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Abstract. We present an algorithm for the computation of the discrete
logarithm in logarithmic ¢-Class Groups. This is applied to the calcula-
tion to the ¢-rank of the wild kernel W K5 of a number field F' and in
the determination of generators of the ¢-part of WK, (F).

1 Introduction

A new invariant of number fields, called group of logarithmic classes, was in-
troduced by J.-F. Jaulent in 1994 [J3]. The arithmetic of logarithmic classes is
interesting because of its applicability to K-Theory. Indeed for a given prime
number ¢, the ¢-rank of the logarithmic ¢-class group of a number field F' con-
taining the 2/-th roots of unity equals the ¢-rank of the wild kernel.

In the present paper we give positive answers to the questions:

— If F does not contain the 2¢-th roots of unity, can we determine the ¢-rank
of its wild kernel by the arithmetic of the logarithmic divisor class groups ?
— Is it possible to give a complete logarithmic description of the wild kernel ?

First we recall the most important definitions from the theory of logarithmic ¢-
class groups and the algorithm for their computation; we also give an algorithm
for the computation of discrete logarithms in these groups (section 2). In section
3 we give a short introduction to the wild kernel and derive the algorithms for the
computation of its f-rank in a general setting. Section 4 contains the complete
description of the ¢-part of the wild kernel through the logarithmic ¢-class group.
This is followed by some examples.

In the following, ¢ denotes a fixed prime number and Z, the completion of
7 with respect to the non-archimedian exponential valuation v,. F' denotes a
number field.

2 The Logarithmic ¢-Class Group

For a detailed presentation of logarithmic theory see [J3]. A first algorithm for
the computation of the group of logarithmic classes of a number field F' was
developed by F. Diaz y Diaz and F. Soriano in 1999 [DS]. We use the algorithm
from [DJ*] as it removes the restriction to Galois extensions of Q. This algorithm



uses the ideal theoretic description of the logarithmic /-class groups. Before we
discuss it we need some definitions.

Let p be a prime number and let p be a prime ideal of F' over p. For a €
Qy = p” x F) x (1+2pZ,) denote by (a) the projection of a to (1+ 2pZ,). Let
F, be the completion of F' with respect to p. For o € F'* we define

(@) = Log,(NF, /g, (a))
P E, Q) - deg,p

The logarithmic ramification index €, can be described as follows. The p-part of
the logarithmic ramification index €y, is [gy (F}y) : Zp]. For all primes g with g # p
the ¢ part of €, is the ¢ part of the ramification index e, of p. The logarithmic
inertia degree fp is defined by the relation Epfp = ey fp = deg(F/Q), where f,, is
the classic inertia degree. We use it for the definition of the logarithmic degree
of a place p:

_ Log,p for p # ¢;
deg, p := fydeg,p where deg,p= £ forp=14{z+#£2
4 forp=4~=2.

Furthermore we set

Ty () = _Loge(NFp/Qp ()
R deg,(p)

We define the group of f-ideals

forx € Rp =7y Ry F*.

Zdp, = {a = Hpo‘” | ap = 0 for almost all p},
pil

denote by .
Idpl = {Cl € Idp,d dege DF(CL) = O}

the subgroup of /-ideals of degree 0, and denote by
7,;7"1:,@ = {prvp(“) |aeRp and vy(a) =0 Vp | (}

the subgroup of principal f-ideals having logarithmic valuations 0 at all ¢-adic
places. The group of logarithmic ¢-classes is isomorphic to the quotient of the

latter two: . . .
Cﬁp,g = Ing/PrF,g.

The generalized Gross conjecture (for the field F' and the prime £) asserts
that the logarithmic class group CZ F¢ is finite (cf. [J3]). This conjecture, which is
a consequence of the p-adic Schanuel conjecture, was 0n1/yv proved in the abelian
case and a few others (cf. [FG,J4]). Nevertheless, since Clp g is a Zs-module of
finite type (by the ¢-adic class field theory), the Gross’ conjecture just claims
the existence of an integer m such that ¢™ kills the logarithmic class group. In



[DJ*] we present a method for the computation of an upper bound for m. That
algorithm does not terminate in general if Gross’ conjecture is false. This upper
bound can be used as the £-adic precision in the computation of the logarithmic
class group.

