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Abstract. For any α ∈ R, we denote by Dα
s [ζ(s)] the α-th Grünwald-Letnikov fractional

derivative of the Riemann zeta function ζ(s). We prove that

Dα
s [ζ(s)] 6= 0

inside the region |s−1| < 1. This result is proved by a careful analysis of integrals involving
Bernoulli polynomials and bounds for fractional Stieltjes constants.

1. Introduction

The Riemann zeta function ζ(s) and its derivatives ζ(k)(s) are defined as

ζ(s) =
∞∑
n=1

1

ns
and ζ(k)(s) = (−1)k

∞∑
n=2

(log n)k

ns
,

for all k ∈ N, everywhere in the complex half-plane <(s) > 1.
In [2], the authors have investigated the zero-free regions of higher derivatives ζ(k)(s), and

have discovered not only that, for all k ∈ N, all of these derivatives have identical counts of
zeros in <(s) > 1/2, but that there exists a dynamics that, with discretely increasing k, moves
the non-trivial zeros of ζ(k)(s), in a one-to-one fashion, to the right, in a virtually periodic
manner. Due to increasing density of the zeros in vertical direction, this simple bijective
idea is difficult to state quantitatively; however, the observed “flow” suggests that fractional
derivatives (the Grünwald-Letnikov derivatives Dα

s [ζ(s)], in particular) could provide the
missing link needed to establish this property. Despite the incredible amount of research
concerning ζ(s) and its derivatives, the fractional derivatives have been largely neglected.

We will not try to prove the audacious one-to-one conjecture in this paper, but we will
establish a zero-free region for fractional derivatives of ζ(s), which – although modest and
far from optimal – is proved in an elementary way, and seems to be the first of its kind.

We start by recalling some basics. First, note that ζ(s) can be extended to a meromorphic
function with a simple pole at s = 1, with residue 1, and has a Laurent series expansion:

(1) ζ(s) =
1

s− 1
+
∞∑
n=0

(−1)nγn
n!

(s− 1)n,

where γn are the Stieltjes constants [10]. Bounds for fractional Stieltjes constants will be
needed in the proof of our zero-free region. Before we define them, let us note that for any
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α ∈ C, the so-called “reverse αth Grünwald-Letnikov derivative” of f(z) is (see [6]):

Dα
z [f(z)] = lim

h→0+

∆α
hf(z)

hα
= lim

h→0+

(−1)α
∞∑
k=0

(−1)k
(
α
k

)
f(z + kh)

hα
,

whenever the limit exists. Thus defined, Dα
z [f(z)] coincides with the standard derivatives

for all α ∈ N. Also, they satisfy: D0
z [f(z)] = f(z) and Dα

z

[
Dβ
z [f(z)]

]
= Dα+β

z [f(z)]. And if
f(z) is analytic, then Dα

z [f(z)] is an analytic function of both α and z. (Note: although the
Grünwald-Letnikov derivative is defined for all α ∈ C, in this paper we only consider α ∈ R
with α ≥ 0, since these cases are most useful in the theory of the Riemann zeta function.)

Finally, let us note that, in [8] it was shown that for z ∈ C we have Dα
z [e−az] =

(−1)αaαe−az, which for ζ(s) implies the following: For all s ∈ C with <(s) > 1, we have

(2) Dα
s [ζ(s)] = (−1)α

∞∑
n=1

logα(n+ 1)

(n+ 1)s
.

2. Fractional Stieltjes Constants

The fractional Stieltjes constants γα where α ∈ R>0 were introduced by Kreminski [7] and
can be defined as the coefficients of the Laurent expansion of the α-th Grünwald-Letnikov
fractional derivative of ζ(s) for s 6= 1 [4]:

Dα
s [ζ(s)] = (−1)−α

Γ(α + 1)

(s− 1)α+1
+
∞∑
n=0

(−1)nγα+n

n!
(s− 1)n.(3)

In view of this, it becomes clear that in order to establish regions of non-vanishing of these
derivatives (which is the main objective of this paper), one needs to investigate behavior of
the fractional Stieltjes constants in more detail. In [4] (in the process of proving a conjecture
of Kerminski concerning the special values of the derivatives of Hurwitz zeta functions), we
have proved the following useful generalization of a result of Williams & Zhang [11]:

For α > 0 and m ∈ N,

γα =
m∑
r=1

logα(r)

r
− logα+1m

α + 1
− logα(m)

