \cdots \otimes x_n$ such that $x_i + x_j = 1$ for some $i \neq j$. It is convenient to set $K_0(F) := \mathbb{Z}$ and $K_1(F) := F^*$. For $n \geq 3$ H. Bass and J. Tate [BT] proved that $K_n(F) \cong (\mathbb{Z}/2\mathbb{Z})^r$, where r is the number of real embeddings of F. Unfortunately the study of

$$K_{2}(F) = F^{*} \otimes_{\mathbb{Z}} F^{*} / \langle x \otimes_{\mathbb{Z}} (1-x) \mid x \in F \setminus \{0,1\} \rangle$$

is much more difficult [T1,T2]. An important tool for working with $K_2(F)$ is the canonical map

$$\{\cdot, \cdot\}: F^* \times F^* \to K_2(F)$$

which is called Steinberg's symbol. We will make use of it in section 4.

In order to understand the structure of $K_2(F)$ one constructs a morphism from $K_2(F)$ to a known abelian group whose kernel is finite. This reduces the problem of studying $K_2(F)$ to studying a finite group. We construct such a morphism. Let \mathfrak{p} be a non-complex place of F. Denote by $\mu_{\mathfrak{p}}$ the torsion subgroup of $F_{\mathfrak{p}}^*$. We define

$$h_{\mathfrak{p}}: F_{\mathfrak{p}}^* \times F_{\mathfrak{p}}^* \to \mu_{\mathfrak{p}}, \, (x, y) \mapsto \sqrt[m_{\mathfrak{p}}]{x}^{\omega_{\mathfrak{p}}(y) - 1}$$

where $m_{\mathfrak{p}} = |\mu_{\mathfrak{p}}|$ and where $\omega_{\mathfrak{p}}$ is the Artin map. It follows from the multiplicativity of the norm residue symbol and Kummer theory [Gr, pp. 195-197] that the map $h_{\mathfrak{p}}$ is a \mathbb{Z} -linear map which is trivial for elements of the form (x, 1-x)where $x \in F \setminus \{0, 1\}$, *i.e.*, $h_{\mathfrak{p}}$ is a symbol. $h_{\mathfrak{p}}$ gives us a map from $K_2(F)$ to $\mu_{\mathfrak{p}}$, which we also denote by $h_{\mathfrak{p}}$. The wild kernel of K_2 is

$$WK_2(F) = \{ \mathcal{X} \in K_2(F) \mid h_{\mathfrak{p}}(\mathcal{X}) = 1 \text{ for all non-complex places } \mathfrak{p} \text{ of } F \}$$

Garlands theorem [Ga] states that $WK_2(F)$ is finite. There exist idelic [Ko] and cohomologic methods for studying the wild kernel. We chose to use logarithmic methods as it allows for the use of an algorithmic approach.

The following theorem by Jaulent [J2] establishes the relationship between the wild kernel and the logarithmic ℓ -class groups $\widetilde{\mathcal{C}\ell}_{F,\ell}$ for the case where Fcontains a $2\ell^q$ -th roots of unity $\zeta_{2\ell^q}$.

Theorem 2 Assume that $\zeta_{2\ell^q} \in F^*$. Let $q \in \mathbb{N}$, $q \ge 1$. For every divisor $\mathfrak{a} = \sum_{\mathfrak{p}} a_{\mathfrak{p}}\mathfrak{p}$ of degree 0 there exists $\mathcal{X} \in K_2(F)$ such that $h_{\mathfrak{p}}(\mathcal{X}) = \zeta_{\ell^q}^{a_{\mathfrak{p}}}$. If $\zeta_{2\ell^q} \in F^*$ then the map

$$\phi: \mu_{\ell^q} \otimes_{\mathbb{Z}} \mathcal{C}\ell_{F,\ell} \to WK_2(F)/WK_2(F)^{\ell'}$$

defined by

$$\zeta_{\ell^q}\otimes\mathfrak{a}\mapsto\mathcal{X}^{\ell^q}$$

is an isomorphism.

Moore's exact sequence in [Mo] assures that such an \mathcal{X} exists.

