ON FRACTIONAL STIELTJES CONSTANTS

RICKY E. FARR, SEBASTIAN PAULI, AND FILIP SAIDAK

ABSTRACT. We study the non-integral generalized Stieltjes constants $\gamma_{\alpha}(a)$ arising from the Laurent series expansions of fractional derivatives of the Hurwitz zeta functions $\zeta^{(\alpha)}(s, a)$, and we prove that if $h_a(s) := \zeta(s,a) - 1/a^s$ and $C_\alpha(a) := \gamma_\alpha(a) - \frac{\log^\alpha(a)}{a}$ $\frac{a}{a}$, then

$$
C_{\alpha}(a) = (-1)^{-\alpha} h_a^{(\alpha)}(1),
$$

for all real $\alpha \geq 0$, where $h^{(\alpha)}(x)$ denotes the α -th Grünwald-Letnikov fractional derivative of the function h at x. This result confirms the conjecture of Kreminski $[8]$, originally stated in terms of the Weyl fractional derivatives.

1. INTRODUCTION

The Hurwitz zeta function is defined, for $\Re(s) > 1$ and $0 < a \leq 1$, as $\zeta(s, a) = \sum_{n=1}^{\infty} \frac{a_n}{s!}$ $n=0$ 1 $\frac{1}{(n+a)^s}$. In a manner very similar to that of the Riemann zeta function $\zeta(s)$, the function $\zeta(s, a)$ can be extended to a meromorphic function with a simple pole at $s = 1$ with residue 1 (see [\[2\]](#page-6-1), or [\[4\]](#page-6-2)). Moreover, the function has a Laurent series expansion about $s = 1$, given by

(1)
$$
\zeta(s, a) = \frac{1}{s - 1} + \sum_{n=0}^{\infty} \frac{(-1)^n \gamma_n(a)(s - 1)^n}{n!},
$$

where $\gamma_n(a)$ are the generalized Stieltjes constants. The original Stieltjes constants $\gamma_n =$ $\gamma_n(1)$ were defined in 1885 ([\[10\]](#page-6-3)), but are themselves a generalization of Euler's constant γ :

$$
\gamma = \gamma_0(1) = \lim_{m \to \infty} \left(\sum_{n=1}^m \frac{1}{n} - \log m \right) = 0.57721\,56649\,\cdots
$$

In 1972, Berndt [\[3\]](#page-6-4) showed that for the generalized Stieltjes constants in [\(1\)](#page-0-0) we have:

.

(2)
$$
\gamma_k(a) = \lim_{m \to \infty} \left\{ \sum_{n=0}^m \frac{\log^k(n+a)}{n+a} - \frac{\log^{k+1}(m+a)}{k+1} \right\}
$$

This result was sharpened by Williams & Zhang [\[11\]](#page-6-5), who established, for $m \geq 1$,

(3)
$$
\gamma_k(a) = \sum_{r=0}^m \frac{\log^k(r+a)}{r+a} - \frac{\log^{k+1}(m+a)}{k+1} - \frac{\log^k(m+a)}{2(m+a)} + \int_m^{\infty} P_1(x) f'_k(x) dx,
$$

where $f_{\alpha}(x) = \frac{\log^{\alpha}(x+a)}{x+a}$ and $P_1(x) = x - \lfloor x \rfloor - \frac{1}{2}$, with $\lfloor x \rfloor$ denoting the integer part of x.

²⁰¹⁰ Mathematics Subject Classification. 11M35.

More recently, Kreminski [\[8\]](#page-6-0) has given a generalization of $\gamma_{\nu}(a)$ to $\nu > 0$, the so-called fractional Stieltjes constants. He computed $C_{\nu}(a) = \gamma_{\nu}(a) - \frac{\log^{\nu}(a)}{a}$ $\frac{a}{a}$ and conjectured that it equals $(-1)^{\nu}$ times the *v*-th Weyl fractional derivative of $\zeta(s, a) - 1/(s-1) - 1/a^s$ at $s = 1$.

The main aim of our paper is to explain how one can employ Grünwald-Letnikov fractional derivatives in order to prove this conjecture of Kreminski [\[8\]](#page-6-0). In the process we generalize the results from Berndt [\[3\]](#page-6-4) and Williams & Zhang [\[11\]](#page-6-5) to the fractional case.

2. Fractional Derivatives

We begin by giving a brief summary of the most useful basic properties of generalized derivatives. The fractional derivative operators are generalizations of the familiar differential operator D^n to arbitrary (integer, rational, or complex) values of n.

