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Abstract. We present a method for evaluating the reverse Grünwald-Letnikov fractional
derivatives of the Riemann Zeta function ζ(s) and use it to explore the location of zeros of
integral and fractional derivatives on the left half plane.

1. Introduction

The Riemann zeta function ζ(s) and its derivatives ζ(k)(s) are defined by

(1) ζ(s) =
∞∑
n=1

1

ns
and ζ(k)(s) = (−1)k

∞∑
n=2

(log n)k

ns

everywhere in the half-plane <(s) > 1. By a process of analytic continuation these functions
can be extended to meromorphic functions with a single pole at s = 1. Moreover, ζ(s) has
the Laurent series expansion:

(2) ζ(s) =
1

s− 1
+
∞∑
n=0

(−1)nγn
n!

(s− 1)n,

where γ0 is the Euler constant and for n ≥ 1 γn are the Stieltjes constants.
Unlike ζ(s) itself, the functions ζ(k)(s) have neither Euler products nor functional equa-

tions. Thus their nontrivial zeros do not lie on a line, but appear to be distributed seemingly
at random with most zeros located to the right of the critical line σ = 1

2
. Speiser [16] was

the first to show, in 1934, that the Riemann Hypothesis is equivalent to the fact that ζ ′(s)
has no zeros with 0 < σ < 1

2
. Spira [17] noticed that the zeros of ζ ′(s) and ζ ′′(s) seem to

come in pairs, where a zero of ζ ′′(s) is located to the right of a zero of ζ ′(s). More recently,
with the help of extensive computations, Skorokhodov [15] observed this behavior for higher
derivatives as well.

Our results from [2] support a straightforward one-to-one correspondence between the
zeros of ζ(k)(s) and ζ(m)(s) for large k and m on the right half plane. Furthermore in [3] we
have observed an interesting behavior of the zeros of ζ(k)(s) on the left half plane, namely
they seem to lie on curves which are extensions of chains of zeros of ζ(k)(s) that were observed
on the right half plane. Also some of the zeros of ζ(k)(s) on the negative real axis appeared
to be part the chains.

We are investigating this correspondence between the zeros of different derivatives by
considering curves of zeros of fractional derivatives ζ(k)(s) that connect the zeros of integral
derivatives. We have found that among the multitude of existing definitions of fractional
derivatives, the reverse Grünwald-Letnikov fractional derivative works best for situations
dealing with ζ(s).
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Figure 1. The identity map and the first derivative of the Riemann zeta
function on the complex plane. In each point (σ, t) on the plane the argument
of the function at that point is represented by hue. The absolute value is
represented by brightness with black representing 0 and white representing
infinity.

In [4] we have applied it in a proof of a conjecture by Kreminski [10] and in [5] we have
been able to apply some of the properties of the fractional Stieltjes constants to prove that
the zero free region of ζ(s) of radius one about s = 1 generalizes to fractional derivatives.

In [14] we present generalizations of the zero free regions of integral derivatives of ζ(s) on
the right half plane from [2] to fractional derivatives. This yields the existence of curves of
zeros of fractional derivatives on the right half plane. Here we conduct numerical investiga-
tions of the zeros of fractional derivatives where we concentrate our attention to the left half
plane.

2. Grünwald-Letnikov Fractional Derivatives of ζ(s)

The fractional derivative introduced by Grünwald [7] in 1867 was simplified both in ap-
proach and notation, by Letnikov in 1869 [12, 11]. For N ∈ N and h > 0, let

∆N
h f(z) = (−1)N

N∑
k=0

(−1)k
(
N

k

)
f(z + kh)

be the N -th finite difference of f . Then for all n ∈ N we have:

f (n)(z) = lim
h→0

∆n
hf(z)

hn

This can be naturally extended to the fractional case with the generalization of ∆N
h f(z)

∆α
hf(z) = (−1)α

∞∑
k=0

(−1)k
(
α

k

)
f(z + kh),
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Figure 2. The fractional derivatives ζ(2.25), ζ(4.5), ζ(6.75), and ζ(9) on the
complex plane. The values of the function at each point are shown as in in
Figure 1. These are frames from https://www.youtube.com/watch?v=

mdL0DU821Uo.

where α ∈ C and
(
α
k

)
= Γ(α+1)

Γ(k+1)Γ(α−k+1)
. The reverse αth Grünwald-Letnikov derivative of a

function f(z) is now defined as:

Dα
z [f(z)] = lim

h→0+

∆α
hf(z)

hα
= lim

h→0+

(−1)α
∞∑
k=0

(−1)k
(
α
k

)
f(z + kh)

hα
,(3)

whenever the limit exists.
Defined this way, the fractional derivatives Dα

s [f(s)] coincides with the integral derivatives
for all α ∈ N. Furthermore, they satisfy D0

s [f(s)] = f(s) and Dα
s

[
Dβ
s [f(s)]

]
= Dα+β

s [f(s)],
for all α, β ∈ C. For c ∈ C we have that Dα

s [c] = 0 and for m 6= 0 we have Dα
s [ems] = mαems.

