
ON FRACTIONAL STIELTJES CONSTANTS

RICKY E. FARR, SEBASTIAN PAULI, AND FILIP SAIDAK

Abstract. We study the non-integral generalized Stieltjes constants γα(a) arising from the
Laurent series expansions of fractional derivatives of the Hurwitz zeta functions ζ(α)(s, a),

and we prove that if ha(s) := ζ(s, a)− 1/as and Cα(a) := γα(a)− logα(a)
a , then

Cα(a) = (−1)−αh(α)a (1),

for all real α ≥ 0, where h(α)(x) denotes the α-th Grünwald-Letnikov fractional derivative
of the function h at x. This result confirms the conjecture of Kreminski [8], originally stated
in terms of the Weyl fractional derivatives.

1. Introduction

The Hurwitz zeta function is defined, for <(s) > 1 and 0 < a ≤ 1, as ζ(s, a) =
∞∑
n=0

1
(n+a)s

.

In a manner very similar to that of the Riemann zeta function ζ(s), the function ζ(s, a) can
be extended to a meromorphic function with a simple pole at s = 1 with residue 1 (see [2],
or [4]). Moreover, the function has a Laurent series expansion about s = 1, given by

(1) ζ(s, a) =
1

s− 1
+
∞∑
n=0

(−1)nγn(a)(s− 1)n

n!
,

where γn(a) are the generalized Stieltjes constants. The original Stieltjes constants γn =
γn(1) were defined in 1885 ([10]), but are themselves a generalization of Euler’s constant γ:

γ = γ0(1) = lim
m→∞

(
m∑
n=1

1

n
− logm

)
= 0.57721 56649 · · ·

In 1972, Berndt [3] showed that for the generalized Stieltjes constants in (1) we have:

(2) γk(a) = lim
m→∞

{
m∑
n=0

logk(n+ a)

n+ a
− logk+1(m+ a)

k + 1

}
.

This result was sharpened by Williams & Zhang [11], who established, for m ≥ 1,

γk(a) =
m∑
r=0

logk(r + a)

r + a
− logk+1(m+ a)

k + 1
− logk(m+ a)

2(m+ a)
+

∞∫
m

P1(x)f ′k(x)dx,(3)

where fα(x) = logα(x+a)
x+a

and P1(x) = x− bxc − 1
2
, with bxc denoting the integer part of x.

2010 Mathematics Subject Classification. 11M35.
1



More recently, Kreminski [8] has given a generalization of γν(a) to ν > 0, the so-called

fractional Stieltjes constants. He computed Cν(a) = γν(a) − logν(a)
a

and conjectured that it
equals (−1)ν times the ν-th Weyl fractional derivative of ζ(s, a)− 1/(s− 1)− 1/as at s = 1.

The main aim of our paper is to explain how one can employ Grünwald-Letnikov fractional
derivatives in order to prove this conjecture of Kreminski [8]. In the process we generalize
the results from Berndt [3] and Williams & Zhang [11] to the fractional case.

2. Fractional Derivatives

We begin by giving a brief summary of the most useful basic properties of generalized
derivatives. The fractional derivative operators are generalizations of the familiar differential
operator Dn to arbitrary (integer, rational, or complex) values of n.

For N ∈ N and h > 0, let ∆N
h f(z) = (−1)N

N∑
k=0

(−1)k
(
N
k

)
f(z + kh) be the standard finite

difference of f . Then we have (see [9], for example): f (n)(z) = lim
h→0

∆n
hf(z)

hn
for all n ∈ N; and

this can be naturally extended to the fractional case (see [5]) via

∆α
hf(z) = (−1)α

∞∑
k=0

(−1)k
(
α

k

)
f(z + kh),

where
(
α
k

)
= Γ(α+1)

Γ(k+1)Γ(α−k+1)
. For any α ∈ C, the so-called reverse αth Grünwald-Letnikov

derivative of a function f(z) is now defined as (cf. Grünwald [7]):

Dα
z [f(z)] = lim

h→0+

∆α
hf(z)

hα
= lim

h→0+

(−1)α
∞∑
k=0

(−1)k
(
α
k

)
f(z + kh)

hα
,(4)

whenever the limit exists. Thus defined, Dα
z [f(z)] coincide with the standard derivatives for

all α ∈ N. Moreover, they are analytic functions of α and z (as long as the function f(z) is
analytic) and they satisfy: D0

z [f(z)] = f(z) and Dα
z

[
Dβ
z [f(z)]

]
= Dα+β

z [f(z)].
We note that the Grünwald-Letnikov derivative is defined for all α ∈ C, but in this paper

we only consider α ∈ R, with α ≥ 0. The following results can be found in [9].