For $N \in \mathbb{N}$ and $h > 0$, let $\Delta_h^N f(z) = (-1)^N \sum_{k=0}^N (-1)^k {N \choose k} f(z + kh)$ be the standard finite $_{k=0}$ difference of f. Then we have (see [\[9\]](#page-6-6), for example): $f^{(n)}(z) = \lim_{h \to 0}$ $\frac{\Delta_h^n f(z)}{h^n}$ for all $n \in \mathbb{N}$; and this can be naturally extended to the fractional case (see [\[5\]](#page-6-7)) via

$$
\Delta_h^{\alpha} f(z) = (-1)^{\alpha} \sum_{k=0}^{\infty} (-1)^k {\alpha \choose k} f(z + kh),
$$

where $\begin{pmatrix} \alpha \\ k \end{pmatrix}$ $\binom{\alpha}{k} = \frac{\Gamma(\alpha+1)}{\Gamma(k+1)\Gamma(\alpha-k+1)}$. For any $\alpha \in \mathbb{C}$, the so-called reverse α^{th} Grünwald-Letnikov derivative of a function $f(z)$ is now defined as (cf. Grünwald [\[7\]](#page-6-8)):

(4)
$$
D_z^{\alpha}[f(z)] = \lim_{h \to 0^+} \frac{\Delta_h^{\alpha} f(z)}{h^{\alpha}} = \lim_{h \to 0^+} \frac{(-1)^{\alpha} \sum_{k=0}^{\infty} (-1)^k {(\alpha \choose k} f(z + kh)}{h^{\alpha}},
$$

whenever the limit exists. Thus defined, $D_z^{\alpha}[f(z)]$ coincide with the standard derivatives for all $\alpha \in \mathbb{N}$. Moreover, they are analytic functions of α and z (as long as the function $f(z)$ is analytic) and they satisfy: $D_z^0[f(z)] = f(z)$ and $D_z^{\alpha} [D_z^{\beta} [f(z)] = D_z^{\alpha+\beta} [f(z)]$.

We note that the Grünwald-Letnikov derivative is defined for all $\alpha \in \mathbb{C}$, but in this paper we only consider $\alpha \in \mathbb{R}$, with $\alpha \geq 0$. The following results can be found in [\[9\]](#page-6-6).

Lemma 2.1. Let $\alpha \geq 0$, $a > 0$, and $z \in \mathbb{C}$. Then $D_z^{\alpha}[e^{-az}] = (-1)^{\alpha}a^{\alpha}e^{-az}$.

This for $0 < a \leq 1$, and $s \in \mathbb{C}$ with $\Re(s) > 1$ the Grünwald-Letnikov fractional derivative of order $\alpha \geq 0$ with respect to s of $\zeta(s, a) - 1/a^s$ is

(5)
$$
D_s^{\alpha} \left[\zeta(s, a) - \frac{1}{a^s} \right] = (-1)^{\alpha} \sum_{n=1}^{\infty} \frac{\log^{\alpha} (n+a)}{(n+a)^s}.
$$

The fractional derivative of $\zeta(s,a) - 1/a^s$ can be analytically continued to all of C with the exception of a pole at 1.

3. Fractional Stieltjes Constants

We study the non-integral generalized Stieltjes constants $\gamma_{\alpha}(a)$ arising from the Laurent series expansions of fractional derivatives of the Hurwitz zeta functions $\zeta^{(\alpha)}(s, a)$. Our result confirms the conjecture of Kreminski [\[8\]](#page-6-0), originally stated in terms of the Weyl fractional derivatives.

In the following we find the Lauren series expansion for D_s^{α} \lceil $\zeta(s,a)-\frac{1}{a^s}$ a s 1 and define the fractional Stieltjes Constants as its coefficients. We use the following form of the Euler-Maclaurin summation formula

(6)
$$
\sum_{k=m}^{n} g(k) = \int_{m}^{n} g(x) dx + \sum_{k=1}^{\ell} \frac{(-1)^k B_k}{k!} g^{(k+1)}(x) \Big|_{m}^{n} + (-1)^{\ell+1} \int_{m}^{n} P_{\ell}(x) g^{(\ell)}(x) dx,
$$

where $g(x) \in C^{\ell}[m, n], \ell \in \mathbb{N}$ and $P_k(x)$ denotes the k^{th} periodic Bernoulli polynomial

$$
P_k(x) = \frac{B_k(x - \lfloor x \rfloor)}{k!}.
$$

We take $\ell = 1$ in [\(6\)](#page-2-0) and set $g(x) := \frac{\log^{\alpha}(x+a)}{(x+a)^s}$. Let $n \to \infty$, for $\Re(s) > 1$ we obtain

$$
D_s^{\alpha} \left[\zeta(s, a) - \frac{1}{a^s} \right] = \sum_{r=1}^{\infty} \frac{\log^{\alpha} (r+a)}{(r+a)^s}
$$