Corollary 3 If F contains the 2ℓ -th roots of unity, then

$$\operatorname{rank}_{\ell} WK_2(F) = \operatorname{rank}_{\ell} \mathcal{C}\ell_{F,\ell}$$

The algorithm in $[DJ^+]$ computes the structure of $\widetilde{\mathcal{C}\ell}_F$, and therefore the ℓ -rank of $\widetilde{\mathcal{C}\ell}_F$. Thus by the theorem above, the ℓ -rank of the wild kernel is known if F contains the $2\ell^q$ -th roots of unity.

3.1 F does not contain the 2ℓ -th roots of unity

If $\ell = 2$ and $i \notin F$ the group of positive divisor classes can be used for the description of the 2-rank wild kernel [JS2]. We deal with the remaining case and therefore assume in the following that ℓ is odd.

Let ζ_{ℓ} be a primitive ℓ -th root of unity. Let F' be the Galois extension $F(\zeta_{\ell})$. Let d = |Gal(F'/F)|. We have $d \mid (\ell - 1)$ and therefore $gcd(\ell, d) = 1$. In other words $d \in \mathbb{Z}_{\ell}^*$.

There is an idempotent $e_{\infty} \in \mathbb{Z}_{\ell}[\operatorname{Gal}(F'/F)]$ with $e_{\infty} = \frac{1}{d} \sum_{\sigma \in \operatorname{Gal}(F'/F)} k_{\sigma} \sigma$ where $k_{\sigma} \in \mathbb{Z}_{\ell}$ such that $\zeta^{\sigma} = \zeta^{k_{\sigma}}$ for all $\sigma \in \operatorname{Gal}(F'/F)$. We construct such an element e_{∞} in the next section.

Proposition 4 ([JS1]) If ℓ is odd and F does not contain the 2ℓ -th roots of unity then

$$\operatorname{rank}_{\ell} WK_2(F) = \operatorname{rank}_{\ell} \widetilde{\mathcal{C}\ell}_{F(\zeta_{\ell}),\ell}^{\epsilon_{\infty}}$$

For a better understanding we give a more detailed proof than in [JS1].

Proof. Let $F' := F(\zeta_{\ell})$. Set $\Delta := \operatorname{Gal}(F'/F)$. Because F' contains the 2ℓ -th roots of unity the isomorphism

$$\mu_{\ell} \otimes_{\mathbb{Z}} \widetilde{\mathcal{C}\ell}_{F'} \cong WK_2(F')/WK_2(F')^{\ell}$$

holds (Theorem 2). As Δ acts on $K_2(F')$ such that $\{x, y\}^{\sigma} = \{x^{\sigma}, y^{\sigma}\}$ for all $\sigma \in \Delta$ and all $(x, y) \in (F'^*)^2$ it follows that

$$\left(\mu_{\ell} \otimes_{\mathbb{Z}} \widetilde{\mathcal{C}\ell}_{F'}\right)^{e_1} \cong \left(WK_2(F')/WK_2(F')^{\ell}\right)^{e_1}$$

for $e_1 = \frac{1}{d} \sum_{\sigma \in \Delta} \sigma$. As ℓ does not divide d the idempotent e_1 induces a surjective morphism $\frac{1}{d}$ Tr where Tr is called transfer from the ℓ -part of $K_2(F')$ to the ℓ -part of $K_2(F)$. Therefore $WK_2(F)/WK_2(F)^{\ell}$ is the image of $WK_2(F')/WK_2(F')^{\ell}$ under the restriction of the transfer map Tr. Hence

$$(\mu_{\ell} \otimes_{\mathbb{Z}} \widetilde{\mathcal{C}\ell}_{F'})^{e_1} \cong WK_2(F)/WK_2(F)^{\ell}.$$