Lemma 2.1. Let α ≥ 0, a > 0, and z ∈ C. Then Dα
z [e−az] = (−1)αaαe−az.

This for 0 < a ≤ 1, and s ∈ C with <(s) > 1 the Grünwald-Letnikov fractional derivative
of order α ≥ 0 with respect to s of ζ(s, a)− 1/as is

(5) Dα
s

[
ζ(s, a)− 1

as

]
= (−1)α

∞∑
n=1

logα(n+ a)

(n+ a)s
.

The fractional derivative of ζ(s, a)− 1/as can be analytically continued to all of C with the
exception of a pole at 1.

3. Fractional Stieltjes Constants

We study the non-integral generalized Stieltjes constants γα(a) arising from the Laurent
series expansions of fractional derivatives of the Hurwitz zeta functions ζ(α)(s, a). Our result
confirms the conjecture of Kreminski [8], originally stated in terms of the Weyl fractional
derivatives.
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In the following we find the Lauren series expansion for Dα
s

[
ζ(s, a) − 1

as

]
and define the

fractional Stieltjes Constants as its coefficients. We use the following form of the Euler-
Maclaurin summation formula

(6)
n∑

k=m

g(k) =

n∫
m

g(x)dx+
∑̀
k=1

(−1)kBk

k!
g(k+1)(x)

∣∣∣∣n
m

+ (−1)`+1

n∫
m

P`(x)g(`)(x)dx,

where g(x) ∈ C` [m,n], ` ∈ N and Pk(x) denotes the kth periodic Bernoulli polynomial

Pk(x) =
Bk(x− bxc)

k!
.

We take ` = 1 in (6) and set g(x) := logα(x+a)
(x+a)s

. Let n→∞, for <(s) > 1 we obtain

Dα
s

[
ζ(s, a)− 1

as

]
=
∞∑
r=1

logα(r + a)

(r + a)s

=
m−1∑
r=1

logα(r + a)

(r + a)s
+

∞∫
m

logα(x+ a)

(x+ a)s
dx+

logα(m+ a)

2(m+ a)s
+

∞∫
m

P1(x)g′(x)dx

=
m∑
r=1

logα(r + a)

(r + a)s
+

∞∫
m

logα(x+ a)

(x+ a)s
dx− logα(m+ a)

2(m+ a)s
+

∞∫
m

P1(x)g′(x)dx

=: Gα
s,a(m) + Iαs (m)−D(s) +G(s).

We will estimate each of these four terms separately.
For the first term Gα

s,a(m) we have:

Gα
s,a(m) =

m∑
r=1

logα(r + a)

(r + a)s

=
m∑
r=1

logα(r + a)

r + a
e−(s−1) log(r+a)

=
m∑
r=1

logα(r + a)

r + a

∞∑
n=0

(−1)n logn(r + a)

n!
(s− 1)n

=
∞∑
n=0

(−1)n(s− 1)n

n!

m∑
r=1

logα+n(r + a)

(r + a)
.

Since α ≥ 0, m ∈ N, and 0 < a ≤ 1, for all s ∈ C with <(s) > 1, the second term Iαs (m) can
be written in terms of the Upper Incomplete Gamma function Γ(α, s) as follows (comparing
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it, for instance, with results found in [6, p. 346] and [1, 6.5.3]):

Iαs (m) =

∞∫
m

logα(x+ a)

(x+ a)s
dx

=
Γ(α + 1, (s− 1) log(m+ a))

(s− 1)α+1

=
1

(s− 1)α+1

[
Γ(α + 1)− (s− 1)α+1 logα+1(m+ a)

∞∑
n=0

(−1)n(s− 1)n logn(m+ a)

(α + 1 + n)n!

