ON RAMIFICATION POLYGONS AND GALOIS GROUPS OF
EISENSTEIN POLYNOMIALS

CHRISTIAN GREVE AND SEBASTIAN PAULI

ABSTRACT. Let ¢(x) be an Eisenstein polynomial of degree n over a local field and « be a
root of ¢(x). Our main tool is the ramification polygon of ¢(x), that is the Newton polygon
of p(z) = p(ax + a)/(a™z). We present a method for determining the Galois group of p(x)
in the case where the ramification polygon consists of one segment.

1. INTRODUCTION

Algorithms for computing Galois groups are an important tool in constructive number
theory. The commonly used algorithms for computing Galois groups of polynomials over
Q (and Q(t)) are based on the method of Stauduhar [20]. Considerable progress has been
made in this area over the last ten years. For local fields however, that is for fields K
complete with respect to a non-archimedian exponential valuation v with residue class field
K of characteristic p # oo, there is no general algorithm.

As the Galois groups of unramified extensions are explicitly known, we concentrate the
Galois groups of totally ramified extensions. These can be generated by an Eisenstein poly-
nomial, that is a polynomial p(z) = 2" + S a’ € Oklx] with v(p) = 1 and v(p;) > 1
for 1 <i <n — 1. We denote by a a root of ¢(x) in an algebraic closure K of K.

If p does not divide the degree of p(z) the extension K(«) is tamely ramified and can be
generated by a pure polynomial. We show how this pure polynomial can be obtained and
recall the (well known) explicit description of its Galois group (see section 2).

If p divides the degree of ¢(x) the situation becomes more difficult. John Jones and David
Roberts have developed algorithms for determining the Galois group for the special cases
of polynomials of degree 22, 23, and 3% over Q, and Q3 respectively based on the resolvent
method [7, 8, 9].

A useful tool for obtaining information about the splitting field and the Galois group is the
ramification polygon rp(¢) of ¢(x), which is the Newton polygon np(p) of the ramification
polynomial p(z) = p(az + a)/(a"x) € K(a)[z].

David Romano has treated the case of Eisenstein polynomials ¢(z) of degree n = p™ with
v(p1) = 1, so that the ramification polygon consists of one segment of slope —h/(p™ — 1)
where ged(h,p™ — 1) = 1 [16]. In this case the Galois group of ¢(x) is isomorphic to the
group

I'={z—azx”+b|acF, becFym oc GalFm/FmNK)}
of permutations of F,m. In [17] he generalizes his result to ramification polygons that are a
line, on which only the end points have integral coordinates.

We develop the theory of ramification polygons further by attaching an additional invari-
ant, the associated inertia to each segment of the ramification polygon (section 3). In section

4 we describe the shape of ramification polygons and show that the polygons, as well as the
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associated inertias, which are the degrees of the splitting fields of associated polynomials,
are invariants of K(«). We find that the segments of the ramification polygon corresponds
to the subfields of the field generated by ¢(z) (section 5). In section 6 we investigate how
ramification polygons and their associated inertias behave in towers of subfields. This is
followed by a description of the splitting field in the case of ramification polygons with one
segment and a description of the maximal tamely ramified subfield of the splitting field in the
general case (section 7). In section 8 we use these results to find Galois groups of Eisenstein
polynomials with one sided ramification polygon with arbitrary slopes. Our methods can be
generalized algorithmically to the case of ramification polygons with two segments [2] and
beyond. In section 9 we give some examples for Galois groups determined in this way.

Notation. In the following K is a local field, complete with respect to a non-archimedian
exponential valuation v, where v = vk is normalized such that v(7) = k(7)) = 1 for a
uniformizing element 7 in the valuation ring Ok of K. The continuation of v to an algebraic
closure K of K is also denoted by v. For v € K and v/ € K we write v ~ +/, if v(y—9') > v(7).