For $\mathfrak{a} \in \mathcal{D}\ell_{F'}$ we have

$$(\zeta \otimes \mathfrak{a})^{d \cdot e_1} = \prod_{\sigma \in \Delta} (\zeta \otimes \mathfrak{a})^{\sigma} = \prod_{\sigma \in \Delta} \zeta^{\sigma} \otimes \mathfrak{a}^{\sigma} = \prod_{\sigma \in \Delta} \zeta^{k_{\sigma}} \otimes \mathfrak{a}^{\sigma} = \prod_{\sigma \in \Delta} \zeta \otimes \mathfrak{a}^{k_{\sigma}\sigma}$$

and

$$(\zeta \otimes a)^{e_1} = \left(\zeta \otimes \prod_{\sigma \in \Delta} \mathfrak{a}^{k_\sigma \sigma}\right)^{d^{-1}} = \zeta \otimes a^{e_\infty}$$

Therefore

$$\left(\mu_{\ell}\otimes_{\mathbb{Z}}\widetilde{\mathcal{C}\ell}_{F'}\right)^{e_1}=\mu_{\ell}\otimes\widetilde{\mathcal{C}\ell}_{F'}^{e_{\infty}}.$$

Example 5 ([JS1]) If $\ell = 3$ and $F = \mathbb{Q}(\sqrt{d})$ with $d \in \mathbb{Z}$ squarefree then $F' = F(\sqrt{-3})$ with cyclic Galois group $\operatorname{Gal}(F'/F) = \langle \tau \rangle$ and $\zeta_3 = \frac{-1+\sqrt{-3}}{2} \in F'$. Because $\zeta_3^{-1} = \zeta_3^{-1}$ we set $e_{\infty} = 1/2(1-\tau)$. We have

$$\operatorname{rank}_{3} WK_{2}(F) = \operatorname{rank}_{3} \widetilde{\mathcal{C}\ell}_{F'}^{e_{\infty}}$$

Because $e_{\infty} = 1/2(1-\tau) = 1/2(1+\sigma)$ where $\langle \sigma \rangle = \text{Gal}(F'/F_*)$ with $F_* = \mathbb{Q}(\sqrt{-3d})$ we obtain

$$\operatorname{rank}_{3} WK_{2}(F) = \operatorname{rank}_{3} \widetilde{\mathcal{C}\ell}_{F'}^{1+\sigma} = \operatorname{rank}_{3} \widetilde{\mathcal{C}\ell}_{F_{*}}$$

and

$$\operatorname{rank}_{3} WK_{2}(\mathbb{Q}(\sqrt{d})) = \operatorname{rank}_{3} \widetilde{\mathcal{C}\ell}_{\mathbb{Q}(\sqrt{-3d})}.$$

This is particularly interesting as we do not need any computations in the extension $F(\zeta_3)$.

3.2 Computing e_{∞}

Let $d := |\operatorname{Gal}(F'/F)|$ and let σ be a generator of $\operatorname{Gal}(F'/F)$. We are looking for an element $e \in \mathbb{Z}_{\ell}[\operatorname{Gal}(F'/F)]$ with $e = e^2$. The element e is of the form $e = \frac{1}{d} \sum_{i=0}^{d-1} k_i \sigma^i$ with $k_i \in \mathbb{Z}_{\ell}$ $(0 \le i < d)$. Hence the condition $e = e^2$ becomes

$$\left(\sum_{u=0}^{d-1} k_u \sigma^u\right) \left(\sum_{v=0}^{d-1} k_v \sigma^v\right) = d \sum_{i=0}^{d-1} k_i \sigma^i.$$

Let ℓ^m be the exponent of $\widetilde{\mathcal{C}}\ell_{F,\ell}$. It is obvious that it suffices to compute e up to a precision of m ℓ -adic digits. Set

$$S_i := \{ (u, v) \in \mathbb{Z}^2 \mid u, v \in \{0, \dots, d-1\}, u + v \equiv i \bmod d \}.$$

For $0 \leq i \leq d-1$ we solve the congruences

$$\sum_{(u,v)\in S_i} k_u \cdot k_v \equiv dk_i \bmod \ell^m.$$

We write k_i as $\sum_{j=0}^{m-1} x_{i,j} \ell^j$ with unknown $x_{i,j} \in \{0, \ldots, \ell-1\}$ $(0 \le i < d, 0 \le j < m)$. Thus our congruences become

$$\sum_{(u,v)\in S_i} \left(\sum_{j=0}^{m-1} x_{u,j}\ell^j\right) \left(\sum_{j=0}^{m-1} x_{v,j}\ell^j\right) \equiv d\left(\sum_{j=0}^{m-1} x_{i,j}\ell^j\right) \mod \ell^m.$$
(1)