=
$$
\sum_{r=1}^{m-1} \frac{\log^{\alpha} (r+a)}{(r+a)^s} + \int_{m}^{\infty} \frac{\log^{\alpha} (x+a)}{(x+a)^s} dx + \frac{\log^{\alpha} (m+a)}{2(m+a)^s} + \int_{m}^{\infty} P_1(x) g'(x) dx
$$

=
$$
\sum_{r=1}^{m} \frac{\log^{\alpha} (r+a)}{(r+a)^s} + \int_{m}^{\infty} \frac{\log^{\alpha} (x+a)}{(x+a)^s} dx - \frac{\log^{\alpha} (m+a)}{2(m+a)^s} + \int_{m}^{\infty} P_1(x) g'(x) dx
$$

=:
$$
G_{s,a}^{\alpha}(m) + I_s^{\alpha}(m) - D(s) + G(s).
$$

We will estimate each of these four terms separately.

For the first term $G_{s,a}^{\alpha}(m)$ we have:

$$
G_{s,a}^{\alpha}(m) = \sum_{r=1}^{m} \frac{\log^{\alpha}(r+a)}{(r+a)^s}
$$

=
$$
\sum_{r=1}^{m} \frac{\log^{\alpha}(r+a)}{r+a} e^{-(s-1)\log(r+a)}
$$

=
$$
\sum_{r=1}^{m} \frac{\log^{\alpha}(r+a)}{r+a} \sum_{n=0}^{\infty} \frac{(-1)^n \log^n(r+a)}{n!} (s-1)^n
$$

=
$$
\sum_{n=0}^{\infty} \frac{(-1)^n (s-1)^n}{n!} \sum_{r=1}^{m} \frac{\log^{\alpha+n}(r+a)}{(r+a)}.
$$

Since $\alpha \geq 0$, $m \in \mathbb{N}$, and $0 < a \leq 1$, for all $s \in \mathbb{C}$ with $\Re(s) > 1$, the second term $I_s^{\alpha}(m)$ can be written in terms of the Upper Incomplete Gamma function $\Gamma(\alpha, s)$ as follows (comparing it, for instance, with results found in [\[6,](#page-6-9) p. 346] and [\[1,](#page-6-10) 6.5.3]):

$$
I_s^{\alpha}(m) = \int_{m}^{\infty} \frac{\log^{\alpha}(x+a)}{(x+a)^s} dx
$$

=
$$
\frac{\Gamma(\alpha+1, (s-1)\log(m+a))}{(s-1)^{\alpha+1}}
$$

=
$$
\frac{1}{(s-1)^{\alpha+1}} \left[\Gamma(\alpha+1) - (s-1)^{\alpha+1} \log^{\alpha+1}(m+a) \sum_{n=0}^{\infty} \frac{(-1)^n (s-1)^n \log^n(m+a)}{(\alpha+1+n)n!} \right]
$$

=
$$
\frac{\Gamma(\alpha+1)}{(s-1)^{\alpha+1}} - \log^{\alpha+1}(m+a) \sum_{n=0}^{\infty} \frac{(-1)^n (s-1)^n \log^n(m+a)}{(\alpha+1+n)n!}
$$

=
$$
\frac{\Gamma(\alpha+1)}{(s-1)^{\alpha+1}} - \sum_{n=0}^{\infty} \left(\frac{\log^{\alpha+n+1}(m+a)}{\alpha+n+1} \right) \frac{(-1)^n (s-1)^n}{n!}.
$$

We write the third term as:

$$
D(s) = \frac{\log^{\alpha}(m+a)}{2(m+a)} \sum_{n=0}^{\infty} \frac{(-1)^n \log^n(m+a)(s-1)^n}{n!}
$$

=
$$
\sum_{n=0}^{\infty} \left(\frac{\log^{\alpha+n}(m+a)}{2(m+a)}\right) \frac{(-1)^n (s-1)^n}{n!}.
$$

