APPROXIMATING AND BOUNDING FRACTIONAL STIELTJES CONSTANTS

RICKY E. FARR, SEBASTIAN PAULI, AND FILIP SAIDAK

ABSTRACT. We discuss evaluating fractional Stieltjes constants $\gamma_{\alpha}(a)$, arising naturally from the Laurent series expansions of the fractional derivatives of the Hurwitz zeta functions $\zeta^{(\alpha)}(s, a)$. We give an upper bound for the absolute value of $C_{\alpha}(a) = \gamma_{\alpha}(a) - \log^{\alpha}(a)/a$ and an asymptotic formula $\tilde{C}_{\alpha}(a)$ for $C_{\alpha}(a)$ that yields a good approximation even for most small values of α . We bound $|\tilde{C}_{\alpha}(a)|$ and based on this conjecture a tighter bound for $|C_{\alpha}(a)|$

1. INTRODUCTION

The Hurwitz zeta function is defined, for $\Re(s) > 1$ and $0 < a \leq 1$, as

$$
\zeta(s,a)=\sum_{n=0}^\infty\frac{1}{(n+a)^s}.
$$

For fixed a, it can be extended to a meromorphic function with a simple pole at $s = 1$ with residue 1 (see [\[4\]](#page-10-0), [\[10\]](#page-11-0)). Moreover, the function has a Laurent series expansion

(1)
$$
\zeta(s,a) = \frac{1}{s-1} + \sum_{n=0}^{\infty} \frac{(-1)^n \gamma_n(a)(s-1)^n}{n!},
$$

about $s = 1$ where $\gamma_n(a)$ are the generalized Stieltjes constants. Kreminski [\[20\]](#page-11-1) has given a generalization of $\gamma_{\alpha}(a)$ to all positive real numbers α , the so-called *fractional Stieltjes constants*, which can be defined as the coefficients of the Laurent expansion of the α -th Grünwald-Letnikov fractional derivative [\[15\]](#page-11-2) of $\zeta(s, a)-1/a^s$ for $s \neq 1$ (see [\[12\]](#page-11-3)):

$$
D_s^{\alpha} [\zeta(s, a) - 1/a^s] = (-1)^{\alpha} \sum_{n=1}^{\infty} \frac{\log^{\alpha} (n+a)}{(n+a)^s} = (-1)^{\alpha} \left(\frac{\Gamma(\alpha+1)}{(s-1)^{\alpha+1}} + \sum_{n=1}^{\infty} \frac{(-1)^n \gamma_{\alpha+n}(a)}{n!} (s-1)^n \right).
$$

In [\[12,](#page-11-3) Corollary 3.2] we have shown that

(2)
$$
\gamma_{\alpha}(1) \to \gamma - 1 = -0.4227843350...
$$
 as $\alpha \to 0^+,$

where $\gamma = \gamma_0 = \gamma_0(1) = 0.5772146649...$ is Euler's constant. Also in [\[12\]](#page-11-3) we have also given a short proof of a conjecture of Kreminski, stated in [\[20,](#page-11-1) Conjecture IIIa]:

Let
$$
0 < \alpha \in \mathbb{R}
$$
 and let $C_{\alpha}(a) := \gamma_{\alpha}(a) - \frac{\log^{\alpha}(a)}{a}$ and $h_a(s) := \zeta(s, a) - \frac{1}{s-1} - \frac{1}{a^s}$, then $C_{\alpha}(a) = (-1)^{-\alpha} D_s^{\alpha}[h_a](1).$

The goal of this paper is to approximate $\gamma_{\alpha}(a)$ by evaluating $C_{\alpha}(a)$, to find an upper bound for $|C_{\alpha}(a)|$, and give an asymptotic formula for $C_{\alpha}(a)$..

Research on related questions dates back to Stieltjes [\[26\]](#page-11-4), Jensen [\[17\]](#page-11-5), and Ramanujan [\[22\]](#page-11-6), and more recently it has received a lot of renewed attention in the works of Adell [\[2\]](#page-10-1), Adell & Lekuona [\[3\]](#page-10-2), Blagouchine [\[6\]](#page-11-7), Coffey [\[7\]](#page-11-8), Coffey & Knessl [\[8\]](#page-11-9), and others. In our recent paper [\[13\]](#page-11-10), we have been able to apply some of the properties of the fractional Stieltjes constants to prove that $D_s^{\alpha} [\zeta(s)] \neq 0$ for $|s - 1| < 1$.

Here (in Section [2](#page-1-0) below) we start with a method for evaluating $C_{\alpha}(a)$ using the Euler-Maclaurin summation technique; it was chosen because it is closely related to our bound for $C_{\alpha}(a)$ for $\alpha > 1$ (derived in Section [3\)](#page-3-0), which is a generalization of [\[27,](#page-11-11) Theorem 3] to the fractional Stieltjes constants. In Section [4](#page-6-0) we then show how this bound can be minimized. Numerical experiments suggest that it improves upon the bounds by Berndt [\[5\]](#page-11-12), Williams and Zhang [\[27\]](#page-11-11) and Matsuoka [\[21\]](#page-11-13). An asymptotic expression for $C_{\alpha}(a)$

²⁰²⁰ Mathematics Subject Classification. 11M35.

Key words and phrases. Hurwitz Zeta Function, Stieltjes Constants, Fractional Derivatives, Bounds.

FIGURE 1. Fractional Stieltjes constants $\gamma_{\alpha}(a)$ for $a \in \{1, 2/3, 1/3, 1/10\}$ plotted for $\alpha \in$ [0, 5] with integral Stieltjes constants (•). The first plot shows the discontinuity of $\gamma_\alpha(1)$ at $\alpha = 0$ (compare [\[12,](#page-11-3) Corollary 3.2]). The values for α are 1/100 apart.

based on the work of Coffey and Knessl [\[8\]](#page-11-9) for Stieltjes constants is proved in Section [5](#page-7-0) and is basis for a conjectured bound in Section [6.](#page-9-0)

2. Evaluating Fractional Stieltjes Constants

Johansson [\[18\]](#page-11-14) evaluates generalized Stieltjes constants by computing the series expansion of $\zeta(s, a) - \frac{1}{s-1}$ at $s = 1$ obtained with Euler-Maclaurin summation. To evaluate $\gamma_{\alpha}(a)$ we approximate $C_{\alpha}(a)$ with Euler-Maclaurin summation and then use that $\gamma_{\alpha}(a) = C_{\alpha}(a) + \frac{\log^{\alpha}(a)}{a}$. A different approach, namely Newton-Cotes approximation, was chosen by Kreminski in [\[20\]](#page-11-1).