We start by solving them modulo ℓ :

$$\sum_{(u,v)\in S_i} x_{u,0} x_{v,0} \equiv dx_{i,0}$$

Let $\alpha \in \mathbb{F}_{\ell}$ be a generator of the cyclic group \mathbb{F}_{ℓ}^* . Set $\delta = \frac{\ell-1}{d}$ then α^{δ} has order d in \mathbb{F}_{ℓ}^* . Let a be a representative of α^{δ} in \mathbb{Z}_{ℓ} . The elements $a_{0,0} = 1$, $a_{1,0} = a$, $a_{2,0} = a^2, \ldots, a_{d-1,0} = a^{d-1}$ are solutions for $x_{0,0}, \ldots, x_{d-1,0}$. Assume that we have found $a_{i,j} \in \{1 \ldots, \ell-1\}$ $(0 \le i < d, 0 \le j < w < m)$

such that

$$A_{i,w} := -\sum_{(u,v)\in S_i} \left(\sum_{j=0}^{w-1} a_{u,j}\ell^j\right) \left(\sum_{j=0}^{w-1} a_{v,j}\ell^j\right) + d\left(\sum_{j=0}^{w-1} a_{i,j}\ell^j\right) \equiv 0 \mod \ell^w.$$

With (1) we obtain

$$\sum_{(u,v)\in S_i} x_{u,w}\ell^w a_{v,0} + x_{v,w}\ell^w a_{u,0} \equiv dx_{i,w}\ell^w + A_{i,w} \bmod \ell^{w+1}$$

and as $A_{i,w} \equiv 0 \mod \ell^w$ this becomes

$$\sum_{(u,v)\in S_i} x_{u,w}a_{v,0} + x_{v,w} \ a_{u,0} - dx_{i,w} \equiv \frac{A_{i,w}}{\ell^w} \mod \ell$$

$$\tag{2}$$

for $i = 1, \ldots, d-1$ which is a system of d linear equations in d variables over \mathbb{F}_{ℓ} . Therefore we obtain a solution to (1) by first computing $a_{0,0}, \ldots, a_{d-1,0}$ as described above and then solving systems of linear equations (2) inductively for w = 1, ..., m - 1 to obtain values $a_{0,w}, ..., a_{d-1,w}$ for $x_{0,w}, ..., x_{d-1,w}$.

3.3Computing the ℓ -Rank of the Wild Kernel

By proposition 4 the ℓ -rank of the wild kernel of F equals the ℓ -rank of $\widetilde{\mathcal{C}\ell}_{F(\zeta_{\ell}),\ell}^{e_{\infty}}$. Let $\overline{\mathfrak{b}}_1, \ldots, \overline{\mathfrak{b}}_r$ be a basis of $\widetilde{\mathcal{C}\ell}_{F(\zeta_\ell),\ell}$ and let ℓ^{b_i} be the order of $\overline{\mathfrak{b}}_i$ in $\widetilde{\mathcal{C}\ell}_{F(\zeta_\ell),\ell}$ $(1 \le i \le r), i.e.,$ r

$$\widetilde{\mathcal{C}\ell}_{F(\zeta_{\ell}),\ell} = \bigoplus_{i=1}^{\prime} \mathbb{Z}/\ell^{b_i} \mathbb{Z}[\overline{\mathfrak{b}}_i].$$

The elements $\overline{\mathfrak{b}}_1^{e_{\infty}}, \ldots, \overline{\mathfrak{b}}_r^{e_{\infty}}$ are generators of $\widetilde{\mathcal{C}\ell}_{F(\zeta_\ell),\ell}^{e_{\infty}}$. For $1 \leq i \leq r$ the discrete logarithm in $\widetilde{\mathcal{C}\ell}_{F(\zeta_{\ell}),\ell}$ gives representations $(n_{i,1},\ldots,n_{i,r})$ of the $\overline{\mathfrak{b}}_i^{e_{\infty}}$ with

$$\overline{\mathfrak{b}}_i^{e_{\infty}} \equiv \overline{\mathfrak{b}}_1^{n_{i,1}} \cdots \overline{\mathfrak{b}}_r^{n_{i,r}} \bmod \widetilde{\mathcal{P}r}.$$