Combining the above three expressions for $G_{s,a}^{\alpha}(m)$, $I_s^{\alpha}(m)$ and $D(s)$ we get:

$$
G_{s,a}^{\alpha}(m) + I_s^{\alpha}(m) + D(s)
$$

=
$$
\sum_{r=1}^{m} \frac{\log^{\alpha}(r+a)}{(r+a)^s} + \int_{m}^{\infty} \frac{\log^{\alpha}(x+a)}{(x+a)^s} dx - \frac{\log^{\alpha}(m+a)}{2(m+a)^s}
$$

=
$$
\sum_{n=0}^{\infty} \frac{(-1)^n (s-1)^n}{n!} \sum_{r=1}^{m} \frac{\log^{\alpha+n}(r+a)}{(r+a)}
$$

+
$$
\frac{\Gamma(\alpha+1)}{(s-1)^{\alpha+1}} - \sum_{n=0}^{\infty} \left(\frac{\log^{\alpha+n+1}(m+a)}{\alpha+n+1} \right) \frac{(-1)^n (s-1)^n}{n!}
$$

+
$$
\sum_{n=0}^{\infty} \left(\frac{\log^{\alpha+n}(m+a)}{2(m+a)} \right) \frac{(-1)^n (s-1)^n}{n!}
$$

=
$$
\frac{\Gamma(\alpha+1)}{(s-1)^{\alpha+1}} + \sum_{n=0}^{\infty} \frac{(-1)^n (s-1)^n}{n!} \left(\sum_{r=1}^{m} \frac{\log^{\alpha+n}(r+a)}{(r+a)} + \frac{\log^{\alpha+n+1}(m+a)}{\alpha+n+1} - \frac{\log^{\alpha+n}(m+a)}{2(m+a)} \right)
$$

=
$$
\frac{\Gamma(\alpha+1)}{(s-1)^{\alpha+1}} + \sum_{n=0}^{\infty} H_{m}^{\alpha+n} \frac{(-1)^n (s-1)^n}{n!}.
$$

where

$$
H_m^{\alpha+n} := \sum_{r=1}^m \frac{\log^{\alpha+n}(r+a)}{r+a} - \frac{\log^{\alpha+n+1}(m+a)}{\alpha+n+1} - \frac{\log^{\alpha+n}(m+a)}{2(m+a)},
$$

This yields the form of the Laurent series expansion of D_s^{α} $\left[\zeta(s, a) - \frac{1}{a^s}\right]$ $\frac{1}{a^s}$.

Definition 3.1. Letting $\alpha \in \mathbb{R}$, $\alpha > 0$ and $0 < \alpha \leq 1$ and $s \neq 1$. For $n \in \mathbb{N}$ we define the fractional Stieltjes constants $C_{\alpha+n}(a)$ to be the coefficients of the expansion

(7)
$$
D_s^{\alpha} \left[\zeta(s, a) - \frac{1}{a^s} \right] = \frac{\Gamma(\alpha + 1)}{(s - 1)^{\alpha + 1}} + (-1)^{-\alpha} \sum_{n=0}^{\infty} \frac{(-1)^n C_{\alpha + n}(a)}{n!} (s - 1)^n,
$$

We now conclude our consideration of the sum $G_{s,a}^{\alpha}(m) + I_s^{\alpha}(m) - D(s) + G(s)$ obtained from the Euler-Maclaurin summation for D_s^{α} $\left[\zeta(s, a) - \frac{1}{a^s}\right]$ $\frac{1}{a^s}$. For the last term $G(s)$ we have:

$$
G(s) = \int_{m}^{\infty} P_1(x)g'(x)dx = \int_{m}^{\infty} P_1(x) \left[-s \frac{\log^{\alpha}(x+a)}{(x+a)^{s+1}} + \alpha \frac{\log^{\alpha-1}(x+a)}{(x+a)^{s+1}} \right] dx.
$$

From the definition of the fractional Stieltjes constants it follows that:

$$
\sum_{n=0}^{\infty} H_m^{\alpha+n} \frac{(-1)^{\alpha+n}(s-1)^n}{n!} + G(s) = \sum_{n=0}^{\infty} \frac{(-1)^{\alpha+n} C_{\alpha+n}(s-1)^n}{n!}
$$

.