Let $f_{\alpha}(x) = \frac{\log^{\alpha}(x+a)}{x+a}$. By [\[12,](#page-11-3) Theorem 3.1] for real $\alpha > 0$, $0 < a \le 1$ and $m \in \mathbb{N}$, we have

(3)
$$
\gamma_{\alpha}(a) = \sum_{r=0}^{m} \frac{\log^{\alpha}(r+a)}{r+a} - \frac{\log^{\alpha+1}(m+a)}{\alpha+1} - \frac{\log^{\alpha}(m+a)}{2(m+a)} + \int_{m}^{\infty} P_1(x) f'_{\alpha}(x) dx,
$$

where $P_1(x) = x - \lfloor x \rfloor - \frac{1}{2}$. All but the first term of the sum are real, that is,

(4)
$$
C_{\alpha}(a) = \sum_{r=1}^{m} \frac{\log^{\alpha}(r+a)}{r+a} - \frac{\log^{\alpha+1}(m+a)}{\alpha+1} - \frac{\log^{\alpha}(m+a)}{2(m+a)} + \int_{m}^{\infty} P_1(x) f'_{\alpha}(x) dx \in \mathbb{R}.
$$

FIGURE 2. Absolute values of fractional Stieltjes constants $\gamma_{\alpha}(a)$ and $C_{\alpha}(a)$ for $a \in$ $\{1, 2/3, 1/3, 1/10\}$ plotted for $\alpha \in [0, 100]$. The values for α are 1/100 apart.

and $\Im(\gamma_\alpha(a)) = \frac{1}{a} \Im(\log^\alpha(a))$. To evaluate $C_\alpha(a)$ we integrate by parts v times and obtain

(5)
$$
\int_{m}^{\infty} P_1(x) f'_{\alpha}(x) dx = \sum_{j=1}^{v} \left[P_j(x) f_{\alpha}^{(j-1)}(x) \right]_{x=m}^{\infty} + (-1)^{v-1} \int_{m}^{\infty} P_v(x) f_{\alpha}^{(v)}(x) dx,
$$

where $P_k(x) = \frac{B_k(x-|x|)}{k!}$ is the k^{th} periodic Bernoulli polynomial and B_j is the j^{th} Bernoulli number (with $B_1 = \frac{1}{2}$ and $B_j = 0$, for all odd $j > 1$).

We will soon see that letting $m > 0$ forces the integral on the right hand side of [\(5\)](#page-2-0) to converge for any $v \in \mathbb{N}$. Specializing [\[16,](#page-11-15) Theorem 1] we obtain:

(6)
$$
f_{\alpha}^{(n)}(x) = \sum_{i=0}^{n} s(n+1, i+1)(\alpha)_{i} \frac{\log^{\alpha-i}(x+a)}{(x+a)^{n+1}},
$$

where $s(i, j)$ denotes the signed Stirling numbers of the first kind and $(\alpha)_i = \frac{\Gamma(\alpha+1)}{\Gamma(\alpha-i+1)}$ the falling factorial of α . It follows that $f_{\alpha}^{(n)}(x) \to 0$, as $x \to \infty$, for any $n \in \mathbb{N}$. Thus, we can rewrite [\(5\)](#page-2-0) as

(7)
$$
\int_{m}^{\infty} P_1(x) f'_{\alpha}(x) dx = -\sum_{j=1}^{v} P_j(m) f_{\alpha}^{(j-1)}(m) + (-1)^{v-1} \int_{m}^{\infty} P_v(x) f_{\alpha}^{(v)}(x) dx.
$$

For any $j \in \mathbb{N}$ and $m \in \mathbb{N}$ we have $P_j(m) = \frac{B_j}{j!}$. We now approximate $C_{\alpha}(a)$ by

(8)
$$
C_{\alpha}(a) \approx \sum_{r=1}^{m} \frac{\log^{\alpha}(r+a)}{r+a} - \frac{\log^{\alpha+1}(m+a)}{\alpha+1} - \frac{\log^{\alpha}(m+a)}{2(m+a)} - \sum_{j=1}^{\lfloor v/2 \rfloor} \frac{B_{2j}}{(2j)!} f_{\alpha}^{(2j-1)}(m).
$$

The error made in approximating $C_{\alpha}(a)$ by [\(8\)](#page-3-1) is given by

$$
R_v = (-1)^{v-1} \int_{m}^{\infty} P_v(x) f_{\alpha}^{(v)}(x) dx.
$$

We now show that we can choose m and v so that this error is arbitrarily small. Let us choose $v > 1$. As $|P_n(x)| \leq \frac{3+(-1)^n}{(2\pi)^n}$ for any $n > 1$ (see [\[27\]](#page-11-11) or [\[5\]](#page-11-12)) we have

(9)
$$
|R_v| = \left| (-1)^{v-1} \int_m^{\infty} P_v(x) f_\alpha^{(v)}(x) dx \right| \leq \frac{3 + (-1)^v}{(2\pi)^v} \int_m^{\infty} \left| f_\alpha^{(v)}(x) \right| dx.
$$

Applying [\(6\)](#page-2-1) and the triangle inequality in [\(9\)](#page-3-2) we get

(10)
$$
|R_v| \le \frac{3+(-1)^v}{(2\pi)^v} \sum_{i=0}^v |s(v+1,i+1)| \frac{\Gamma(\alpha+1)}{|\Gamma(\alpha-i+1)|} \int_m^{\infty} \frac{\log^{\alpha-i}(x+a)}{(x+a)^{v+1}} dx.
$$

Here note that we rewrite the integral in terms of the upper incomplete Gamma function (see [\[14,](#page-11-16) p. 346] and [\[1,](#page-10-3) 6.5.3])

(11)
$$
\int_{m}^{\infty} \frac{\log^{\alpha - i}(x+a)}{(x+a)^{v+1}} dx = \frac{\Gamma(\alpha - i + 1, v \log(m + a))}{v^{\alpha - i + 1}}.
$$

Applying [\(11\)](#page-3-3) in [\(10\)](#page-3-4) we find an upper bound for the error:

(12)
$$
|R_v| \leq \frac{(3+(-1)^v)\Gamma(\alpha+1)}{(2\pi)^v v^{\alpha+1}} \sum_{i=0}^v |s(v+1,i+1)| \frac{\Gamma(\alpha-i+1,v\log(m+a))v^i}{|\Gamma(\alpha-i+1)|}.
$$

The error term R_v in [\(10\)](#page-3-4) converges for all v. To find suitable parameters v and m so that R_v is smaller than a given bound we follow a method similar to that used in [\[11\]](#page-11-17) to evaluate $\zeta^{(k)}$. We first choose a large $v \in \mathbb{N}$ and then iteratively increase the value of m. The values for $\gamma_{\alpha}(a)$ in Figures [1,](#page-1-1) [2,](#page-2-2) [3,](#page-7-1) and the Tables [1](#page-4-0) and [2](#page-9-1) were computed with an implementation of the method described above in SageMath [\[24\]](#page-11-18) using mpmath [\[19\]](#page-11-19).