Let $A \in \mathbb{Z}_{\ell}^{r \times 2r}$ such that

$$\begin{pmatrix} \ell^{b_1} & 0 & n_{1,1} \dots & n_{r,1} \\ & \ddots & \vdots & \ddots & \vdots \\ 0 & \ell^{b_r} & n_{1,r} \dots & n_{r,r} \end{pmatrix} A = 0.$$

We write $A = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$ where $A_1, A_2 \in \mathbb{Z}_{\ell}^{r \times r}$. A_2 is a relation matrix of the subgroup $\widetilde{\mathcal{C}\ell}_{F(\zeta_{\ell}),\ell}^{e_{\infty}}$ generated by $\overline{\mathfrak{b}}_1, \ldots, \overline{\mathfrak{b}}_r$ which are represented by $(n_{i,1}, \ldots, n_{i,r})$ $(1 \leq i \leq r)$. Denote by $(h_{i,j})_{i,j}$ the ℓ -adic Hermite normal form of A_2 . Then

$$\operatorname{rank}_{\ell} WK_2(F) = \operatorname{rank}_{\ell} \widetilde{\mathcal{C}\ell}_{F(\zeta_{\ell}),\ell}^{e_{\infty}} = \#\{h_{i,i} \mid 1 \le i \le r, \ h_{i,i} \ne 1\}.$$

4 A Complete Description of the ℓ-part of the Wild Kernel

Assume that $\widetilde{\mathcal{C}\ell}_{F,\ell}$ is not trivial, then

$$\widetilde{\mathcal{C}\ell}_{F,\ell} = \bigoplus_{i=1}^r \mathbb{Z}/\ell^{n_i}\mathbb{Z}[\mathfrak{a}_i]$$

Therefore there exist a family $(\alpha_i) \subset \mathcal{R}_F = \mathbb{Z}_\ell \otimes_{\mathbb{Z}} F^*$ such that $\ell^{n_i} \mathfrak{a}_i = \widetilde{\operatorname{div}}(\alpha_i)$ for $1 \leq i \leq r$. Assume that $\zeta_{\ell^{m+1}} \in F$ where $\ell^m = \exp \widetilde{\mathcal{C}\ell}_{F,\ell}$. Then the ℓ -part of the wild kernel is [So]

$$\bigoplus_{i=1}^r \mathbb{Z}/\ell^{n_i}\mathbb{Z}\{\zeta_{\ell^{n_i}},\alpha_i\}.$$

Let $\alpha \in \mathcal{R}_F$. We denote by $\overline{\alpha}$ the approximation of α to a precision of m ℓ -adic digits. As Steinberg's symbol is \mathbb{Z}_{ℓ} -bilinear we have $\{\zeta_{\ell^{n_i}}, \alpha\} = \{\zeta_{\ell^{n_i}}, \overline{\alpha}\}$ for all $\alpha \in \mathcal{R}_F$. Therefore the ℓ -part of the wild kernel is

$$\bigoplus_{i=1}^r \mathbb{Z}/\ell^{n_i} \mathbb{Z}\{\zeta_{\ell^{n_i}}, \overline{\alpha}_i\}.$$

5 Examples

All algorithms presented here have been implemented in the computer algebra system Magma [C⁺]. The groups are given as lists of the orders of their cyclic factors. By i we denote a root of $x^2 + 1$, by ζ_m we denote a primitive *m*-th root of unity.

Belabas and Gangl [BG] have developed an algorithm for the computation of the tame kernel $K_2 \mathcal{O}_F$ [BG]. The following table contains the structure of $K_2 \mathcal{O}_F$ as computed by Belabas and Gangl and the ℓ -rank of the wild kernel $WK_2(F)$ calculated with our methods. The starred entry is a conjectural result.