Therefore, taking successive derivatives with respect to s, of both sides of this equation, and then evaluating them at $s = 1$, we obtain for all $n \in \mathbb{N} \cup \{0\}$:

(8)
$$
C_{\alpha+n}(a) = H_m^{\alpha+n} + G^{(n)}(1).
$$

Setting $n = 0$ in [\(8\)](#page-4-0) and noting that $g_{\alpha}(x) = \frac{\log^{\alpha}(x+a)}{x+a}$, we obtain

$$
(a) = H_m^{\alpha+0} + G(1)
$$

=
$$
\sum_{r=1}^m \frac{\log^{\alpha}(r+a)}{r+a} - \frac{\log^{\alpha+1}(m+a)}{\alpha+1} - \frac{\log^{\alpha}(m+a)}{2(m+a)} + \int_m^{\infty} P_1(x)g'_\alpha(x)dx,
$$

which proves:

 C_{α}

Theorem 3.2. Let $\alpha \in \mathbb{R}$ with $\alpha > 0$, $0 < a \leq 1$ and $m \in \mathbb{N}$. We have

(9)
$$
C_{\alpha}(a) = \sum_{r=1}^{m} \frac{\log^{\alpha}(r+a)}{r+a} - \frac{\log^{\alpha+1}(m+a)}{\alpha+1} - \frac{\log^{\alpha}(m+a)}{2(m+a)} + \int_{m}^{\infty} P_1(x)g'_{\alpha}(x)dx,
$$

where $g_{\alpha}(x) = \frac{\log^{\alpha}(x+a)}{x+a}$ and $P_1(x) = x - \lfloor x \rfloor - \frac{1}{2}$.

Letting $m \to \infty$ immediately yields (for all $\alpha > 0$ and $0 < a \leq 1$) the natural generalization of Berndt's result [\(2\)](#page-0-1) which Kreminski [\[8\]](#page-6-0) used to define the fractional $\gamma_{\alpha}(a)$ for $\alpha \in \mathbb{R}$:

Corollary 3.3.

$$
\gamma_{\alpha}(a) - \frac{\log^{\alpha}(a)}{a} = C_{\alpha}(a) = \lim_{m \to \infty} \left\{ \sum_{\substack{r=1 \ r \neq a}}^{m} \frac{\log^{\alpha}(r+a)}{r+a} - \frac{\log^{\alpha+1}(m+a)}{\alpha+1} \right\},\,
$$

Corollary 3.4. As $\alpha \to 0^+$, $\gamma_{\alpha}(1) \to \gamma - 1$, where $\gamma = \gamma_0(1)$ is Euler's constant.

Proof. Observe that, with $a = 1$, the left-hand sum in [\(7\)](#page-4-1) becomes $\sum_{n=1}^{\infty}$ $n=0$ $\log^{\alpha}(n+1)$ $\frac{g^{\alpha}(n+1)}{(n+1)^s}$, which, with $\alpha \to 0^+$, will converge to

$$
\sum_{n=1}^{\infty} \frac{1}{(n+1)^s} = \sum_{n=2}^{\infty} \frac{1}{n^s} = \zeta(s) - 1.
$$

From the Laurent series expansion of $\zeta(s)$ about $s = 1$, we have

(10)
$$
\zeta(s) - 1 = \frac{1}{s - 1} + \gamma - 1 + \sum_{n=2}^{\infty} \frac{(-1)^n \gamma_n (1) \cdot (s - 1)^n}{n!}.
$$

Hence, in order to maintain equality in [\(7\)](#page-4-1), the right hand side of (7) must approach $\zeta(s)-1$ as $\alpha \to 0^+$. This occurs if and only if $\gamma_\alpha(1) \to \gamma - 1$ as $\alpha \to 0$ ⁺.

Note: It follows that $\gamma_{\alpha}(1)$, as a function of α , is discontinuous at $\alpha = 0$.

4. Kreminski's Conjecture

Now we are ready to prove our main result, namely [\[8,](#page-6-0) Conjecture (IIIa)]:

Theorem 4.1. Let $h_a(s) := \zeta(s,a) - \frac{1}{s-1} - \frac{1}{a^s}$ $\frac{1}{a^s}$ and let $h_a^{(\alpha)}(s) = D_s^{\alpha} [h_a(s)]$ be the α -th Grünwald-Letnikov fractional derivative of h_a . Then

$$
C_{\alpha}(a) := \gamma_{\alpha}(a) - \frac{\log^{\alpha}(a)}{a} = (-1)^{-\alpha} h_{a}^{(\alpha)}(1).
$$