]

=
Γ(α + 1)

(s− 1)α+1
− logα+1(m+ a)

∞∑
n=0

(−1)n(s− 1)n logn(m+ a)

(α + 1 + n)n!

=
Γ(α + 1)

(s− 1)α+1
−
∞∑
n=0

(
logα+n+1(m+ a)

α + n+ 1

)
(−1)n(s− 1)n

n!
.

We write the third term as:

D(s) =
logα(m+ a)

2(m+ a)

∞∑
n=0

(−1)n logn(m+ a)(s− 1)n

n!

=
∞∑
n=0

(
logα+n(m+ a)

2(m+ a)

)
(−1)n(s− 1)n

n!
.

Combining the above three expressions for Gα
s,a(m), Iαs (m) and D(s) we get:

Gα
s,a(m)+Iαs (m) +D(s)

=
m∑
r=1

logα(r + a)

(r + a)s
+

∞∫
m

logα(x+ a)

(x+ a)s
dx− logα(m+ a)

2(m+ a)s

=
∞∑
n=0

(−1)n(s− 1)n

n!

m∑
r=1

logα+n(r + a)

(r + a)

+
Γ(α + 1)

(s− 1)α+1
−
∞∑
n=0

(
logα+n+1(m+ a)

α + n+ 1

)
(−1)n(s− 1)n

n!

+
∞∑
n=0

(
logα+n(m+ a)

2(m+ a)

)
(−1)n(s− 1)n

n!

=
Γ(α + 1)

(s− 1)α+1
+
∞∑
n=0

(−1)n(s− 1)n

n!

(
m∑
r=1

logα+n(r + a)

(r + a)
+

logα+n+1(m+ a)

α + n+ 1
− logα+n(m+ a)

2(m+ a)

)

=
Γ(α + 1)

(s− 1)α+1
+
∞∑
n=0

Hα+n
m

(−1)n(s− 1)n

n!
.
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where

Hα+n
m :=

m∑
r=1

logα+n(r + a)

r + a
− logα+n+1(m+ a)

α + n+ 1
− logα+n(m+ a)

2(m+ a)
,

This yields the form of the Laurent series expansion of Dα
s

[
ζ(s, a)− 1

as

]
.

Definition 3.1. Letting α ∈ R, α > 0 and 0 < a ≤ 1 and s 6= 1. For n ∈ N we define the
fractional Stieltjes constants Cα+n(a) to be the coefficients of the expansion

(7) Dα
s

[
ζ(s, a)− 1

as

]
=

Γ(α + 1)

(s− 1)α+1
+ (−1)−α

∞∑
n=0

(−1)nCα+n(a)

n!
(s− 1)n,

We now conclude our consideration of the sum Gα
s,a(m) + Iαs (m)−D(s) + G(s) obtained

from the Euler-Maclaurin summation for Dα
s

[
ζ(s, a)− 1

as

]
. For the last term G(s) we have:

G(s) =

∞∫
m

P1(x)g′(x)dx =

∞∫
m

P1(x)

[
−s logα(x+ a)

(x+ a)s+1
+ α

logα−1(x+ a)

(x+ a)s+1

]
dx.

From the definition of the fractional Stieltjes constants it follows that:
∞∑
n=0

Hα+n
m

(−1)α+n(s− 1)n

n!
+G(s) =

∞∑
n=0

(−1)α+nCα+n(s− 1)n

n!
.

Therefore, taking successive derivatives with respect to s, of both sides of this equation,
and then evaluating them at s = 1, we obtain for all n ∈ N ∪ {0}:
(8) Cα+n(a) = Hα+n

m +G(n)(1).