2m
+

∞∫
m

P1(x)f ′α(x)dx,(4)

where P1(x) = x− bxc − 1
2

and fα(x) =
logα x+ 1

x+ 1
. Integrating (4) by parts m times yields

∫ ∞
m

P1(x)f ′α(x)dx =
v∑
j=1

[
Pj(x)f (j−1)

α (x)
]∞
x=m

+ (−1)v−1

∞∫
m

Pv(x)f (v)
α (x)dx

= −
v∑
j=1

Pj(m)f (j−1)
α (m) + (−1)v−1

∞∫
m

Pv(x)f (v)
α (x)dx(5)

where for k ∈ N, Pk(x) = Bk(x−bxc)
k!

is the kth periodic Bernoulli polynomial and Bk is the

kth Bernoulli number. What’s more, the derivatives of fα can be written in terms of the
2



(signed) Stirling numbers (see [5, Proposition 2.2]) as follows:

f (n)
α (x) =

n∑
i=0

s(n+ 1, i+ 1)(α)i
logα−i(x+ 1)

(x+ 1)n+1
,(6)

where (α)i = Γ(α+1)
Γ(α−i+1)

is the falling factorial. This particular result was applied (see [5,

Theorem 4.1]) in the proof of an upper bound of the fractional Stieltjes constants:

|γα| ≤
(3 + (−1)n+1)Γ(α + 1)

(2π)n+1(n+ 1)α+1

(2(n+ 1))!

(n+ 1)!
,(7)

where n ∈ N, such that 1 ≤ n < α. These estimates present a natural generalization of the
bounds for the so-called generalized Stieltjes constants, see [11, Theorem 3].

3. Three Lemmas

We begin the construction of our proof with the following three lemmas.

Lemma 3.1. Let 0 < α ≤ 1 and fα(x) = logα(x+1)
x+1

. Then

∣∣∣∣∞∫
1

P3(x)f ′′′α (x)dx

∣∣∣∣ < 0.013.

Note: Ostrowski observed, in [9], that for odd n > 1 one has: |Pn(x)| < 2
(2π)n

.

Proof. Let us consider the expression (6). With the help of the triangle inequality, and the
change of variables for the integral, we are able to write:∣∣∣∣∣∣

∞∫
1

P3(x)f ′′′α (x)dx

∣∣∣∣∣∣ < 2

(2π)3

3∑
i=0

|s(4, i+ 1)(α)i|
∞∫

1

logα−i(x+ 1)

(x+ 1)4
dx(8)

<
2

(2π)3

3∑
i=0

|s(4, i+ 1)(α)i|
3α−i+1

∞∫
3 log(2)

xα−ie−xdx.

We will estimate each of the four summands on the right side of the inequality separately.
We start with i = 0. Since xα ≤ x in the interval [3 log(2),∞), we can write

|s(4, 1)(α)0|
3α+1

∞∫
3 log(2)

xαe−xdx ≤ 6

3α+1

∞∫
3 log(2)

xe−xdx =
1

4

3 log(2) + 1

3α
.(9)

For i = 1, in the interval [3 log(2),∞) we have xα−1 ≤ 3α−1 logα−1(2), for all α ≤ 1; thus

|s(4, 2)(α)1|
3α

∞∫
3 log(2)

xα−1e−xdx ≤ 11α

3α
3α−1 logα−1(2)

∞∫
3 log(2)

e−xdx ≤ 11 logα−1(2)

24
.(10)
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Now, for the summand corresponding to i = 2 we have

|s(4, 3)(α)2|
3α−1

∞∫
3 log(2)

xα−2e−xdx =
6|α(α− 1)|

3α−1

∞∫
3 log(2)

xα−2e−xdx(11)

≤ 3

2

1

3α−1
3α−2 logα−2(2)

∞∫
3 log(2)

e−xdx =
logα−2(2)

16
,

since for 0 < α ≤ 1 we have |α(α− 1)| ≤ 1
4

and for x ∈ [3 log(2),∞): xα−2 ≤ 3α−2 logα−2(2).
Finally, for i = 3 we can write

|s(4, 4)(α)3|
3α−2

∞∫
3 log(2)

xα−3e−xdx =
|α(α− 1)(α− 2)|

3α−2

∞∫
3 log(2)

xα−3e−xdx(12)

≤ 2
√

3

9

3α−3 logα−3(2)

3α−2

∞∫
3 log(2)

e−xdx =

√
3 logα−3(2)

108
,

since |α(α− 1)(α− 2)| ≤ 2
9

√
3 for α ∈ (0, 1] and xα−3 ≤ 3α−3 logα−3(2) for x ∈ [3 log(2),∞).