2.1 Generators and Relations of ap,g

Let ay, ..., a; be a basis of the ideal classgroup C4g of F with ged(a;, £) = 1 for all
1 <1 < t. Denote by py,...,ps the f-adic places of F. Let aq, ..., as be elements
of Rp =7, ® F* with vy, (o) =055 (4,7 =1,...,s) and ged((e),¢) =1 for all
1 <i<s. Setag; := (a) for 1 <4 < s. For an ideal a of F denote by @ the
projection of a from EBP p% to @pw) pZ. We distinguish two cases:

I. If deg,(a;) = 0 for all 1 <4 < ¢+ s then set b; := a;. The group EEF’@ is
generated by by, ..., by s.
IT. Otherwiselet 1 < j < t+s such that vy(deg,(a;)) = mini<i<¢1s ve(deg,(a;)).

If we have a = @ = aj' - -+ - a,{"° mod Pr for an ideal a € Zd then 0 =

deg(@) = 3217 a; deg, (a;), thus —a; = Zf;; a; deg,(a;)/ deg,(a;). Set b; :=

ai/a?i with d; = 98(@) 10d ¢ where (™ > exp(Clpy). The group EZF,Z

= deg,(a) MO .

is generated by by,...,b;_1,b;41,..., bsps.
Obviously the ideals @y,...,d; are representatives of generators of the group
Cl' :=Clr/(p1,...,ps). Let (ai’j)ij be the corresponding relation matrix. The
relations between the generators @y, ..., a; of C¢ are of the form H§:1 @ = (a)
with @ € Rp. There exist integers ci,...,¢s such that () = [[;_; (ai)cl mod
Pr. This yields the relation [['_, @ = [[;_, (@)  mod Pr. We can derive all

relations involving the generators a; + Pr from their relations as generators of
the group C¢' in this way.

The other relations between the generators of C/ are obtained as follows: A
relation between the generators @; is of the form []_, (a;)" = (1) mod Pr or
equivalently [T7_, (a;)¥ - TT;_; p;"" = () for some a € Rp. The last equality is
fulfilled if and only if [];_, p;’* is principal, ie., if [[;_, p;"* is an (£)-unit. Let
Y1,---,7 be a basis of the (£)-units of Rp. Set v;j := v, () (1 <1 <72 <
Jj < s). We obtain the relation matrix

b171 bl,t —C1,2 ... —Cl;s

M- bt,l e bt,t —Ct2 ... —Cts
' 0 ... 0 1,2 ... Uls

0 ... 0 w2 ... Urg

For the two cases we obtain:



I. ((by,...,bsys), M) are generators and relations of cl.
II. Let j be chosen as above. Denote by N the matrix obtained by removing the

j-th column from M. Then ((by, ..., bi—1,bj41,... ,bi1s), N) are generators
and relations of C/.

This gives the following algorithm:

Algorithm 1 (Logarithmic Classgroup)
Input:  a number field F' and a prime number ¢ .
Output: generators g and and a relation matrix H for Clp,

— Determine a bound ¢™ for the exponent of C/r, and use it as the precision
for the rest of the algorithm.

— Compute generators ay,...,a; of C¢ = Clp/{p1,...,ps), where p1,...,Pps
are the ideals of F' over /.

— Determine a;41 = (1), ..., 045 = (as) with vy, (a;) = 6, ;.

— Compute generators g := (b1,...,bs1s)7 with deg(b;) = 0 from ay,..., a1
(i=1,...,t+s).

— Compute a relation matrix M between the generators g.

In case II. remove the j-th column from M and the j-th generator from g.

Compute the f-adic Hermite normal form H of M.

— Return (g, H).

The Smith normal form of H and the respective transformations of the gen-
erators yield a basis representation of Clr .

2.2 The Discrete Logarithm in EftzF,e

Let a € Zd. Let g = (b1,...,b,)T be a vector of generators of Cl. The discrete
logarithm algorithm returns a vector ¢ = (¢y, ..., ¢,) such that

Tg="0y" ... =amod Pr.

We use the notation from above and proceed as follows:
Let a € Zd. There exist v € Ry and aq,...,a; € Zy such that a = H§:1 agt -
(7). Set g; ==, (7y) for 1 <i < s. Now

a =TTy af - () Thoa () ™) - (TT5 (@i)®).

By the definition of Zd we have
a=a=Il @ ((0) Tha(e) ™) (= (e))
As vy, ((7) H;:l(aj)_gj) =(0fori=1,...,s we obtain
a; s 7 ~N9i -~
a= H§:1 a;" - (szl (o;)”) mod Pr.