We write ¢, for a primitive n-th root of unity. We denote by K = Ok /(7) = F, the residue
class field of Ok and by 8 = 8 + () the class of 5 € Ok in K. For v € K we denote by ~ a

lift of v to Ok. If p(x) = 3 1L, pir’ € Okla] we set p(x) == >71 ¢ 2’ € K[z].
2. TAMELY RAMIFIED EXTENSIONS

We present some results about tamely ramified subfields of totally ramified extensions and
the splitting fields and Galois groups of totally and tamely ramified extensions.

Proposition 2.1. Let n = egp™ with p t ey and let

n—1

p(z) =a"+ ) @i’ + g € Okla]

i=1
be a polynomial whose Newton polygon is a line of slope —h/n, where ged(h,n) = 1. Let
a be a root of p(x). The maximum tamely ramified subextension M of L = K(a) of degree
eo can be generated by the Eisenstein polynomial x + 3m® with 1y = po mod (") and
where a and b are integers such that aey + bh = 1.

Proof. As the Newton polygon of ¢(z) is a line all roots « of ¢(x) have the same valuation,
namely v(a) = h/n. Because ged(h,n) = 1, for each root a of ¢(x), the extension K(a)/K
is totally ramified of degree n, which implies that ¢(x) is irreducible.

Since n = egp™ with ged(ep, p) = 1 its maximum tamely ramified subextension M over K
has degree [M : K] = e5. We first show that M and the extensions generated by x + 1)y
are isomorphic. Because v(pg) = h and 1y = o mod (7"1), there is a principal unit
1+me € Ok such that ¥y = (14 me)gpy. Furthermore o = —py— Z?;ll i = —(1+7.0)po
for some principal unit 1 + m 6 € O where m_ is a uniformizer of the valuation ring O of
L. The polynomial 2 + 9y has a root over L if and only if (a?”x)% + 1 has a root over L.
Division by o™ yields

%0 + Yo _ e — L+ me)po = 2% — 1 mod m Oy [z].
an (1 + m.6)po
Obviously p(z) = 2¢ — 1 € L[z] is square free and p(1) = 0. With Newton lifting (and by

reversing the transformations above) we obtain a root of  + 1 in L. Let  be this root of
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7% + ). Then v(8°7%) = bh/e +a = 1/e and M = K(8) = K(B87?). As B0bre0e = —q)breoa
we have $°7¢ is a root of 2% + im0 € Oklx]. O

Corollary 2.2. Let p(z) = > i pix" € Oklz] be an Eisenstein polynomial and assume
pte. Ifv(z) = x°+ 1y with vy = oo mod (72), then the extensions generated by o(x) and
¥(x) are isomorphic.

It follows from Corollary 2.2 that the splitting field of an Eisenstein polynomial ¢(x) =
S o' € Oklx] with pteis N =K(C., v/—¢0), where (. is a primitive e-th root of unity.
The Galois group of N/K is well known, we obtain it from the general description of Galois
groups of normal, tamely ramified extensions (see, for instance, [5, chapter 16]):

Theorem 2.3. Let K be a local field and q the number of elements of its residue class field.
Let N/K be a normal, tamely ramified extension with ramification index e and inertia degree
f. There exists an integer r with r(qg—1) = 0 mod e such that N = K({, /(") where ( is a
(q¢/ —1)-st root of unity and ¢ —1=0mod e. Let k = @. The generators of the Galois
group are the automorphisms

5:Cm GO (VYO and b e CO /O P/ O
The Galois group of N/K as a finitely presented group is
(s,t]|s°=1,t/ =5" 5" =51) =2 C, x Cy,

3. ASSOCIATED POLYNOMIALS

Associated (or residual) polynomials, first introduced by Ore [14], are a useful tool in the
computation of ideal decompositions and integral bases [11, 12, 3] and the closely related
problem of polynomial factorization over local fields [4, 15]. The associated polynomials
yield information about the unramified part of the extension generated by a polynomial. We
will use it in the construction of splitting fields of Eisenstein polynomials.

Let p(z) = > 1, pix" € Oklz] be a not necessarily irreducible monic polynomial whose
Newton polygon np(p) consists of ¢ segments:

(07 l/(po)) A (alv V<pa1))7 T (at—lv V(:Oatﬁ)) A (atv V(ﬂllt)
with slopes:
—hy/e; < —hgfeg < -+ < —hy_1/e;1 < —hy/e;
with ged(e;, h;) = 1 for 1 < ¢ < t. Each of the segments corresponds to a factor p,(z) of
p(x). For each segment we obtain one associated polynomial as follows.