3. AN UPPER BOUND FOR $C_{\alpha}(a)$

We present a bound for $C_{\alpha}(a)$, for real numbers $\alpha > 1$, that is a generalization of [\[27,](#page-11-11) Theorem 3] to fractional Stieltjes constants.

Theorem 1. Let $0 < a \leq 1$, $\alpha > 1$ and $C_{\alpha}(a) = \gamma_{\alpha}(a) - \frac{\log^{\alpha}(a)}{a}$ $\frac{a}{a}$. Then,

$$
|C_{\alpha}(a)| \le \frac{(3+(-1)^{n+1})\Gamma(\alpha+1)}{(2\pi)^{n+1}(n+1)^{\alpha+1}}\frac{(2(n+1))!}{(n+1)!}
$$

where n is any positive integer satisfying $1 \leq n < \alpha$.

Proof. Setting $m = 1$ in [\(3\)](#page-1-2) and making some minor simplifications we obtain

(13)
$$
\gamma_{\alpha}(a) = \frac{\log^{\alpha}(a)}{a} + \frac{\log^{\alpha}(1+a)}{2(1+a)} - \frac{\log^{\alpha+1}(1+a)}{\alpha+1} + \int_{1}^{\infty} P_1(x) f'_{\alpha}(x) dx.
$$

α	$\gamma_\alpha(0.1)$	$\gamma_\alpha(1/3)$	$\gamma_\alpha(2/3)$	$\gamma_\alpha(1)$
0.1	$10.65 + 3.359i$	$3.009 + 0.9358i$	$1.172 + 0.4235i$	-0.3495
0.2	$9.782 + 6.945i$	$2.593 + 1.797i$	$0.9194 + 0.736i$	-0.2907
0.3	$7.704 + 10.39i$	$1.923 + 2.497i$	$0.6074 + 0.9256i$	-0.243
0.4	$4.418 + 13.28i$	$1.06 + 2.963i$	$0.2794 + 0.9942i$	-0.2038
0.5	$0.06524 + 15.17i$	$0.08545 + 3.144i$	$-0.02734 + 0.9551i$	-0.1714
0.6	$-5.06 + 15.69i$	$-0.907 + 3.019i$	$-0.2848 + 0.83i$	-0.1444
0.7	$-10.52 + 14.5i$	$-1.82 + 2.592i$	$-0.4746 + 0.6451i$	-0.1217
0.8	$-15.77 + 11.45i$	$-2.564 + 1.901i$	$-0.5885 + 0.4282i$	-0.1026
0.9	$-20.16 + 6.546i$	$-3.061 + 1.009i$	$-0.6273 + 0.2057i$	-0.08651
1.0	-23.04	-3.26	-0.5989	
10.0	$4.189 \cdot 10^{4}$	7.683	0.0002643	0.0002053
10.1	$4.331 \cdot 10^4 + 1.407 \cdot 10^4 i$	$7.376 + 2.397i$	$0.0002155 + 5.086 \cdot 10^{-5}i$	0.0002203
10.2	$4.005 \cdot 10^4 + 2.91 \cdot 10^4 i$	$6.334 + 4.602i$	$0.0001556 + 8.84 \cdot 10^{-5}i$	0.0002334
10.3	$3.163 \cdot 10^4 + 4.353 \cdot 10^4 i$	$4.645 + 6.394i$	$8.997 \cdot 10^{-5} + 0.0001112i$	0.0002446
10.4	$1.807 \cdot 10^4 + 5.562 \cdot 10^4 i$	$2.465 + 7.588i$	$2.381 \cdot 10^{-5} + 0.0001194i$	0.0002539
10.5	$0.0001501 + 6.357 \cdot 10^4 i$	$-0.0002227 + 8.054i$	$-3.856 \cdot 10^{-5} + 0.0001147i$	0.0002612
10.6	$-2.135 \cdot 10^4 + 6.572 \cdot 10^4 i$	$-2.512 + 7.732i$	$-9.379 \cdot 10^{-5} + 9.968 \cdot 10^{-5}i$	0.0002667
10.7	$-4.415 \cdot 10^4 + 6.077 \cdot 10^4 i$	$-4.824 + 6.639i$	$-0.0001397 + 7.747 \cdot 10^{-5}i$	0.0002703
10.8	$-6.605 \cdot 10^4 + 4.799 \cdot 10^4 i$	$-6.702 + 4.869i$	$-0.0001752 + 5.143 \cdot 10^{-5}i$	0.0002721
10.9	$-8.44 \cdot 10^4 + 2.742 \cdot 10^4 i$	$-7.953 + 2.584i$	$-0.0002004 + 2.47 \cdot 10^{-5}i$	0.000272
11.0	$-9.647 \cdot 10^{4}$	-8.441	-0.0002163	0.0002702
100.0	$1.666 \cdot 10^{37}$	$4.349 \cdot 10^{17}$	$-9.528 \cdot 10^{15}$	$-4.253 \cdot 10^{17}$
100.1	$1.722 \cdot 10^{37} + 5.595 \cdot 10^{36}i$	$4.576 \cdot 10^{17} + 1.137 \cdot 10^{4}i$	$1.651 \cdot 10^{16} + 2.644 \cdot 10^{-40}i$	$-4.741 \cdot 10^{17}$
100.2	$1.592 \cdot 10^{37} + 1.157 \cdot 10^{37}i$	$4.799 \cdot 10^{17} + 2.182 \cdot 10^{4}i$	$4.692 \cdot 10^{16} + 4.595 \cdot 10^{-40}i$	$-5.268 \cdot 10^{17}$
100.3	$1.257 \cdot 10^{37} + 1.731 \cdot 10^{37}i$	$5.015 \cdot 10^{17} + 3.032 \cdot 10^{4}i$	$8.215 \cdot 10^{16} + 5.778 \cdot 10^{-40}i$	$-5.836 \cdot 10^{17}$
100.4	$7.185 \cdot 10^{36} + 2.211 \cdot 10^{37}i$	$5.22 \cdot 10^{17} + 3.598 \cdot 10^4 i$	$1.227 \cdot 10^{17} + 6.206 \cdot 10^{-40}i$	$-6.447 \!\cdot\! 10^{17}$
100.5	$-4.484 \cdot 10^{17} + 2.527 \cdot 10^{37}i$	$5.41 \cdot 10^{17} + 3.819 \cdot 10^4 i$	$1.692 \cdot 10^{17} + 5.962 \cdot 10^{-40}i$	$-7.102 \cdot 10^{17}$
100.6	$-8.489 \cdot 10^{36} + 2.613 \cdot 10^{37}i$	$5.581 \cdot 10^{17} + 3.667 \cdot 10^{4}i$	$2.221 \cdot 10^{17} + 5.181 \cdot 10^{-40}i$	$-7.802 \cdot 10^{17}$
100.7	$-1.755 \cdot 10^{37} + 2.416 \cdot 10^{37}i$	$5.728 \cdot 10^{17} + 3.149 \cdot 10^{4}i$	$2.82 \cdot 10^{17} + 4.027 \cdot 10^{-40}i$	$-8.549 \cdot 10^{17}$
100.8	$-2.626 \cdot 10^{37} + 1.908 \cdot 10^{37}i$	$5.846 \cdot 10^{17} + 2.309 \cdot 10^4 i$	$3.497 \cdot 10^{17} + 2.673 \cdot 10^{-40}i$	$-9.343\!\cdot\!10^{17}$
100.9	$-3.356 \cdot 10^{37} + 1.09 \cdot 10^{37}i$	$5.928 \cdot 10^{17} + 1.225 \cdot 10^{4}i$	$\pmb{4.258 \cdot 10^{17} + 1.284 \cdot 10^{-40}i}$	$-1.019 \cdot 10^{18}$
101.0	$-3.835 \cdot 10^{37}$	$5.967 \cdot 10^{17}$	$5.111 \cdot 10^{17}$	$-1.108 \cdot 10^{18}$