Combining these four bounds, we conclude:∣∣∣∣∞∫
1

P3(x)f ′′′α (x)

∣∣∣∣ < 2
(2π)3

[
1
4

3 log(2)+1
3α

+ 11 logα−1(2)
24

+ logα−2(2)
16

+
√

3 logα−3(2)
108

]
< 0.013,(13)

as desired. �

Lemma 3.2. If 0 < α < 1, then |γα| < 0.436.

Proof. Taking m = 2 in the representation (4), we get

γα =
logα(2)

4
− logα+1(2)

α + 1
+

∞∫
2

P1(x)f ′α(x)dx.

But from (5) we know that

γα =
logα(2)

4
− logα+1(2)

α + 1
− P2(1)f ′α(1) + P3(1)f ′′α(1) +

∞∫
2

P3(x)f ′′′α (x)dx.

So, with P2(1) = B2

2!
= 1

12
and P3(1) = B3

3!
= 0 and f ′α(x) = α logα−1(2)

4
− logα(2)

4
we obtain

γα =
logα(2)

4
− logα+1(2)

α + 1
− 1

12

[
α

logα−1(2)

4
− logα(2)

4

]
+

∞∫
1

P3(x)f ′′′α (x)dx

=
13 logα(2)

48
− logα+1(2)

α + 1
− α logα−1(2)

48
+

∞∫
1

P3(x)f ′′′α (x)dx.
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Now, note that the maxima of the first three terms are attained when α = 0. Since the bound

obtained in Lemma 3.1 also holds for the absolute value of the integral
∞∫
2

P1(x)f ′α(x)dx, we

immediately obtain the wanted bound: |γα| ≤ 0.436. �

Lemma 3.3. For all α > 0, we have

(i)
|γα|

Γ(α + 1)
< 0.348 and (ii)

|γα+1|
Γ(α + 1)

≤ 0.323.

Proof. Combining the bound for |γα| proved in Lemma 3.2 and the fact that Γ(α + 1) ≥
Γ(3/2) =

√
2π
2

, for 0 < α ≤ 1, we deduce that |γα|
Γ(α+1)

< 0.436√
2π
2

< 0.348 in the region 0 < α ≤ 1.

Now, in the complementary region α > 1, by (7), for all 1 ≤ n < α, we have

|γα|
Γ(α + 1)

≤ 4

(2π)n+1(n+ 1)α+1

(2(n+ 1))!

(n+ 1)!
≤ 4

√
2

(2π)n+1(n+ 1)α+1

(
4(n+ 1)

e

)n+1

=
4
√

2

(2π)n+1(n+ 1)α−n

(
4

e

)n+1

≤ 4
√

2

(
2

πe

)n+1

≤ 4
√

2

(
2

πe

)2

≤ 0.311,

which is an even sharper bound. Together, these two bounds prove (i) for all α > 0.
Similarly, to justify (ii), note that since α + 1 > 1, the equation (7) with n = 1 yields

|γα+1|
Γ(α + 1)

≤ 4Γ(α + 2)4!

(2π)22α+22!Γ(α + 1)
=

12(α + 1)

(2π)22α
.(14)

The maximum of g(α) = α+1
2α

is at α = 1
log(2)

− 1. This immediately yields the result (ii). �

4. A Zero Free Region

We need one more technical lemma before we can prove our main theorem.

Lemma 4.1. For all α > 0 and n ∈ N ∪ {0},
Γ(α + n+ 3)

Γ(α + 1)(n+ 2)!2n(n+ 3)α
<

(α1 + 2)(α1 + 1)

3α12
< 1.036,

where

α1 =

√
5 log2(3) + 4

2 log(3)
+

1

log(3)
− 3

2
.

Proof. We proceed by induction on n. For n = 0 we have

Γ(α + 3)

Γ(α + 1)2!3α
=
α2 + 3α + 2

3α2
.

The maximum of g(α) = α2+3α+2
3α2

= (α2+3α+2)e−α log(3)

2
is at α1 =

√
5 log2(3)+4

2 log(3)
+ 1

log(3)
− 3

2
, with

g(α1) = 1.0356. Now, let us assume that, for all integers j with 1 ≤ j ≤ n, we have

Γ(α + j + 3)

Γ(α + 1)(j + 2)!2j(j + 3)α
≤ (α1 + 2)(α1 + 1)

3α12
.
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We will show the assertion is true for j = n+ 1. Applying the induction hypothesis gives

Γ(α + j + 3)

Γ(α + 1)(j + 2)!2j(j + 3)α
=

Γ(α + n+ 4)

Γ(α + 1)(n+ 3)!2n+1(n+ 4)α

=
1

2

(
n+ 3

n+ 4

)α
α + n+ 3

n+ 3

Γ(α + n+ 3)

Γ(α + 1)(n+ 2)!2n(n+ 3)α
(15)

≤ 1

2

(
n+ 3

n+ 4

)α
α + n+ 3

n+ 3

(α1 + 2)(α1 + 1)

3α12
.