For 1 < r < tlet b, = v(p,,.). Consider the r-th segment (a,_1,b,_1) <> (a,,b,) of

np(p) and set d, = a, — a,_;. We have % = —Z—:. Let 8 be a root of p(z) with

v(B) = h,/e,, set L =K(p), let m_ be an uniformizing element in the valuation ring Oy of L.
We have

Qr

p(Bz) ~  pfi _ pif'a’
-1 Gar—1 - Z wbr—1Bar—1 = Z W mod 7TL@LM
i=0

1=ar—1

dr/er /Bjer“l‘arfl xjer"!‘arfl

_ pje“l‘a'r—l
= Z - mod m Oy [z].
=0
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The last congruence holds, because the z-coordinates of the points on the r-th segment of
the Newton polygon are of the form a,_; + je, (0 < j < (a,_1 — a,)/e,). Division by z% -1
yields

dT/eT p]6+a 6.7‘61‘1:]'87"
ﬂ-br 1/800,» 1.,L.a,,r 1 - Z ﬂ'br 1 mod WLOL[:L':I
For v = 3¢ /n" we have v(7y) = (5@/7?}”) — 0. By substituting " for 8 we get
dr/er h e\
p]er+(lr 17T] r(,yx r)]
rbr— 1/8@7‘ 1.I‘aT LT Z - mod WLOL[‘T}'

If we replace vz by y we obtain the associated polynomial of p(x) with respect to the r-th

segment S, of np(p):
dr/er

A W) =D pjesra ™y €Kyl
j=0
It follows immediately from the construction that:

Lemma 3.1. Let y,..., [, be the roots of p(x). The roots of A(y) € Kly] are of the form
B’

Definition 3.2. Let A(y) € K[y| be the associated polynomial of a segment S of np(p) and v
a root of A(y). We call the degree of the splitting field of A, (y) € Kly] over K the associated
inertia of S.

for some 1 <1 <n and some 1 < j <t.

Remark 3.3. The denominators of the slopes (in lowest terms) of the segments of the
Newton polygon np(p) of a polynomial p(z) are divisors of the ramification indices of the
extensions generated by the irreducible factors of a polynomial. For each segment of np(p)
the associated inertia is a divisor of the inertia degree of these extensions.

Remark 3.4. The factorization of A, (y) yields a factorization of the factor of p(z) that
corresponds to S, [14].

4. RAMIFICATION POLYGONS

Let o(x) = Y1, i’ € Oklz] be an Eisenstein polynomial, o € K a root of ¢(x) and
L := K(a). The polynomial

sz = M € O[z].

"

is called the ramufication polynomwl of ¢(x) and its Newton polygon, which we denote by
rp(p), is called the ramification polygon of p(x) (also see [18]). Denoting the roots of ¢(z)
in Kby a=ay,...,q, we have

=T (o) T =)




If the extension L/K generated by ¢(z) is Galois with Galois group G the segments of the
ramification polygon rp(y) correspond to the ramification subgroups of G:

G ={ceG|w(c(a)—a)>j+1} for j >0.

Q;—Q

Because v (*=*) = v (a; — a) — 1 the ramification polygon describes the filtration G =
Go> G > ... G =1 of the Galois group, that is, a segment of slope —m yields a jump
at m in the filtration, which means G,, # G, ;1. If the extension L/K is not Galois, there is
a similar interpretation for a filtration of the set of embeddings of L/K in K in the context
of non-Galois ramification theory (see [6]).

From the next lemma one can deduce the typical shape of the ramification polygon (see
figure 1).

Lemma 4.1 ([18, Lemma 1]). Let o(x) = > 1, iz’ € K[z] be an Eisenstein polynomial and
n = egp™ with p 1 ey. Denote by a a root of p(x) and set L = K(a). Then the following hold
for the coefficients of the polynomial Y(z) = > "1 ' := p(ax + ) € L{x]:

(a) v () > n for alli.