Table 1. Fractional Stieltjes constants approximated to a precision of four decimal digits.

Since $0 < a \le 1$ and $P_1(x) = x - \frac{1}{2}$ on $(0, 1)$ integration by parts yields

$$
\int_{1-a}^{1} P_1(x) f'_{\alpha}(x) dx = \int_{1-a}^{1} \left(x - \frac{1}{2} \right) f'_{\alpha}(x) dx = \frac{\log^{\alpha} (1+a)}{2(1+a)} - \frac{\log^{\alpha+1} (1+a)}{\alpha+1}.
$$

Using this in [\(13\)](#page-3-5), allows us to see that

$$
\gamma_{\alpha}(a) = \frac{\log^{\alpha}(a)}{a} + \int_{1-a}^{\infty} P_1(x) f'_{\alpha}(x) dx = \frac{\log^{\alpha}(a)}{a} + C_{\alpha}(a).
$$

By (6) we have for any positive integer n ,

$$
f_{\alpha}^{(n)}(x) = \sum_{i=0}^{n} s(n+1, i+1)(\alpha) \frac{\log^{\alpha-i}(x+a)}{(x+a)^{n+1}}.
$$

Assume $\alpha > 1$ is real, and n and k are integers that satisfy $1 \leq k \leq n < \alpha$. Then $f_{\alpha}^{(k)}(x-a)$ is a combination of positive powers of $log(x)$, and therefore $f_{\alpha}^{(k)}(1-a) = 0$. Also, $f_{\alpha}^{(k)}(x-a) \to 0$, as $x \to \infty$. These observations, and integrating by parts n times, yield

$$
C_{\alpha}(a) = P_2(x) f_{\alpha}'(x) |_{x=1-a}^{\infty} + \ldots + (-1)^{n+1} P_{n+1}(x) f_{\alpha}^{(n)}(x) |_{x=1-a}^{\infty} + (-1)^n \int_{1-a}^{\infty} P_{n+1}(x) f_{\alpha}^{(n+1)}(x) dx
$$

$$
= (-1)^n \int_{1-a}^{\infty} P_{n+1}(x) f_{\alpha}^{(n+1)}(x) dx.
$$

Substituting x by $x - a$ we get

$$
C_{\alpha}(a) = (-1)^n \int_{1}^{\infty} P_{n+1}(x-a) f_{\alpha}^{(n+1)}(x-a) dx.
$$

With $|P_n(x)| \leq \frac{3+(-1)^n}{(2\pi)^n}$, for all $n > 1$ we obtain

$$
|C_{\alpha}(a)| = \left| (-1)^n \int_{1}^{\infty} P_{n+1}(x-a) f_{\alpha}^{(n+1)}(x-a) dx \right|
$$

\n
$$
\leq \frac{3+(-1)^{n+1}}{(2\pi)^{n+1}} \int_{1}^{\infty} \left| f_{\alpha}^{(n+1)}(x-a) \right| dx
$$

\n
$$
\leq \frac{3+(-1)^{n+1}}{(2\pi)^{n+1}} \sum_{i=0}^{n+1} |s(n+2,i+1)| (\alpha)_i \int_{1}^{\infty} \frac{\log^{\alpha-i}(x)}{x^{n+2}} dx.
$$

It remains to evaluate the integral in [\(14\)](#page-5-0). After a change of variables we have

(15)
$$
\int_{1}^{\infty} \frac{\log^{\alpha - i}(x)}{x^{n+2}} dx = \frac{1}{(n+1)^{\alpha - i + 1}} \int_{0}^{\infty} x^{\alpha - i} e^{-x} dx = \frac{\Gamma(\alpha - i + 1)}{(n+1)^{\alpha - i + 1}},
$$

since $\alpha - i \ge \alpha - n > 0$, and the integral converges for all $0 \le i \le n + 1$. Thus, [\(14\)](#page-5-0) becomes

(16)
$$
|C_{\alpha}(a)| \leq \frac{3+(-1)^{n+1}}{(2\pi)^{n+1}} \sum_{i=0}^{n+1} |s(n+2,i+1)| (\alpha)_i \frac{\Gamma(\alpha-i+1)}{(n+1)^{\alpha-i+1}}.
$$

Since $1 \leq n < \alpha$, we can write $(\alpha)_i = \frac{\Gamma(\alpha+1)}{\Gamma(\alpha-i+1)}$ for each $0 \leq i \leq n+1$, so from [\(16\)](#page-5-1) we get

$$
|C_{\alpha}(a)| \leq \frac{3+(-1)^{n+1}}{(2\pi)^{n+1}} \sum_{i=0}^{n+1} |s(n+2, i+1)| \frac{\Gamma(\alpha+1)}{(n+1)^{\alpha-i+1}}
$$

=
$$
\frac{(3+(-1)^{n+1})\Gamma(\alpha+1)}{(2\pi)^{n+1}(n+1)^{\alpha+1}} \sum_{i=0}^{n+1} |s(n+2, i+1)| (n+1)^{i}
$$

=
$$
\frac{(3+(-1)^{n+1})\Gamma(\alpha+1)}{(2\pi)^{n+1}(n+1)^{\alpha+2}} \sum_{j=1}^{n+2} |s(n+2, j)| (n+1)^{j}.
$$