Hence, all we need to show is that 1
2

(
n+3
n+4

)α α+n+3
n+3

≤ 1. However, notice that the function

g(α) = 1
2

(
n+3
n+4

)α α+n+3
n+3

is positive for all α > 0; and taking the logarithmic derivative we get

g′(α)

g(α)
= log

(
n+ 3

n+ 4

)
+

1

α + n+ 3
≤ − 1

n+ 4
− 1

2

(
1

n+ 4

)2

+
1

α + n+ 3
,

since, from the Taylor’s Theorem, we know that log(1 − x) ≤ −x − 1
2
x2, in the range

0 ≤ x < 1. Moreover, 1
α+n+3

≤ 1
n+4

, and since g(α) > 0, we can conclude that g′(α) < 0.

Therefore g(α) is decreasing in the interval [1,∞), with the maximum at g(1) = 1
2
.

On the other hand, if 0 < α < 1, the maximum of
(
n+3
n+4

)α
is attained at α = 0. And since

α+n+3
n+3

< n+4
n+3

= 1 + 1
n+3
≤ 4

3
, we have g(α) < 1

2
4
3

= 2
3
, for α ∈ (0, 1). Combining these two

results in (15), we deduce the bound for j = n+ 1. This completes the inductive proof. �

Now we are ready to prove our main result.

Theorem 4.2. For all α ≥ 0, Dα
s [ζ(s)] 6= 0 in the region |s− 1| < 1.

Proof. For α = 0, the reader is referred to [1]. We prove that (s−1)α+1

Γ(α+1)
Dα
s [ζ(s)] 6= 0 in the

region |s− 1| < 1. Starting with (3), we are able to write∣∣∣∣(s− 1)α+1

Γ(α + 1)
ζ(α)(s)

∣∣∣∣ =

∣∣∣∣∣1 +
∞∑
n=0

(−1)nγα+n(s− 1)α+n+1

Γ(α + 1)n!

∣∣∣∣∣
≥ 1− |γα|

Γ(α + 1)
− |γα+1|

Γ(α + 1)
−
∞∑
n=2

|γα+n|
Γ(α + 1)n!

.

Applying Lemma 3.3, we see that∣∣∣∣(s− 1)α+1

Γ(α + 1)
ζ(α)(s)

∣∣∣∣ > 1− 0.492− 0.323−
∞∑
n=2

|γα+n|
Γ(α + 1)n!

.(16)

We can focus now on finding an upper bound for
∞∑
n=2

|γα+n|
Γ(α+1)n!

. By (7) we have

|γα+n|
Γ(α + 1)n!

≤ 4Γ(α + n+ 1)(2(n+ 1))!

(2π)n+1(n+ 1)α+n+1(n+ 1)α+n+1(n+ 1)!n!Γ(α + 1)
.
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It follows from Stirling’s formula that (2n)!
n!
≤
√

2
(

4n
e

)n
for all integers n ≥ 1. Therefore

∞∑
n=2

|γα+n|
Γ(α + 1)n!

≤
∞∑
n=2

4Γ(α + n+ 1)

(2π)n+1(n+ 1)α+n+1n!Γ(α + 1)

√
2

(
4(n+ 1)

e

)n+1

=
∞∑
n=2

4
√

2Γ(α + n+ 1)

(2π)n+1(n+ 1)αn!Γ(α + 1)

(
4

e

)n+1

= 4
√

2

(
2

πe

)3 ∞∑
n=0

Γ(α + n+ 3)

Γ(α + 1)(n+ 2)!2n(n+ 3)α

(
4

πe

)n
≤ 4
√

2

(
2

πe

)3 ∞∑
n=0

(α1 + 2)(α1 + 1)

3α12

(
4

πe

)n
< 0.142,

by Lemma 4.1 (and with the same notation). Using this bound in (16), we obtain∣∣∣∣(s− 1)α+1

Γ(α + 1)
ζ(α)(s)

∣∣∣∣ > 1− 0.492− 0.323− 0.142 > 0.

We conclude that Dα
s [ζ(s)] 6= 0, for all α > 0, in the region |s− 1| < 1. �
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