(b) vi(Ypm) = 1(thn) = n.

(¢) (i) = vi(thys) for p* <i < p*™ and s < m.

v (pi)

T T T 2 g * Z

0 p—1 p*2—1 pP-i—1 p*i—1 n—1

F1GURE 1. Shape of the ramification polygon

As a consequence we have:

Lemma 4.2. If a ramification polygon consists of only one segment with slope, say —my

pv(p)
then m; < ol

Proposition & Definition 4.3. Let L/K be totally ramified and o a prime element of L and

o(x) the minimal polynomial of . Then rp(p) and the associated inertia of the segments
are invariants of L/K. We call rp(L/K) := rp(p) the ramification polygon of L/K.

Proof. Let f = da where § € O = Okla] with 1 (§) = 0. We can write ¢ in the form

§ = 0p + 61 + b20® + ... with §; € Ok. Let 8 = Bi,..., [, be the conjugates of 3 and let
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©(x) be the minimal polynomial of 5. We compare the roots of the ramification polynomials
of p(x) and @(x)

i=2 =2
and . .
;MFJI(—@56={1@_<4+%D
i=2 i=2
For 1 < i < n long division yields
Bi _ dov; + 0102 + ... _%+51(ai—a)ai+...
B S+ 6%+ ... o doav + 0102 + ...

We have v (—1+«;/a) = m where m is one of the slopes of rp(¢). As v ((a; —@)a;) = m+2
we have 1 — 3;/8 ~ 1 — a;/a. Thus v (6; — 8) = m + 1 and it follows that the slopes of
the ramification polygon are independent of the choice of the uniformizing element of L and
therefore invariants of L.

To prove that the associated inertia is an invariant of L/K we consider the segment with
slope —m = —h/e of the Newton polygons of p(z) and p(z).

The roots of the corresponding associated polynomials A(y) € L[y] and A(y) € L[y] with
respect to the segment with slope m are of the form (see Lemma 3.1):

(CLrafar) g (L4465

ol 3h

Because —1 4 f3;/8—1 + a;/a we have
(=1+8;/B) 1 (—1‘1'041'/04)6.

€
~ —

3h Sh b
Therefore the roots of A(y) and A(y) differ only by the factor " € K = K. So, if A(y) =
[TZi(y — %) then A(y) = [T, (y — % N
underlined”). Clearly the polynomials A(y) and A(y) have the same splitting fields which
implies that the associated inertias are the same. [l

Lemma 4.4. Let L/K be totally ramified of degree p™ and let —my, ..., —my be the slopes
of rp(L/K). Let T/K be tamely ramified with ramification index eg and N = TK. Then the
slopes of rtp(N/T) are —eq - my, ..., —eq - my.

Proof. Let a be a uniformizer of L/K, ¢(z) its minimal polynomial and o = a, ..., apm € K
its conjugates. Let [ be a uniformizing element of T. If a, b € Z such that aey—bp™ = 1 then
vr(a®/B%) = 1/p™. The ramification polynomial p(z) € Oy|z] of the minimal polynomial of
at/Bb is
r o ﬁb p o
p(x):g(x—l—l—@E) :g($+1—5)
Each quotient «o;/« is of the form 1 4+ ;o™ with v(v;) = 0 for some 1 < ¢ < (. As

ged(a,p) =1 we get (a;/a)® = (1+va™)* ~ 14 aya™, which implies that the exponential
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valuation of the roots of p(x) € T[z] are e - m, (1 < ¢ < ¢). Thus the slopes of rp(N/T) are
—eq - Mmy,...,—egy - My. ]

5. BLOCKS AND SUBFIELDS

In the following we use the connection between blocks of the Galois group and subfields
of an extension to describe and calculate a specific chain of subfields of our extension L/K,
which is not Galois in general. We denote by G = Gal(¢) = Gal(L/K) the Galois group
of L/K, which is the automorphism group of the normal closure of L over K. As ¢(z) is
irreducible, G acts transitively on the set of roots 2 = {ay,...,a,} of p(z).