By [\[27,](#page-11-11) 6.14] we have $\sum_{n=1}^{n+2}$ $i=1$ $|s(n+2,j)|(n+1)^j = \frac{(2n+2)!}{n!}$ $\frac{n!}{n!}$. Using this identity, we arrive at

$$
|C_\alpha(a)|\leq \frac{(3+(-1)^{n+1})\Gamma(\alpha+1)}{(2\pi)^{n+1}(n+1)^{\alpha+2}}\frac{(2n+2)!}{n!}=\frac{(3+(-1)^{n+1})\Gamma(\alpha+1)}{(2\pi)^{n+1}(n+1)^{\alpha+1}}\frac{(2(n+1))!}{(n+1)!},
$$

which concludes the proof. \Box

4. Minimizing the Bound

The inequality in Theorem [1](#page-3-6) holds for any positive integer $n < \alpha$. It is natural to wonder what value of n minimizes the upper bound. The Lambert W function, that is the complex values $W(z)$ for which $W(z)e^{W(z)} = z$, helps us answer this question. In particular we use the principal branch W_0 .

Lemma 1. Fix
$$
0 < a \leq 1
$$
 and $\alpha > 0$ and set $q(x) := \frac{4\sqrt{2}\Gamma(\alpha+1)}{(x+1)^{\alpha+1}} \left(\frac{2(x+1)}{e\pi}\right)^{x+1}$. Then

- (1) For integers $1 \leq n < \alpha$ we have: $|C_{\alpha}(a)| \leq q(n)$. (2) $q(x)$ is minimal when $x = \frac{\pi}{2} e^{W_0(\frac{2(\alpha+1)}{\pi})} - 1$.
-

Proof. (1) With the sharp version of Stirling's formula given by Robbins [\[23\]](#page-11-20):

$$
\left(\frac{n}{e}\right)^n \sqrt{2\pi n} e^{\frac{1}{12n+1}} \leq n! \leq \left(\frac{n}{e}\right)^n \sqrt{2\pi n} e^{\frac{1}{12n}}.
$$

we obtain for all $n \geq 1$ that

(17)
$$
\frac{(2n)!}{n!} \leq \sqrt{2} \left(\frac{4n}{e}\right)^n e^{\frac{1}{24n} - \frac{1}{12n+1}} < \sqrt{2} \left(\frac{4n}{e}\right)^n
$$

Applying [\(17\)](#page-6-1) to the right hand side of the inequality in Theorem [1](#page-3-6) we obtain

$$
|C_\alpha(a)|\leq \frac{(3+(-1)^{n+1})\Gamma(\alpha+1)}{(2\pi)^{n+1}(n+1)^{\alpha+1}}\frac{(2(n+1))!}{(n+1)!}< \frac{4\sqrt{2}\Gamma(\alpha+1)}{(n+1)^{\alpha+1}}\left(\frac{2(n+1)}{e\pi}\right)^{n+1}=q(n).
$$

(2) It is our goal to find x on the closed interval $[1, \alpha]$ that minimizes $q(x)$. Once x is found, we let n be the nearest integer to x in $[1, \alpha)$. Let $g_{\alpha} = 4\sqrt{2}\Gamma(\alpha + 1)$. Since we are working on a closed interval the nearest integer to x in $[1, \alpha)$. Let $g_{\alpha} = 4\sqrt{2}\Gamma(\alpha + 1)$. Since we are working on a closed interval and q is continuous on [1, α], q must attain a minimum on [1, α]. We write

$$
q(x) = \frac{g_{\alpha}}{(x+1)^{\alpha+1}} \left[\frac{2(x+1)}{\pi e} \right]^{x+1} = g_{\alpha} \exp \left[-(\alpha+1) \log(x+1) + (x+1) \log \left(\frac{2(x+1)}{\pi e} \right) \right].
$$

Differentiating, we find

$$
q'(x) = f_{\alpha} \left[\frac{-(\alpha+1)}{x+1} + 1 + \log \left(\frac{2(x+1)}{\pi e} \right) \right] \exp \left[-(\alpha+1) \log(x+1) + (x+1) \log \left(\frac{2(x+1)}{\pi e} \right) \right].
$$

Setting $q'(x) = 0$ and dividing both sides by the constant and exponential terms, we get

$$
\frac{-(\alpha+1)}{x+1} + 1 + \log\left(\frac{2(x+1)}{\pi e}\right) = \frac{-(\alpha+1)}{x+1} + \log\left(\frac{2(x+1)}{\pi}\right) = 0.
$$

This implies that $\frac{2(x+1)}{\pi} \log \left(\frac{2(x+1)}{\pi} \right)$ $\left(\frac{n+1}{\pi}\right) = \frac{2(\alpha+1)}{\pi}$ $\frac{x+1}{\pi}$, and if we let $y = \log \left(\frac{2(x+1)}{\pi} \right)$ $\left(\frac{n+1}{\pi}\right)$, then the previous equation becomes $ye^y = \frac{2(\alpha+1)}{\pi}$ $\frac{n+1}{\pi}$. Applying the Lambert W function, we see that we must have $y=W_0\left(\frac{2(\alpha+1)}{\pi}\right)$ $\left(\frac{x+1}{\pi}\right)$. Solving for x, using this relation we then have $x = \frac{\pi}{2}e^{W_0\left(\frac{2(\alpha+1)}{\pi}\right)} - 1$. \Box

To apply Lemma [1](#page-3-6) to the bound from Theorem 1 we choose $1 < n < \alpha$ in the following manner. If $x := \frac{\pi}{2} e^{W_0(\frac{2(\alpha+1)}{\pi})} < \alpha$, then let n be the nearest integer to x. Since $x \ge \alpha$ implies that $q(x)$ is monotonically decreasing on the interval $(1, \alpha)$ we set $n := \lceil \alpha - 1 \rceil$ in this case. In summary this gives us the bound

$$
(18) \quad |C_{\alpha}(a)| \le \frac{(3 + (-1)^{n+1})\Gamma(\alpha + 1)}{(2\pi)^{n+1}(n+1)^{\alpha+1}} \frac{(2(n+1))!}{(n+1)!} \text{ with } n = \begin{cases} \lfloor x \rfloor & \text{if } x < \alpha \\ \lceil \alpha - 1 \rceil & \text{else} \end{cases} \text{ where } x = \frac{\pi}{2} e^{W_0 \left(\frac{2(\alpha + 1)}{\pi} \right)}.
$$

The upper bound for the fractional Stieltjes constants also is a bound for the integral Stieltjes constants. In Figure [3](#page-7-1) we compare our bound from [\(18\)](#page-6-3) to previously known bounds for integral Stieltjes constants $|\gamma_m| = |C_m(1)|$:

(1) the bound by Berndt [\[5\]](#page-11-12):

$$
|\gamma_m| \le \frac{(3 + (-1)^m)(m - 1)!}{\pi^m}
$$

FIGURE 3. Absolute values of $C_{\alpha}(1/3)$ $1 \leq \alpha \leq 140$ with the bounds by Berndt [\[5\]](#page-11-12), by Williams and Zhang [\[27\]](#page-11-11), and by Matsuoka [\[21\]](#page-11-13), and by Saad Eddin [\[25\]](#page-11-21), and the bound from [\(18\)](#page-6-3) and the bound for the asymptotic formula from Corollary [1.](#page-9-2)

(2) the bound by Williams and Zhang [\[27\]](#page-11-11) which we can also obtain from Theorem [1](#page-3-6) with $n = m - 1$ and $\alpha = m$:

$$
|\gamma_m| \le \frac{(3 + (-1)^m)(2m)!}{m^{m+1}(2\pi)^m}
$$

(3) the bound by Matsuoka [\[21\]](#page-11-13) which holds for $m > 4$:

$$
|\gamma_m| < 10^{-4} (\log m)^m
$$

(4) the bound by Saad Eddin [\[25\]](#page-11-21):

$$
|\gamma_m| \le m! \cdot 2\sqrt 2 e^{-(n+1)\log \theta(m) + \theta(m)\left(\log \theta(m) + \log \frac{2}{\pi e}\right)}\left(1 + 2^{-\theta(m)-1}\frac{\theta(m)+1}{\theta(m)-1}\right)
$$

where $\theta(m) = \frac{m+1}{\log \frac{2(m+1)}{\pi}} - 1$.

The plot also contains the bound from Corollary [1](#page-9-2) for the asymptotic formula given in the next section.

5. AN ASYMPTOTIC FORMULA

Coffey and Knessl [\[8\]](#page-11-9) give an effective asymptotic formula for the Stieltjes constants. We generalize their work to the fractional Stieltjes constants.

Theorem 2. Let $\alpha > 0$ and set $w(\alpha) = W_0\left(\frac{\alpha i}{2\pi}\right)$ and let

$$
\widetilde{C}_{\alpha}(a) := \frac{\log^{\alpha}(1+a)}{2(1+a)} - \frac{\log^{\alpha+1}(1+a)}{\alpha+1} - \Im\left(\sqrt{\frac{2\alpha}{\pi(w(\alpha)+1)}}e^{-w(\alpha)+h(w(\alpha))}\right)
$$

where $h(t) = 2\pi i (e^t - a) + \alpha \log t$. Then $C_\alpha(a) \sim \widetilde{C}_\alpha(a)$.

Proof. Again we set $f_{\alpha}(x) = \frac{\log^{\alpha}(x+a)}{x+a}$. As in [\(13\)](#page-3-5) we set $m = 1$ in [\(3\)](#page-1-2) and get

(19)
$$
\gamma_{\alpha}(a) = \frac{\log^{\alpha}(a)}{a} + \frac{\log^{\alpha}(1+a)}{2(1+a)} - \frac{\log^{\alpha+1}(1+a)}{\alpha+1} + \int_{1}^{\infty} P_1(x) f'_{\alpha}(x) dx
$$

for $\alpha \in \mathbb{R}$ with $\alpha > 0$ and $0 < \alpha \leq 1$. The first periodized Bernoulli polynomial P_1 has the Fourier series [\[1,](#page-10-3) page 805]

$$
P_1(x) = \frac{-1}{\pi} \sum_{j=1}^{\infty} \frac{\sin(2\pi jx)}{j}.
$$

With the above and the change of variable $t = \log(x + a)$ and setting $b = \log(1 + a)$, we obtain

$$
\int_{1}^{\infty} P_{1}(x) f'_{\alpha}(x) dx = \sum_{j=1}^{\infty} \frac{-1}{\pi j} \int_{1}^{\infty} \sin(2\pi jx) \frac{\log^{\alpha-1}(x+a)}{(x+a)^{2}} (\alpha - \log(x+a)) dx
$$

\n
$$
= \sum_{j=1}^{\infty} \frac{-1}{\pi j} \int_{1}^{\infty} \Im(e^{2\pi i jx}) \frac{\log^{\alpha-1}(x+a)}{(x+a)^{2}} (\alpha - \log(x+a)) dx
$$

\n
$$
= \sum_{j=1}^{\infty} \frac{-1}{\pi j} \int_{b}^{\infty} \Im(e^{2\pi i j(e^{t}-a)}) e^{t} \frac{t^{\alpha-1}(\alpha-t)}{e^{2t}} dt
$$

\n
$$
= \Im\left(\sum_{j=1}^{\infty} \frac{-1}{\pi j} \int_{b}^{\infty} e^{2\pi i j(e^{t}-a)} e^{-t+\alpha \log t} \frac{\alpha-t}{t} dt\right).
$$

Comparing the Fourier series for P_1 with the Fourier series expansion of $x - [x]$ one sees that the series is dominated by the $j = 1$ term.

To approximate the integral we apply the saddle point method. We set $h(t) = 2\pi i (e^t - a) + \alpha \log t$. We have saddle points where $h'(w(\alpha)) = 2\pi i e^{w(\alpha)} + \alpha/w(\alpha) = 0$. The Lambert W function yields $w(\alpha) = W_0\left(\frac{\alpha i}{2\pi}\right)$. We have $h''(t) = 2\pi i e^t - \alpha/t^2$, so $h''(w(\alpha)) = -\alpha/w(\alpha) - \alpha/w(\alpha)^2$. We get

$$
\int_{b}^{\infty} e^{2\pi i (e^{t} - a) + \alpha \log t} e^{-t} \frac{\alpha - t}{t} dt = \int_{b}^{\infty} e^{h(t)} e^{-t} \frac{\alpha - t}{t} dt
$$

$$
\sim \left(\frac{\alpha}{w(\alpha)} - 1 \right) \frac{\sqrt{2\pi}}{\sqrt{-h''(w(\alpha))}} e^{h(w(\alpha))} e^{-w(\alpha)}
$$

$$
= \frac{1}{w(\alpha)} (\alpha - w(\alpha)) \frac{\sqrt{2\pi}}{\sqrt{\alpha/w(\alpha) + \alpha/w(\alpha)^{2}}} e^{h(w(\alpha)) - w(\alpha)}
$$

$$
= \sqrt{\frac{2\pi}{\alpha(w(\alpha) + 1)}} e^{-w(\alpha) + h(w(\alpha))} (\alpha - w(\alpha))
$$

$$
\sim \sqrt{\frac{2\pi \alpha}{w(\alpha) + 1}} e^{-w(\alpha) + h(w(\alpha))}.
$$