For the two cases we obtain:

I. (a1,...,a¢,91,--.,9s) is a representation of a in Clp .
IL. Let (c1,...,¢4s) = (a1,...,ae,61,---,9s) then (c1,...,¢j-1,Cj41,- -+, Cits)
is a representation of a in Clp .



3 The Wild Kernel

Let F be a number field. J. Milnor [Mi] introduced the K-groups
K, (F) = (F*®g - @z F*) /1,

where [, is the subgroup of F*®y- - -®z F* generated by the element 1 ®- - -Qx,,
such that z; + z; = 1 for some i # j. It is convenient to set Ko(F') := Z and
K, (F) := F*.Forn > 3 H. Bass and J. Tate [BT] proved that K, (F) = (Z/2Z)",
where r is the number of real embeddings of F. Unfortunately the study of

Ky(F) = Fr@y F*/(;c ©z(1—2) |z e F\{0,1})

is much more difficult [T1,T2]. An important tool for working with Ko(F’) is the
canonical map
{}: F*xX F* = Ky(F)
which is called Steinberg’s symbol. We will make use of it in section 4.
In order to understand the structure of K5(F') one constructs a morphism
from K5(F') to a known abelian group whose kernel is finite. This reduces the
problem of studying K»(F') to studying a finite group. We construct such a

morphism. Let p be a non-complex place of F. Denote by 1, the torsion subgroup
of Fif. We define

hy < By x By = iy, (,9) = "V

where my, = |pp| and where w, is the Artin map. It follows from the multiplica-
tivity of the norm residue symbol and Kummer theory [Gr, pp. 195-197] that
the map hy is a Z-linear map which is trivial for elements of the form (z,1 — z)
where z € F'\ {0,1}, i.e., hy is a symbol. h, gives us a map from K> (F) to pp,
which we also denote by hy,. The wild kernel of Ky is

WEKy(F) = {X € Ky(F) | hy(X) =1 for all non-complex places p of F'}

Garlands theorem [Ga] states that W K, (F) is finite. There exist idelic [Ko] and
cohomologic methods for studying the wild kernel. We chose to use logarithmic
methods as it allows for the use of an algorithmic approach.

The following theorem by Jaulent [J2] establishes the relationship between
the wild kernel and the logarithmic f-class groups Clg, for the case where F
contains a 2¢9-th roots of unity (asa.

Theorem 2 Assume that (opa € F*. Let ¢ € N, ¢ > 1. For every divisor a =
>_p app of degree 0 there exists X € Ko(F) such that hy(X) = Cob . If Copa € F*
then the map

¢ ¢ e @7 Clpy — WKy(F) /W Ky(F)"

defined by
Cpa @ a— ng

is an isomorphism.



Moore’s exact sequence in [Mo] assures that such an X exists.

Corollary 3 If F' contains the 2¢-th roots of unity, then
rank, WK, (F) = rank, Eép,g.

The algorithm in [DJ*] computes the structure of Clp, and therefore the f-rank
of Clr. Thus by the theorem above, the /-rank of the wild kernel is known if F’
contains the 2¢9-th roots of unity.

3.1 F does not contain the 2/-th roots of unity

If =2 and ¢ ¢ F the group of positive divisor classes can be used for the
description of the 2-rank wild kernel [JS2]. We deal with the remaining case and
therefore assume in the following that ¢ is odd.

Let ¢{; be a primitive ¢-th root of unity. Let F be the Galois extension F((;).
Let d = |Gal(F'/F)|. We have d | (¢ — 1) and therefore ged(¢,d) = 1. In other
words d € Zj.

There is an idempotent e € Z¢[Gal(F’/F)] with e = %ZJEGPLI(F’/F) koo
where k, € Z; such that (7 = (% for all o € Gal(F’/F). We construct such an
element e, in the next section.

Proposition 4 ([JS1]) If ¢ is odd and F does not contain the 2¢-th roots of
unity then
ranky WK, (F) = rank, CEFTQM'

For a better understanding we give a more detailed proof than in [JS1].