Definition 5.1. A non-empty subset A of Q is called a block, if o(A) N A € {0, A} for
all 0 € G. The group Ga = {0 € G | 0(A) = A} is called the stabilizer of A. The set
{A =AW AW .= {5(A) | 0 € G} is the block system with respect to A. It constitutes
a partition of , thus n = k- |A].

For the remainder of this section we fix the following notation (compare figure 1). The
Eisenstein polynomial ¢(z) has degree n = egp™, its ramification polynomial is denoted by
plx) = Z}:& p;a?, and its ramification polygon rp(p) consists of £+ 1 segments. By Lemma
4.1 there are natural numbers 0 = sy < §7 < ... < sy = r, so that the i-th segment .5; is of
the form

(P" ' = Liv(ppricio1)) < (p™ — 1, v (ppsi—1))

for 1 <i < (. The last segment Syy1 = (p* —1,0) > (n — 1,0) is horizontal. We denote the
slopes of the segment of rp(p) by —m; < —mgy < ... < —my; = 0.

We choose the numbering of the roots o = ay, ..., a, of p(z) compatible to the ramifica-
tion polygon, that is, such that, for 1 <:</+1

Apsi—141 — A1 Qps; — (X
|l 2t——— )= ... =y [ L——=) =m,.
031 aq

The following lemma says, that we can refine this numbering according to certain block
systems.

Lemma 5.2. The Galois group of p(z) has the blocks
Aj={ay,.. ., ={deK|p@)=0and v (a —a)) >m;+1} (1<i<0).

We can order the roots aq,...,a, such that AET) = {a(r_l)psiﬂ, o ,ozrpsi} forl1 <r <k
and k = n/p%.

Proof. Let o € Gal(y). We show, that o(A;) N A; is empty or equal to A;. If o(aq) € A; we
have v (6(a;) —a1) > m; + 1. Then we have for an arbitrary o; € A; that

n(ofa;) —ar) = nlo(a;) —o(ar) +oar) — )
=y (o(aj —a1)+ (o(ar) —aq)) > m; + 1,

since v (o(a; — a1)) > m; + 1. Because of our choice of ordering of aj, ..., a, only the
differences ap — « for k < p* have exponential valuation greater than or equal to m; + 1,
which implies o(a;) € A;.
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Lo =L = K(ov) Ao = {1}

pr U N
Ly = K(ag -+ aps1) Ay ={og, ... apm}
p*2— U N
pie-1T =2 U ﬂ
Lioi = Klag o) Ay ={on, .. ape}
prse1 N
Lo =K(ag - - apse) Ap={ag,...,0p}
e U N
Leyr =K Apr =A{ag, ..., a,}

FIGURE 2. The subfields of L = K(«;) and the corresponding blocks, where
the roots of ay,...,a, of p(x) € Oklz| are ordered as in Lemma 5.2 and
n = eop’ with p 1 eq.

If o(aq) ¢ A; we have v (o(oq) — a;) < m; + 1. In this case we get for an arbitrary
Q; € A;, that
n(o(oy) —aq) = (o(a; —ar) + (0(aq) —oq)) <m;+1
and o(a;) ¢ A; follows.
The ordering of the roots «; according to the ramification polygon and the subordering

according to the block systems {AEI), cees Agk)} are consistent, because Ay C Ay C ... C
Ay. O

There is a correspondence between the blocks and the subfields of L/K. For a subgroup
H of the Galois group G of L/K we write Fix(H) for the fixed field under H. A proof of the
theorem can be found in [10].

Theorem 5.3. Let p(x) € K[z| be irreducible of degree n, p(a) =0, L = K(a), and G the
Galois group of L/K.
(a) The correspondence A — Fix(Ga) is a bijection between the set of blocks containing
a and the set of subfields of L/K.
(b) For two blocks Ay, Ay with corresponding subfields Ly, Ly we have Ly C Ly if and only
if Ay C A

The next theorem describes the subfields corresponding to the blocks of Lemma 5.2, see
Figure 2.