F	$K_2 \mathcal{O}_F$	ℓ	$\widetilde{\mathcal{C}\ell}_{F(\zeta_\ell),\ell}$	$\widetilde{\mathcal{C}\ell}^{e_{\infty}}_{F(\zeta_{\ell}),\ell}$	$\operatorname{rank}_{\ell}(WK_2)$
$\mathbb{Q}(\sqrt{-331})$	[3]	3	[3,3]	[3]	1
$\mathbb{Q}(\sqrt{-367})$	[3]	3	[3,9]	[3]	1
$\mathbb{Q}(\sqrt{-472})$	[5]	5	[5,5]	[5]	1
$\mathbb{Q}(\sqrt{-571})$	[5]	5	[5,5]	[5]	1
$\mathbb{Q}(\sqrt{-696})$	[42]	3	[3]	[1]	0
		7	[7,7]	[7]	1
$\mathbb{Q}(\sqrt{-759})$	$[2, 18]^*$	3	[3,3]	[3]	1

The next table contains more fields together with the main data needed for the computation of the ℓ -rank of WK_2 . χ_{α} denotes the minimal polynomial of α over \mathbb{Q} .

F	ℓ	$\left \widetilde{\mathcal{C}\ell}_{F(\zeta_{\ell}),\ell} \right $	$\widetilde{\mathcal{C}\ell}^{e_{\infty}}_{F(\zeta_{\ell}),\ell}$	$\operatorname{rank}_{\ell}(WK_2)$
$\mathbb{Q}(\sqrt{-7307})$	5	[5,25]	[1]	0
$\mathbb{Q}(\sqrt{-356467})$	3	[3,3,27]	[3]	1
$\mathbb{Q}(\alpha), \chi_{\alpha} = x^3 + x^2 - 9x - 365$	3	[9]	[9]	1
$\mathbb{Q}(\alpha), \chi_{\alpha} = x^3 + x^2 - 133x - 1937$	3	[3,3]	[3]	1
$\mathbb{Q}(\alpha), \chi_{\alpha} = x^3 + x^2 - 65x + 1875$	3	[3,3,3]	[3,3]	2
$\mathbb{Q}(\alpha), \chi_{\alpha} = x^3 + x^2 - 65x + 1875$	3	[3,3,3]	[3,3]	2
$\mathbb{Q}(\alpha), \chi_{\alpha} = x^4 + 9x^2 + 125$	3	[3,3]	[3]	1

Our last table gives examples of the ℓ -part of the wild kernel together with the generators of the cyclic factors. We made extensive use of the discrete logarithm in $\widetilde{\mathcal{C}\ell}_{F,\ell}$ in order to find small generators for it.

	1	
F	$\widetilde{\mathcal{C}\ell}_{F,2}$	2-part of $WK_2(F)$
$\mathbb{Q}(i,\sqrt{85})$	[2,2]	$\left \mathbb{Z}/2\mathbb{Z}\left\{-1, i-2\right\} \oplus \mathbb{Z}/2\mathbb{Z}\left\{-1, \frac{\sqrt{85}+11}{2}\right\}\right.$
$\mathbb{Q}(i,\sqrt{357})$	[2,2,2]	$\left \mathbb{Z}/2\mathbb{Z}\left\{-1,3\right\}\oplus\mathbb{Z}/2\mathbb{Z}\left\{-1,\frac{i\sqrt{357}+21i+2}{2}\right\}\oplus\right.$
		$\mathbb{Z}/2\mathbb{Z}\left\{-1, \frac{(i+4)\sqrt{357}+19i+76}{2}\right\}$
$\mathbb{Q}(i,\sqrt{1173})$	[2,2,2]	$\left \mathbb{Z}/2\mathbb{Z}\left\{-1,3\right\} \oplus \mathbb{Z}/2\mathbb{Z}\left\{-1,\frac{(4i+16)\sqrt{1173}+137i+548}{2}\right\} \oplus \right $
		$\mathbb{Z}/2\mathbb{Z}\left\{-1, \frac{(-927i-3300)\sqrt{1173}-31749i-13022}{2}\right\}$
$\mathbb{Q}(\zeta_8,\sqrt{561})$	[4,4,4]	$\mathbb{Z}/4\mathbb{Z}\left\{i,(2\zeta_8^3+3\zeta_8^2+2\zeta_8)\sqrt{561}-80\zeta_8^3+80\zeta_8+114\right\}\oplus$
		$\left[\mathbb{Z}/4\mathbb{Z}\left\{i,\frac{(15\zeta_8^3+12\zeta_8^2+38\zeta_8+12)\sqrt{561}-93\zeta_8^3+12\zeta_8^2-330\zeta_8-372}{2}\right\}\oplus\right]$
		$\left \mathbb{Z}/4\mathbb{Z} \left\{ i, (-\zeta_8^3 + \zeta_8^2 - \zeta_8)\sqrt{561} + 13\zeta_8^3 - 28\zeta_8^2 + 15\zeta_8 + 2 \right\} \right.$