Proof. Let F' := F((;). Set A := Gal(F'/F). Because F’ contains the 2(-th
roots of unity the isomorphism

Lo @7, Clpr = W Ko (F') /W Ko (F')*
holds (Theorem 2). As A acts on Ko(F’) such that {z,y}? = {z7,y7} for all
o€ Aandall (z,y) € (F’*)2 it follows that
(1e ®z,Clpr) ™ 2 (WE(F') /W Ky(F'))

fore; = é Eoe A 0. As £ does not divide d the idempotent e; induces a surjective
morphism % Tr where Tr is called transfer from the ¢-part of Ko(F”) to the ¢-part
of Ky(F). Therefore W Ko(F)/W Ko(F)* is the image of WKy (F')/W Ko(F')*
under the restriction of the transfer map Tr. Hence

(1o @7, Cl )" = WEKy(F) /W Ky (F)~.
For a € Dl we have

(C®a)ter = H(C@a)": HC”@a": HC’“"@C&”: HC@ak""

ogeA og€eA oceA cEA



and

Conrr=(co [Lo)" =couwn

ogEA
Therefore N .
el €oo
(/M ®ZC€F') = @Clp, .

Example 5 ([JS1]) If £ = 3 and F = Q(V/d) with d € Z squarefree then
F' = F(y/—3) with cyclic Galois group Gal(F'/F) = (1) and (3 = _1%‘/?3 € F.
Because (§ = (3" we set eo = 1/2(1 — 7). We have
ranks W K, (F) = ranks EZE/O
Because eo = 1/2(1 — 7) = 1/2(1 4+ o) where (o) = Gal(F'/F,) with F, =
Q(v/—3d) we obtain
ranks W K3 (F) = ranks /C\Z?,_U = ranksg /C\ZF*

and
ranks W Ky (Q(Vd)) = ranks Clyy=3a)-

This is particularly interesting as we do not need any computations in the ex-
tension F'((3).

3.2 Computing e

Let d := |Gal(F’/F)| and let o be a generator of Gal(F’/F). We are looking
for an element e € Z,[Gal(F'/F)] with e = e2. The element e is of the form
e=1 thol kio® with k; € Z, (0 <4 < d). Hence the condition e = ¢ becomes

d—1 d—1 d—1
<Z ku0“> <Z kvav> =d» ko',
u=0 v=0 =0
Let /™ be the exponent of ,C\Zp’g. It is obvious that it suffices to compute e up
to a precision of m f-adic digits. Set
S; = {(u,v) €7 |u,vef0,...,d—1},u+v Eimodd}.
For 0 < i < d— 1 we solve the congruences

> ku-ky = dk; mod £,
(u,v)€S;

We write k; as Z;’:OI z; i with unknown z;; € {0,..., —1} (0 < i < d,
0 < j < m). Thus our congruences become

> (Tnz_: xu,jw) <mz_: xujzi) = d(ni xi,jw) mod ™. (1)
j=0 j=0

(u,w)€S; \j=0



We start by solving them modulo ¢:

E Lyu,0Lv,0 = diEi,O-

(u,v)€S;
Let o € Fy be a generator of the cyclic group F;. Set 6 = 1 then o has order
d in Fj. Let a be a representative of af in Zy. The elements ap0 =1, a10 = a,
a0 = az, ..., Ag—1,0 = a?=1 are solutions for 20,05+ > Td—1,0-

Assume that we have found a;; € {1...,—-1} (0<i<d,0<j<w<m)
such that

w—1 w—1
Ai,w = Z <Z aug > (Z aq),j€j> + d(Z a¢7j€j> = 0 mod /.
(u,v)€S; j=0 j=0

With (1) we obtain

Z Tyl .0 + Tyl ay 0 = da; 0" + Aj . mod ot
(u,v)ES;

and as A; , = 0 mod £* this becomes

Z Loy, w0 + LTyw Au,0 — dxi,w = A’Lzlquw o (2)
(u,v)€S;
fori=1,...,d—1 which is a system of d linear equations in d variables over [F,.
Therefore we obtain a solution to (1) by first computing ag,...,aq—1,0 as
described above and then solving systems of linear equations (2) inductively for
w=1,...,m—1 to obtain values ag ,...,@d—1,w fOr Zo.w,. ., Td—1,w-

3.3 Computing the ¢-Rank of the Wild Kernel

By proposition 4 the /-rank of the wild kernel of F' equals the /-rank of e, F(( )8

Let by,.. b be a basis of C@F(Q) ¢ and let ¢% be the order of b; in CEF(Q) )
(1<i< 7‘)

Clpcye = P2/ 2.

i=1

The elements Eim yens ,Eem are generators of 8@?& ), For 1 < ¢ < r the discrete

T

logarithm in EZF(Q)J gives representations (n;1,...,n; ) of the Efw with

i1

[ N mod Pr.