Theorem 5.4. Let L = K(«) and for 0 <i < { let L; = K(B;) with f; = o1 - ... apsi. Then
L=LiDLiD...0L DK with [L; : Liyq] =p* 7% fori <l —1 and [L,: K] = e.

Proof. For 1 < ¢ < ¢ denote by E; the field Fix(Ga,) that corresponds to the block A; =
{ar,... api} (see Theorem 5.3). The field E; has degree m = -3 over K. We show, that
8




E; = Li. Let h(z) = [],,ea, (¢ — o). Because h(z) stays invariant under the action of Ga,
and it divides ¢(x) and it has the correct degree p*, it is the minimal polynomial of oy over
E;. The field generated by the coefficients of h(x) is equal to E;. If this field had degree
m’ < m over K, we would get the contradiction [L : K] = m/p® < mp® = n. In fact, even the
constant coefficient f; of h(z) is sufficient to generate E;, since L/K is totally ramified and
v (B;) = p¥ = [L : E;] holds. Hence f3; is a primitive element for E; /K and we get E; = L; as
proposed. The inclusion and degree statements follow directly from theorem 5.3. O

In the case of a Galois extension L/K the subfields L; are exactly the ramification subfields
of L/K, that is, the fixed fields under the ramification subgroups of the Galois group. For an
extension, which is not Galois, they are fixed fields under the “ramification subsets” of the
set of embeddings of L/K in K (see again [6]).

Remark 5.5. An explicit computation of the subfields L; = K(f;) on a computer means
finding the elements 3; as elements of L/K. This yields an embedding of L;/K in L/K. Then
a generating polynomial for L;/K can be obtained by a minimal polynomial calculation. We
briefly describe how the elements f3; in L/K can be determined.

Polynomial factorization techniques [1, 15] yield a factorization p(x) = r(x)-. .. -rep1(x) €
L[z] of the ramification polynomial, where 7;(z) corresponds to the j-th segment of the rami-
fication polygon. Reversing the transformation from ¢(z) to p(x) this gives us a factorization

o) =pi(z) ... per1(z) € Liz] of p(x) with

for2<j</+1and

(=3

)=m1

Now ~v; € L is equal to the constant coefficient of py(x) - ... p;(z).

6. RAMIFICATION POLYGONS AND SUBFIELDS

We investigate how ramification polygons and their associated inertias behave in towers of
subfields. We continue to use the notation from section 5 (also see Figure 2). By construction
of the subfields L; we expect a strong connection between the ramification polygon of ¢(x)
and the ramification polygons of generating polynomials for the extensions L; ;/L;. The
following lemma and theorem describe the connection in detail.

Lemma 6.1. Assume the ramification polygon of rp(¢) = rp(L/K) consists of the segments
S1,..., 801 of lengths p** — 1,p*2 — p®' ... p®t+t — p® with slopes —my < -+ < —myyq = 0.
Then

(a) the ramification polygon rp(Ly/K) has exactly € segments Ty, ..., T, of lengths p* /p** —

L, (p® — p®2)/p* ..., (p°+* — p®)/p* with slopes —my, ..., —myi1 =0,
(b) the associated inertia of T; is equal to the associated inertia of S;y1, and
(¢) for each root § of A,(y) the element 5" is a root of the associated polynomial of T;.
9



Proof. We assume that the roots of ¢(z) are ordered as in Lemma 5.2. Let Ay = Agl), ceey Agk)
be the block system for the smallest block A;. If a € A " with 2 < r < k, then
n(a—ai) =my+1 < mq+1 for some A € {2, E—{—l} Thus we can write o = oy —|—5am*+1
for some § € K with v(6) = 0. If a,a’ € A then v (o — o) = my + 1. Thus, if
o = ay + 8! for some ¢ € K Wlth V((S’) =0 then d" ~ §. Recall that by our ordering of

the roots of ( ) we have «; € Al and a(_pypsiti € Af) for 1 <i<ptand2<r <k By
the considerations above there is a ¢ € K with v(g) = 0 so that for some A € {2,...,¢+ 1}:
a(ril)psl+i m
1 -1+ —~ A,
(1) + o ea
For 1 <r <klet 3, = HQGA@-) a, so that Ly = K(B;1). Then ¢(z) = Hr L& — B, is the
1
minimal polynomial of ; over K. The ramification polynomial of ¢ (z) is:

V(B + ) T 5, u i1 -
(- () I (e )

r=2 r=2

By relation (1) there are &, € K with v(e,) =0 and A € {2,...,£4 1} so that

ps1—1
_1+%N1+<1+5r MNP = el mkpl—i—Z(,)aZa}n“.