So for s ∈ C with <(s) > 1 and α > 0 we have as the generalization of (1) that

(4) ζ(α)(s) = Dα
s [ζ(s)] = (−1)α

∞∑
n=1

logα(n+ 1)

ns
.
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We have already used the generalization of (2) to the fractional domain in our proof [4] of a
conjecture of Kreminski [10]. For 1 6= s ∈ C and α > 0 we have

ζ(α)(s) = Dα
s [ζ(s)] = (−1)α

(
Γ(α + 1)

(s− 1)α+1
+
∞∑
n=0

(−1)nγα+n

n!
(s− 1)n

)
,

where the γα are the fractional Stieltjes constants. Because of the branch cut of the complex
logarithm there is a discontinuity along (−∞, 1] for α 6∈ N. On C \ (−∞, 1] the fractional
derivative is analytic. As a direct consequence we obtain the following useful property:

Proposition 1. Let α be a positive real number.

(1) If σ ∈ (1,∞) and α 6∈ N then Dα
σ [ζ(σ)] is non-real.

(2) For s ∈ C \ (−∞, 1] we have Dα
σ [ζ(s)] = (−1)2αDα

σ [ζ(s)].

While this establishes symmetry for the location of the zeros Dα
σ [ζ(s)] in C, with respect

to the real axis, the symmetry is not perfect. It only refers to the location, and not the actual
mirroring of properties, or the dynamics surrounding the zeros. Nevertheless it asserts that
chains of zeros can be observed on the upper as well as lower half plane.

3. Evaluating Dα
s [ζ(s)]

One of the most effective ways for evaluating (4) and its analytic continuations to the
regions where σ < 1 is Euler-Maclaurin summation. We use the following form of the
summation formula:

N∑
k=m

g(k) =

N∫
m

g(x)dx+
v∑
k=1

(−1)kBk

k!
g(k−1)(x)

∣∣∣∣N
x=m

+(−1)v+1

N∫
m

Pv(x)g(v)(x)dx,

where g(x) ∈ Cv [m,n], v ∈ N, Bk denotes the k-th Bernoulli number, and Pk(x) = Bk(x−bxc)
k!

is the kth periodic Bernoulli polynomial. If g(x) decreases rapidly enough for N →∞, then

∞∑
k=2

g(k) =
m−1∑
k=2

g(k) +

∞∫
m

g(x)dx+
v∑
k=1

(−1)kBk

k!
g(k−1)(x)

∣∣∣∣∞
x=m

(5)

+ (−1)v+1

∞∫
m

Pv(x)g(v)(x)dx

We now use this to approximate ζ(α)(s) = Dα
s [ζ(s)] = (−1)α

∑∞
k=2

logα k
ks

where s ∈ C with

<(s) > 1. Let g(x) = log(α)(x)
xs

. Then
∑∞

k=2 g(k) converges for <(s) > 1. We assume that v is
even. We evaluate the first summand of (5) as is, namely as

Gα
s (m) :=

m−1∑
k=2

g(k) =
m−1∑
k=2

logα k

ks

The second term of the right hand side of (5) can be written in terms of the Upper Incomplete
Gamma function Γ(α, s) (compare [6, p. 346] and [1, 6.5.3]):

Iαs (m) :=

∞∫
m

g(x)dx =

∞∫
m

logα x

xs
dx =

Γ(α + 1, (s− 1) log(m))

(s− 1)α+1
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Figure 3. Zeros σ + it with t ≥ 0 of the fractional derivatives of ζ(s) on the
left half plane. For k ∈ N zeros of ζ(k)(s) are labeled with k. Not all zeros on
the real axis are shown. The values for α are 1/100 apart. For details about
σ = −6 see Figure 4.
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For the third term we get:

Bα
s (m, v) :=

v∑
k=1

(−1)kBk

k!
g(k−1)(x)

∣∣∣∣∞
x=m

=
1

2

logα(m)

ms
−
bv/2c∑
j=1

B2j

(2j)!

(
logα(m)

ms

)(2j−1)

We use the non-central Stirling numbers S(k, i, s) to evaluate the derivatives g(k−1). Let

(α)i = α · (α− 1) · (α− 2) · · · · · (α− (i− 1)) =
Γ(α + 1)

Γ(α− i+ 1)

be the falling factorial and denote the Stirling numbers of the first kind by s(j, i). Then

(6) S(k, i, s) =
k−i∑
j=0

(−1)k−i+j(−1)k
(
k

j

)
(−α)js(k − j, i).