Note: Kreminski's original statement (in [\[8\]](#page-6-0)) of the conjecture is slightly different than ours, due to his use of the Weyl fractional derivative W_s^{α} . For $0 < \alpha < 1$ the Weyl fractional derivatives of the relevant functions are

$$
W_s^{\alpha} \left[\frac{1}{s-1} \right] = \frac{(-1)^{-\alpha} \alpha \pi \csc(\alpha \pi)}{\Gamma(1-\alpha)(s-1)^{\alpha+1}} = (-1)^{-\alpha} \frac{\Gamma(\alpha+1)}{(s-1)^{\alpha+1}}
$$

and

$$
W_s^{\alpha} \left[\zeta(s, a) - \frac{1}{a^s} \right] = (-1)^{-\alpha} \sum_{n=1}^{\infty} \frac{\log^{\alpha}(n+a)}{(n+a)^s}.
$$

These expressions differ by a factor $(-1)^{2\alpha}$ from the Grünwald-Letnikov fractional of the same functions (see Lemma [2.1\)](#page-1-0), the same factor by which our restatement of Kreminski's conjecture differs from the original.

Proof. We have

$$
h_a^{(\alpha)}(s) = D_s^{\alpha} [h_a(s)] = D_s^{\alpha} \left[\zeta(s, a) - \frac{1}{a^s} \right] - D_s^{\alpha} \left[\frac{1}{s-1} \right].
$$

Applying formulas from the parts (b) and (c) of Lemma [2.1](#page-1-0) we readily obtain

$$
h_a^{(\alpha)}(s) = (-1)^{\alpha} \sum_{n=1}^{\infty} \frac{\log^{\alpha}(n+a)}{(n+a)^s} - \frac{(-1)^{\alpha} \Gamma(\alpha+1)}{(s-1)^{\alpha+1}},
$$

or equivalently

$$
(-1)^{-\alpha}h_a^{(\alpha)}(s) = \sum_{n=0}^{\infty} \frac{\log^{\alpha}(n+a)}{(n+a)^s} - \frac{\Gamma(\alpha+1)}{(s-1)^{\alpha+1}} - \frac{\log^{\alpha}(a)}{a}
$$

$$
= \sum_{n=0}^{\infty} \frac{(-1)^n \gamma_{\alpha+n}(a)}{n!} (s-1)^n - \frac{\log^{\alpha}(a)}{a}.
$$

Evaluating $h_a^{(\alpha)}(s)$ at the point $s = 1$, we get:

$$
(-1)^{-\alpha}h_a^{(\alpha)}(1) = \gamma_\alpha(a) - \frac{\log^\alpha(a)}{a} = C_\alpha(a),
$$

which finishes the proof. \Box

5. Acknowledgements

The authors would like to thank the referee for a number of helpful suggestions.

REFERENCES

- [1] Abramowitz, M. & Stegun, I. – Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover, New York, 1964.
- [2] Apostol, T. – Introduction to analytic number theory, Chapter 12, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976.
- [3] Berndt, C. – On the Hurwitz zeta-function, Rocky Mountain J. Math., Vol. 2, No. 1, 151–157, 1972.

[4] Davenport, H. – Multiplicative number theory, Markham, Chicago, 1967.

[5] Diaz, J. B. & Osler, T. J. – Differences of fractional order, Math. Comp. 28 (1974), 185—202.

[6] Gradshteyn, I. S. – Table of Integrals, Series, and Products, Academic Press, 2007.

- [7] Grünwald, A. K. – *Über begrenzte Derivation und deren Anwendung*, Z. Angew. Math. Phys., 12, 1867.
- [8] Kreminski, R. – Newton-Cotes integration for approximating Stieltjes (generalized Euler) constants, Math. Comp., Vol. 72, 1379–1397. 2003.

[9] Ortigueira, M. D. – Fractional calculus for scientists and engineers. Lecture Notes in Electrical Engineering, 84. Springer, Dordrecht, 2011.

- [10] Stieltjes, T. J. – Correspondance d'Hermite et de Stieltjes, Tomes I & II, Gauthier-Villars, Paris, 1905.
- [11] Williams, K. S. & Zhang, N. Y. – Some results on the generalized Stieltjes constants. Analysis 14 (1994), no. 2–3, 147-–162.

Department of Mathematics and Statistics, University of North Carolina, Greensboro, NC 27402, U.S.A.

Email address: refarr@uncg.edu, s_pauli@uncg.edu, f_saidak@uncg.edu