1

If we show that

(2) -1+ & ~ gP 1a;n,\p51
1

then clearly (a) holds. We now proof (b) and (c) for Sy and 7). The results for the other
segments follow analogously.

The roots of the ramification polygon of ¢ with valuation msy are —1 4 «;/ay ~ g;a]" for
some ¢; € K with v(e) =0and p** + 1 < i < p*2. By Lemma 3.1 this gives the roots

(6i0/1nQ)e2 eo
1

of the associated polynomial A,(y)K[y| of Sy, where my = h2/ey with ged(hg,e3) = 1. For
each ¢ of A,(y) there is root of the ramification polynomial of ¢ (z) with —1 + 5,/8; ~

’

psl m2

e? . With this we obtain the corresponding roots of the associated polynomial B, (y) €
K[ ] of Ty:

(@t (el e ()"
ho o . ha - ﬁ :
1 (al apsl)

This proofs (c). As € — € is an automorphism of K the splitting fields of A,(y) and B,(y)
are isomorphic, which implies (b).
To proof relation (2) we need to show that

p°l—1 o
L ) eta™ | > myptt.
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By the ultrametric inequality it is sufficient to show that for 1 <i < p*t~!

PN i i
v (( . )vzam”) > myp°l.
i

As vy, ((p?)) = 51 — (i) this simplifies to v (p)(s1 — (7)) + mai > myp; or

vi(p)(s1 = vp(i))
Pt —i

> my.

By Lemma 4.2 we have > ve) > > my. So it is sufficient to show that

1= (p—1)

vi(p)(s1 = w(@) o vip)
pr—i T pri(p—1)

which is equivalent to
S1 __ g
Pt =i
P (p— 1)(s1 — 1p(d))
We write i = ap” with pta and v < s; and obtain

p(p™ — i) o _pp=p) _ p U1
prp—1Ds =) = prlp—Dsi—v) p—1 p7(s1—v)
Cp 1-(pr -/
p—1 s$1— v 1—-(1/p) s1—w

1 1 1

= (1+—-+... <1
p pr—v—1) s —v

This completes the proof. 0]

Theorem 6.2. The ramification polygon rp(L;_1/L;) consists of exactly one segment, which
corresponds to the segment S; of rp(L/K) as follows:
(a) The slope of rp(L;_1/L;) is equal to the slope of S;.
(b) The associated inertias of rp(L;_1/L;) and S; are equal.
(¢c) For each root § of the associated polynomial A,(y) of S; the element 6" is a root
of the associated polynomial of rp(L;_1/L;).

Proof. The minimal polynomial of a; over L, is [, (z — a;). So the slope of rp(Lo/L;) is
equal to the slope of S;. By the Theorem of the Product [14, 3] the associated polynomial of
rp(Lo/L1) is A;(y). Thus (a), (b), and (c) hold for i = 1. The claims (a), (b), and (c) follow
by induction on ¢ by Lemma 6.1. O

7. SPLITTING FIELDS

In order to determine the Galois group of an Eisenstein polynomial ¢(x) we look at
its splitting field. If the ramification polynomial of ¢(x) consists of one segment, we can
explicitly construct the splitting field of ¢(z). In the general case we consider the splitting
fields of the subfields corresponding to the segments of the ramification polygon and obtain

the splitting field of ¢(x) as a p-extension over their compositum.
11



Ramification Polygons with One Segment. Assume that the Newton polygon of p(z)
is a straight line. It follows from Lemma 4.1 that this can only be the case if either p t n or
n = p™ for some positive integer m. Since we have treated the case p f n in section 2, we
assume n = p".