References

- [BT] H. Bass and J. Tate, The Milnor ring of a global field, in H. Bass (ed.), Algebraic K-theory, Lecture Notes in Math. 342, Springer Verlag Berlin (1973), 349–446.
- [BG] K. Belabas and H. Gangl, Generators and Relations for $K_2\mathcal{O}_F$, preprint.
- [C⁺] J.J. Canon et al., The computer algebra system Magma, University of Sydney (2003), http://magma.maths.usyd.edu.au/magma/.
- [DJ⁺] F. Diaz y Diaz, J.-F. Jaulent, S. Pauli, M.E. Pohst, and F. Soriano, A new Algorithm for the Computation of logarithmic *l*-class groups of number fields, will be submitted soon.
- [DS] F. Diaz y Diaz and F. Soriano, Approche algorithmique du groupe des classes logarithmiques, J. Number Theory 76 (1999), 1–15.
- [FG] L.J. Federer and B.H. Gross, (with an appendix by W. Sinnot) Regulators and Iwasawa modules, Invent. Math. 62 (1981), 443–457.
- [Ga] H. Garland, A finiteness theorem for K₂ of a number field, Ann. of Math. 94 (1971), 534–548.
- [Gr] G. Gras, Class Field Theory, Springer Monographs in Mathematics (2003).
- [J1] J.-F. Jaulent, Introduction au K₂ des corps de nombres, Publ. Math. Fac. Sci. Besançon (Théorie des nombres), Anèes 1984/85–1985/86.
- [J2] J.-F. Jaulent, Sur le noyau sauvage des corps de nombres, Acta Arithmetica 67 (1994), 335–348.
- [J3] J.-F. Jaulent, Classes logarithmiques des corps de nombres, J. Théor. Nombres Bordeaux 6 (1994), 301–325.
- [J4] J.-F. Jaulent, Classes logarithmiques des corps ide nombres totalement réels, Acta Arithmetica 103 (2002), 1–7.
- [JS1] J.-F. Jaulent and F. Soriano-Gafiuk, Sur le noyau sauvage des corps de nombres et le groupe des classes logarithmiques, Math. Z. 238 (2001), 335–354.
- [JS2] J.-F. Jaulent and F. Soriano-Gafiuk, 2-Groupe des classes positives et noyau sauvage de la K_2 -Théorie, to appear in J. Number Theory.
- [Ko] M. Kolster, An idelic Approach to the Wild Kernel, Invent. Math. 103 (1991), 9-24.
- [Mi] J. Milnor, Introduction to Algbraic K-Theory, Ann. of Math. Studies 72, Princeton Univ. Press, Princeton (1971).
- [Mo] C. Moore Group extensions of p-adic and adelic linear groups, Publ. Math. I.H.E.S. 35 (1969), 5–74.
- [So] F. Soriano-Gafiuk, Sur le noyau hilbertien d'un corps de nombres, C. R. Acad. Sci. Paris, t. 330, Série I (2000), 863-866.
- [T1] J. Tate, Symbols in arithmetic, Actes Congrès Int. de Math. 1970, Tome 1, 201– 211.
- [T2] J. Tate, Relations between K₂ and Galois cohomology, Invent. Math. 36 (1976), 257–274.