Setting n = 0 in (8) and noting that gα(x) = logα(x+a)
x+a

, we obtain

Cα(a) = Hα+0
m +G(1)

=
m∑
r=1

logα(r + a)

r + a
− logα+1(m+ a)

α + 1
− logα(m+ a)

2(m+ a)
+

∞∫
m

P1(x)g′α(x)dx,

which proves:

Theorem 3.2. Let α ∈ R with α > 0, 0 < a ≤ 1 and m ∈ N. We have

Cα(a) =
m∑
r=1

logα(r + a)

r + a
− logα+1(m+ a)

α + 1
− logα(m+ a)

2(m+ a)
+

∞∫
m

P1(x)g′α(x)dx,(9)

where gα(x) = logα(x+a)
x+a

and P1(x) = x− bxc − 1
2
.

Lettingm→∞ immediately yields (for all α > 0 and 0 < a ≤ 1) the natural generalization
of Berndt’s result (2) which Kreminski [8] used to define the fractional γα(a) for α ∈ R:

Corollary 3.3.

γα(a)− logα(a)

a
= Cα(a) = lim

m→∞

{
m∑
r=1

logα(r + a)

r + a
− logα+1(m+ a)

α + 1

}
,
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Corollary 3.4. As α→ 0+, γα(1)→ γ − 1, where γ = γ0(1) is Euler’s constant.

Proof. Observe that, with a = 1, the left-hand sum in (7) becomes
∞∑
n=0

logα(n+1)
(n+1)s

, which, with

α→ 0+, will converge to
∞∑
n=1

1

(n+ 1)s
=
∞∑
n=2

1

ns
= ζ(s)− 1.

From the Laurent series expansion of ζ(s) about s = 1, we have

ζ(s)− 1 =
1

s− 1
+ γ − 1 +

∞∑
n=2

(−1)nγn(1) · (s− 1)n

n!
.(10)

Hence, in order to maintain equality in (7), the right hand side of (7) must approach ζ(s)−1
as α→ 0+. This occurs if and only if γα(1)→ γ − 1 as α→ 0+. �

Note: It follows that γα(1), as a function of α, is discontinuous at α = 0.

4. Kreminski’s Conjecture

Now we are ready to prove our main result, namely [8, Conjecture (IIIa)]:

Theorem 4.1. Let ha(s) := ζ(s, a) − 1
s−1
− 1

as
and let h

(α)
a (s) = Dα

s [ha(s)] be the α-th
Grünwald-Letnikov fractional derivative of ha. Then

Cα(a) := γα(a)− logα(a)

a
= (−1)−αh(α)

a (1).

Note: Kreminski’s original statement (in [8]) of the conjecture is slightly different than
ours, due to his use of the Weyl fractional derivative Wα

s . For 0 < α < 1 the Weyl fractional
derivatives of the relevant functions are

Wα
s

[
1

s− 1

]
=

(−1)−ααπ csc(απ)

Γ(1− α)(s− 1)α+1
= (−1)−α

Γ(α + 1)

(s− 1)α+1

and

Wα
s

[
ζ(s, a)− 1

as

]
= (−1)−α

∞∑
n=1

logα(n+ a)

(n+ a)s
.

These expressions differ by a factor (−1)2α from the Grünwald-Letnikov fractional of the
same functions (see Lemma 2.1), the same factor by which our restatement of Kreminski’s
conjecture differs from the original.

Proof. We have

h(α)
a (s) = Dα

s [ha(s)] = Dα
s

[
ζ(s, a)− 1

as

]
−Dα

s

[
1

s− 1

]
.

Applying formulas from the parts (b) and (c) of Lemma 2.1 we readily obtain

h(α)
a (s) = (−1)α

∞∑
n=1

logα(n+ a)

(n+ a)s
− (−1)αΓ(α + 1)

(s− 1)α+1
,

6



or equivalently

(−1)−αh(α)
a (s) =

∞∑
n=0

logα(n+ a)

(n+ a)s
− Γ(α + 1)

(s− 1)α+1
− logα(a)

a

=
∞∑
n=0

(−1)nγα+n(a)

n!
(s− 1)n − logα(a)

a
.

Evaluating h
(α)
a (s) at the point s = 1, we get:

(−1)−αh(α)
a (1) = γα(a)− logα(a)

a
= Cα(a),

which finishes the proof. �
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