Thus

$$
\int_{1}^{\infty} P_{1}(x) f'_{\alpha}(x) dx \sim \Im \left(\frac{-1}{\pi} \sqrt{\frac{2\pi \alpha}{w(\alpha) + 1}} e^{-w(\alpha) + h(w(\alpha))} \right) = \Im \left(-\sqrt{\frac{2\alpha}{\pi (w(\alpha) + 1)}} e^{-w(\alpha) + h(w(\alpha))} \right)
$$

α	$C_{\alpha}(1/10)$	$C_{\alpha}(1/10)$	$C_{\alpha}(1/3)$	$C_{\alpha}(1/3)$	$C_{\alpha}(2/3)$	$C_{\alpha}(2/3)$
1.0	-0.0164038	0.0123545	0.0362794	0.0993116	0.00929138	0.0323691
1.2	-0.0229109	-0.00134172	0.0231650	0.0734673	0.0131505	0.0451311
10.0	0.0000403022	0.0000415881	-0.000289500	-0.000293600	0.0000841476	0.000391183
10.8	0.000199793	0.000204245	-0.000167717	-0.000169532	-0.000104421	0.0000731472
23.7	-0.00143802	-0.00145190	0.000508309	0.000514185	0.00104436	0.00105405
50.0	227.785	228.832	121.028	121.343	-247.852	-248.893
50.5	253.979	255.226	237.558	238.340	-318.319	-319.726
100.0	$-1.93298 \cdot 10^{17}$	$-1.93351 \cdot 10^{17}$	$4.34868 \cdot 10^{17}$	$4.35806 \cdot 10^{17}$	$-9.52803 \cdot 10^{15}$	$-9.86540 \cdot 10^{15}$
100.2	$-2.79276 \cdot 10^{17}$	$-2.79448 \cdot 10^{17}$	$4.79917 \cdot 10^{17}$	$4.80992 \cdot 10^{17}$	$4.69177 \cdot 10^{16}$	$4.66277 \cdot 10^{16}$
210.3	$-3.73494 \cdot 10^{61}$	$-3.73554 \cdot 10^{61}$	$4.70921 \cdot 10^{61}$	$4.71397 \cdot 10^{61}$	$1.32641 \cdot 10^{61}$	$1.32498 \cdot 10^{61}$
305.7	$1 - 3.93590 \cdot 10^{105}$	$-3.93835 \cdot 10^{105}$	$-3.66025\cdot10^{105}$	$-3.66071\cdot10^{105}$	$4.92432 \cdot 10^{105}$	$4.92664 \cdot 10^{105}$

TABLE [2](#page-1-0). $C_{\alpha}(a)$ approximated with the methods from Section 2 and $\widetilde{C}_{\alpha}(a)$ obtained with Theorem [2](#page-8-0) with 6 decimal digits given for $a \in \{1/10, 1/3, 2/3\}.$

The result follows immediately with [\(19\)](#page-8-1) and $C_{\alpha}(a) = \gamma_{\alpha}(a) - \frac{\log^{\alpha}(a)}{a}$ a . В последните последните последните и последните и последните последните и последните и последните и последни
В последните последните последните последните последните последните последните последните последните последнит

In Table [2](#page-9-1) we compare the approximation $C_{\alpha}(a)$ of the fractional Stieltjes constants obtained with the methods from Section [2](#page-8-0) with the values $C_{\alpha}(a)$ obtained with the asymptotic formula from Theorem 2 for $a \in \{1/10, 1/3, 2/3\}.$

Coffey and Knessl [\[8\]](#page-11-9) note that the asymptotic formula yields a good approximation for integral Stieltjes constants even for small values of α . We find that this also holds for fractional Stieltjes constants.

6. A Possible Bound

The bound for $C_a(\alpha)$ that we found in Section [3](#page-3-0) holds for all $a \in (0,1]$ and the plots in Figure [1](#page-1-1) suggest that bounds for $C_a(\alpha)$ should be independent of a. The quality of the approximations obtained from the asymptotic formula from Theorem [2](#page-8-0) raises the question whether it could lead to the formulation of a tight bound for $C_a(\alpha)$. In the following we find a bound for $\tilde{C}_a(\alpha)$ that is independent of a and conjecture that this is a bound for $C_a(\alpha)$.

Corollary 1. Let $0 < a \leq 1$ and $\alpha > 0$. Then

(20)
$$
|\widetilde{C}_a(\alpha)| \leq \frac{\log^{\alpha}(2)}{2} + 2 \left| e^{-\frac{\alpha}{w(\alpha)} + \alpha \log w(\alpha)} \right|.
$$

Proof. With $a \in (0,1]$ we get

(21)
$$
\left| \frac{\log^{\alpha}(1+a)}{2(1+a)} - \frac{\log^{\alpha+1}(1+a)}{\alpha+1} \right| \leq \log^{\alpha}(2) \left| \frac{1}{2(1+a)} - \frac{\log(1+a)}{\alpha+1} \right| \leq \frac{\log^{\alpha}(2)}{2}
$$

As in the previous section we set $w(\alpha) = W_0\left(\frac{\alpha i}{2\pi}\right)$, where W_0 is the principal branch of the Lambert W function. Recall that we have $W_0(\beta) \cdot e^{W_0(\beta)} = \beta$. We have

$$
\Re(-w(\alpha) + h(w(\alpha))) = \Re\left(-w(\alpha) + 2\pi i(e^{w(\alpha)} - a) + \alpha \log w(\alpha)\right)
$$

$$
= \Re\left(-w(\alpha) + 2\pi i e^{w(\alpha)} + \alpha \log w(\alpha)\right)
$$

$$
= \Re\left(-w(\alpha) + 2\pi i \frac{\alpha i}{w(\alpha)2\pi} + \alpha \log w(\alpha)\right)
$$

$$
= \Re\left(-w(\alpha) - \frac{\alpha}{w(\alpha)} + \alpha \log w(\alpha)\right).
$$

As for $\beta \in \mathbb{R}$ we have $\Re(W_0(i\beta)) \geq 0$ (see [\[9\]](#page-11-22)) we get

(22)
$$
\left| \sqrt{\frac{2\alpha}{\pi(w(\alpha)+1)}} \right| \le \left| 2\sqrt{\frac{\alpha}{2\pi w(\alpha)}} \right| = \left| 2\sqrt{-i\frac{\alpha i}{2\pi w(\alpha)}} \right| = \left| 2\sqrt{-i e^{w(\alpha)}} \right| = \left| 2e^{\frac{1}{2}w(\alpha)} \right|.
$$

$$
\qquad \qquad \Box
$$

FIGURE 4. $|C_{\alpha}(a)|$ for $a \in \left\{\frac{1}{100}, \frac{1}{20}, \frac{1}{10}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \frac{9}{10}, 1\right\}$ and the bounds from [\(18\)](#page-6-3), Corollary [1](#page-9-2) and Conjecture [1.](#page-10-4)

Thus

$$
|\widetilde{C}_a(\alpha)| \le \frac{\log^{\alpha}(2)}{2} + 2\left|e^{\frac{1}{2}w(\alpha)}\right| \cdot \left|e^{-w(\alpha) - \frac{\alpha}{w(\alpha)} + \alpha \log w(\alpha)}\right| \le \frac{\log^{\alpha}(2)}{2} + 2\left|e^{-\frac{\alpha}{w(\alpha)} + \alpha \log w(\alpha)}\right|
$$

which concludes the proof.