T

Let A € Z;X2T such that

il 0 N1 --- N

b,
0 O nyp oo Npy



We write A = (il> where Ay, Ay € Zj*". A is a relation matrix of the sub-
2

group EZ;T@),Z generated by by, ...,b, which are represented by (n;1,...,n;,)
(1 <4 <r). Denote by (hi»j)ij the f-adic Hermite normal form of A,. Then

rank, W K, (F) = rank, EZ;TC@M =#{hii|1<i<r hy; #1}.

4 A Complete Description of the £¢-part of the Wild
Kernel

Assume that EéRg is not trivial, then

Clpy = P2/ 2ay).

i=1

Therefore there exist a family («;) C Rp = Z¢ @z F* such that (™a; = &R/(ai)
for 1 <4 <r. Assume that (ym+1 € F' where (™ = expClg. Then the /-part of
the wild kernel is [So]

B z/em z{¢em:, i}
=1

Let a € Rp. We denote by @ the approximation of « to a precision of m f-adic
digits. As Steinberg’s symbol is Zs-bilinear we have {(pn:,a} = {{m:, @} for all
a € Rp. Therefore the ¢-part of the wild kernel is

Bz z{¢en: w0}
=1

5 Examples

All algorithms presented here have been implemented in the computer algebra
system Magma [CT]. The groups are given as lists of the orders of their cyclic
factors. By i we denote a root of 22 4+ 1, by (,, we denote a primitive m-th root
of unity.

Belabas and Gangl [BG] have developed an algorithm for the computation of
the tame kernel KsOp [BG]. The following table contains the structure of KoOp
as computed by Belabas and Gangl and the ¢-rank of the wild kernel W K, (F)
calculated with our methods. The starred entry is a conjectural result.



F KyOp | ¢ CEF (€)Wt CEF )¢ Tanke(WK>)
Q(v/—331)|[3] 3 [3,3] [3] 1
Q(v—367)|[3] 3 [3,9] (3] 1
Q(v—472)|[5] 5 55 [5] 1
Q(v/—571)|[5] 5 [5,5] [5] 1
Q(v-696)|[42] | 3 [3] [1] 0

7 [7,7] [7] 1
Q(V=759)|[2,18]* | 3 [3.3]  [3] 1

The next table contains more fields together with the main data needed for the
computation of the f-rank of W Kj5. x, denotes the minimal polynomial of «
over Q.

F 0] Clrgye Clite, ranke(WKs)
Q(v=T7307) 5(15:25] (1] 0
Q(v/—356467) 313,327 [3] 1
Q(a), Xa =2*+2% —92—-365 |39 [9] 1
Q(a), Xo = 2% + 22 — 133z — 1937| 3| [3,3] 3] 1
Q(a), Xa = a® + 2% — 65z + 1875 |3|[3,3,3]  [3,3] 2
Q(a), Xa = 2° + 22 — 652 + 1875 [3][3,3,3]  [3,3] 2
Q(a), Xa = z* +92% + 125 3 (3,3] (3] 1

Our last table gives examples of the ¢-part of the wild kernel together with the
generators of the cyclic factors. We made extensive use of the discrete logarithm
in Clp, in order to find small generators for it.

F Clp,y | 2-part of WKy (F)
; ; =
Q(i,v5) |[2,2] Z/zz{—1,1—2}@2/2z{—17%}

Q(i, V357) |[222)|2/22.{-1,3} @ 2/22. {1, B2 L g
(i+4)V/357+19i+76
z/2z { -1, YO

2

Q(i, V1173 |[2,2,2]| Z/27.{-1,3} ® Z/2Z {717 (4i+16)\/1173+137i+548}@
7/27 {_1 (—9271'—3300)\/1173—317491'—13022}

2

Q(Gs, V561)| [4,4,4]| Z/AZ {i, (2GF + 3¢5 + 2(s)VB61 — 80CE + 80Cs + 114} &
7.JAZ {Z (15¢3+12¢3+38¢s+12) V61 —93¢3 +12¢2 —330¢s —372 } o
’ 2

ZJAZ i, (—C3 + (& — (3)V/B61 + 13¢5 — 28¢2 + 15¢s + 2}
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