The derivatives of g can be written as [8, Theorem 1]:

g(k)(x) =

(
logα x

xs

)(k)

=
k∑
i=0

S(k, i, s)(α)i
logα−i(x)

xs+k

Now we determine a bound for the fourth term of (5). Writing s = σ + it and

Eα
s (m, v) :=

1

v!

∞∫
m

Pv(x)g(v)(x)dx

we obtain

|Eα
s (m, v)| =

∣∣∣∣ 1

v!

∫ ∞
m

Pv(x)g(v)(x)dx

∣∣∣∣ ≤ |Bv|
v!

∫ ∞
m

|g(v)(x)|dx

≤ |Bv|
v!

v∑
j=0

∫ ∞
m

∣∣∣∣S(v, j, s)(α)j
logα−j(x)

xs+v

∣∣∣∣ dx
≤ |Bv|

v!

(
v∑
j=0

|S(v, j, s)(α)j|

)(∫ ∞
m

logk(x)

xσ+v
dx

)

=
|Bv|
v!

(
v∑
j=0

|S(v, j, s)(α)j|

)
Γ(α + 1, (σ + v − 1) log(m))

(σ + v − 1)α+1

The error term Eα
s (m, v) converges for σ + v > 1 and m > 2.

For all s ∈ C \ (∞, 1] we can choose m ∈ N and v ∈ N such that |Eα
s (m, v)| becomes

arbitrarily small. We can thus approximate Dα
s [ζ(s)] as

Dα
s [ζ(s)] ≈ (−1)α (Gα

s (m) + Iαs (m) +Bα
s (m, v))

where the error is |Eα
s (m, v)|.
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A considerable increase in speed was obtained by evaluating the non-central Stirling num-
bers of the first kind S(v, j, s) by their recurrence relation

S(1, 0, s) = −s
S(1, 1, s) = 1

S(r + 1, 0, s) = (−s− r)S(r, 0, s)

S(r + 1, i, s) = (−s− r)S(r, i, s) + S(r, i− 1, s) for 1 ≤ i ≤ r

S(r + 1, r + 1, s) = S(r, r, s)

and caching their values.
We have implemented the method described above in the computer algebra system Sage-

Math [18] using the library mpmath [9]. Figures 1, 2, 3 and 4 were generated with our
implementation.

4. Exploring the Left Half Plane

With our implementation of the approximation to ζ(α)(s), see Section 3, we have investi-
gated the distribution of the zeros on the left half plane. We observe, see Figure 3, that the
zeros on the left half plane given in [3] appear to be connected in a similar manner as on the
right half plane.

Furthermore they connect to zeros of integral derivatives on the negative real axis. Note
that there is a discontinuity of ζ(α)(s) for α 6∈ N ∪ {0} on the real axis σ < 1. We find
different patterns how zeros of integral derivatives are connected, see Figure 4. Some of the
curves start and stop at zeros of integral derivatives on the left real axis such as shown in
the first plot in Figure 4.

Levinson and Montgomery [13] have shown that ζ(k)(s) for k ∈ N has only finitely many
non-real zeros on the left half plane. Taking derivatives of the Laurent series expansion (2)
of ζ(s) one immediately sees that the order of the pole of the k-th derivative of ζ(s) is k+ 1.
Thus the argument of ζ(k)(γ(t)) on a curve γ : [0, 2π) → C around s = 1 whose interior
does not contain any zeros cycles through all of [0, 2π) exactly k + 1 times. Each of these
cycles “spawns” at most 2 zeros of ζ(k)(s), compare Figure 2. If those zeros were evenly
distributed, there would be at most k+1

2
such zeros in the upper left half plane. Experiments

suggest that this is indeed an upper bound for the count of such zeros (see Table 1) and that
these are the only non-real zeros on the upper left half plane (see Figure 3). This leads us
to conjecture:

Conjecture 2. Let k ∈ N. The number of pairs of non-real zeros of ζ(k)(s) with σ ≤ 0 is at
most k+1

2
.

Figure 4 shows that this is not the case for fractional derivatives.

References

[1] Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and math-
ematical tables, National Bureau of Standards Applied Mathematics Series, vol. 55. For sale by the
Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. (1964)

[2] Binder, T., Pauli, S., Saidak, F.: Zeros of high derivatives of the Riemann zeta function. Rocky Mountain
J. Math. 45(3), 903–926 (2015), https://doi.org/10.1216/RMJ-2015-45-3-903

7

https://doi.org/10.1216/RMJ-2015-45-3-903


-7.5 -7 -6.5 -6
σ 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t

1 2

-8 -7.5 -7 -6.5 -6 -5.5 -5 -4.5
σ 0

0.1

0.2

0.3

0.4

t

2 43

-9 -8 -7 -6 -5
σ 0

0.05

0.1

0.15

t

3 5 64 7
-9 -8.5 -8 -7.5 -7 -6.5 -6 -5.5

σ 0

0.01

0.02

0.03

0.04

0.05

0.06

t

6 7 8 109
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⌋
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