Since $\log^{\alpha}(2)$ approaches 0 as $\alpha \to \infty$ the bound [\(20\)](#page-9-3) is certainly dominated by the second term for larger α Already for $\alpha = 50$ we have $\frac{\log^{\alpha}(2)}{2} < 10^{-8}$ while $2\left|e^{-\frac{\alpha}{w(\alpha)} + \alpha \log w(\alpha)}\right| > 500$. Numerical experiments suggest that the bound holds without the term $\frac{\log^{\alpha}(2)}{2}$ for $\tilde{C}_{\alpha}(a)$ as well as $C_{\alpha}(a)$, compare Figures [4](#page-10-5) and [3.](#page-7-1)

Conjecture 1. Let $0 < a \leq 1$ and $\alpha > 0$ and set $w(\alpha) := W_0\left(\frac{\alpha i}{2\pi}\right)$, then $|C_\alpha(a)| \leq 2 \left|e^{\alpha(\log w(\alpha) - 1/w(\alpha))}\right|$. We have verified this for $a \in \left\{\frac{1}{100}, \frac{1}{20}, \frac{1}{10}, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, 1\right\}$ and $\alpha \in \left\{\frac{i}{100} \mid i \in \{1, 2, 3, \dots, 30000\}\right\} \subset (0, 300]$.

REFERENCES

^[1] Abramowitz, M., Stegun, I.: Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover, New York, 1964.

^[2] Adell, J. A.: Estimates of generalized Stieltjes constants with a quasi-geometric rate of decay, Proc. Royal Soc. London, Ser. A, 468 (2012), no. 2141, 1356–1370.

^[3] Adell, J. A., Lekuona, A.: Fast computation of the Stieltjes constants, Math. Comp. 86 (2017), no. 307, 2479–2492.

^[4] Apostol, T.: Introduction to analytic number theory, Chapter 12, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976.

- [5] Berndt, C.: On the Hurwitz zeta-function, Rocky Mountain J. Math., Vol. 2, No. 1, 151–157, 1972.
- [6] Blagouchine, I. V. E.: Expansions of generalized Euler's constants into the series of polynomials in π^{-2} and into the formal enveloping series with rational coefficients only, J. Number Theory, 158 (2016), 365–396.
- [7] Coffey, M. W.: Functional equations for the Stieltjes constants, Ramanujan J., 39 (2016), no. 3, 577–601.
- [8] Coffey, M. W., Knessl, C.: An effective asymptotic formula for the Stieltjes constants, Math. Comp., 80 (2011), no. 273, 379–386.
- [9] Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffrey D. J., Knuth, D. E.: On the Lambert W Function, Advances in Computational Mathematics, 5 (1996), issue 1, 329–359.
- [10] Davenport, H.: *Multiplicative number theory*, Markham, Chicago, 1967.
- [11] Farr, R., Pauli, S.: More Zeros of the Derivatives of the Riemann Zeta Function on the Left Half Plane in Rychtář,
- J., Gupta, S., Shivaji, S., Chhetri, M. Topics form the 8th Annual UNCG Regional Mathematics and Statistics Conference, Springer 2014.
- [12] Farr, R., Pauli, S., Saidak, F.: On Fractional Stieltjes Constants, Indagationes Mathematicae 29, issue 5 (2018), 1425: 1431.
- [13] Farr, R., Pauli, S., Saidak, F.: A Zero free region for the fractional derivatives of the Riemann zeta function, to appear in New Zealand Journal of Mathematics, 2020.
- [14] Gradshteyn, I. S.: Table of Integrals, Series, and Products, Academic Press, 2007.
- [15] Grünwald, A. K.: *Über begrenzte Derivation und deren Anwendung*, Z. Angew. Math. Phys., 12, 1867.
- [16] Janjic, M.: On Non-central Stirling Numbers of the First Kind, 2009, [http://adsabs.harvard.edu/abs/2009arXiv0901.](http://adsabs.harvard.edu/abs/2009arXiv0901.2655J) [2655J](http://adsabs.harvard.edu/abs/2009arXiv0901.2655J)
- [17] Jensen, J. L. W. V.: Sur la fonction $\zeta(s)$ de Riemann, C. R. Acad. Sci. Paris (1887), 1156–1159.
- [18] Johansson, F., Rigorous high-precision computation of the Hurwitz zeta function and its derivatives, Numer. Algorithms 69 (2015), no. 2, 253-270.
- [19] Johansson, F. et al.: mpmath: a Python library for arbitrary-precision floating-point arithmetic, <http://mpmath.org>, 2013.
- [20] Kreminski, R.: Newton-Cotes integration for approximating Stieltjes (generalized Euler) constants, Math. Comp., Vol. 72, 1379: 1397. 2003.
- [21] Matsuoka, Y.: Generalized Euler constants associated with the Riemann zeta function, Number Theory and Combinatorics: Japan 1984, World Scientific, Singapore, pp. 279–295, 1985.
- [22] Ramanujan, S.: Ramanujan's Notebooks, Vol.1, p. 164, Springer-Verlag, New York, 1985.
- [23] Robbins, H.: A Remark of Stirling's Formula Amer. Math. Monthly 62, 26–29, 1955.
- [24] The Sage Developers: SageMath, the Sage Mathematics Software System (Version 8.0), <http://www.sagemath.org>, 2017.
- [25] Saad Eddin, S.:, Explicit upper bounds for the Stieltjes constants, J. Number Theory 133 (2013), no. 3, 1027-1044.
- [26] Stieltjes, T. J.: Correspondance d'Hermite et de Stieltjes, Tomes I, II, Gauthier-Villars, Paris, 1905.
- [27] Williams, K. S., Zhang, N. Y.: Some results on the generalized Stieltjes constants. Analysis 14 (1994), no. 2: 3, 147–162.

Department of Mathematics and Statistics, University of North Carolina Greensboro, Greensboro, NC, USA Email address: s_pauli@uncg.edu, f_saidak@uncg.edu