The tamely ramified subfield of the splitting field of ¢(z) is the splitting field of the
ramification polynomial p(x) of ¢(x). We first consider the splitting field of such a polynomial

p(x) whose degree is not divisible by p.

Lemma 7.1. Assume that the Newton polygon of p(x) € OL|x] consists of one segment of
slope —h/e with ged(h,e) = 1 = ae + bh for a,b € Z and ged(e,p) = 1. Assume that its
associated polynomial A(y) € Lly] is square free and let f be its associated inertia. Let |/L
be the unramified extension of degree lem(f, [L(C.) : L]) and let e € O, with A(—e) = 0. Then

N = ( —(—€)b7r>
is the splitting field of p(x)

Proof. Denote by A(x) € O[x] a lift of A(y). Let M/K be the minimal unramified extension
over which A(y) splits into linear factors, say A(y) = (y — ) ... - (¥ — Ynse) over M. Let
N = M(8,(.) where 3 is a root of p(z) and (, is an e-th root of unity. Let v = 3¢/7" then
A(y) = 0. The field N is the splitting field of p(z), if p(z) or equivalently 2 Eff/”l, splits into
linear factors over N. We obtain

pBr) _ <xe — l) (xe— M> mod 7N On|7],

(ymh)rie = gl g
where my denotes a uniformizer in the valuation ring Oy of N. As ged(e,p) =1 for 1 <i <
n/e the polynomials x¢ — 77 are square free over N. Because (. € N, they split into linear

p(Bx)
(,Yﬂ-h)n/e
that p(x) splits into linear factors over N, thus N is the splitting field of p(x).

Over M the polynomial p(x) splits into irreducible factors 0;(x) = 37°_, 0; ;27 (1 < i < n/e)

factors over N. Hensel lifting yields a decomposition of into linear factors. It follows

where 6; o = —v;7" mod (7"*1). By Proposition 2.1 the extensions generated by the 6;(z) are
isomorphic to the extensions generated by the polynomials 2¢ + (—v;7")’7% = 2¢ + (—v;)’7
with ae 4+ bh = 1. O

Lemma 7.2. Let u a power of p. Let F(x) = Y.1_, a;z” € F,[z] be an additive polynomial
and assume e € N is a divisor of u — 1 and of all p* — 1 for all 1 <1 < r with a; # 0. If
1 € F, is a root of G(z) = Y_7_,a;x® =Y/ then F(z) splits into linear factors over F,, if
and only if G(x) splits into linear factors over F,.

Proof (by Peter Miiller). Clearly, if F'(x) splits into linear factors then G(z) splits into linear
factors, as the roots of G(x) are powers of the roots of F'(x).

Let E be the splitting field of 2¢ — 1 over F,. Since e | u — 1 we have £ C IF,. Let M be
the set if roots of F'(z) in the algebraic closure of F,. As F(x) is additive M is additively
closed. Furthermore, if A € E and v € M then Av € M, because we had assumed that E is
a subfield of I for all 1 <4 <r with a; # 0. Hence M is an E-vector space.

For each 0 # v € M the element v¢ is a root of G(x) and therefore v¢ is contained in
F,. So v*®=1) =1 and, as E contains the e-th roots of unity, v*~! € E*. Thus there exists
Ay € B with v* = A\ v.

12



Now assume that v € M but v ¢ E. As G(1) =0 we have 1 € M. It follows from
Ay +1) =+ 1) =0v"+1"=Av+1

and the linear independence of 1 and v, that 1 = A1) = A,. Hence M C F,, so F(x) splits
into linear factors over IF,,. O

Theorem 7.3. Let p(z) € Oklx] be an Eisenstein polynomial of degree np™ and assume
that its ramification polygon rp(p) consists of one segment of slope —h/e where ged(h,e) =
1 =ae+bh for a,b € Z. Let « be a root of p(x), L = K(a) and A(y) € L[x] the associated
polynomial of rp(p) with associated inertia f. Then

N = ( —(5b)a>

is the splitting field of ¢(x) where /L is the unramified extension of degree lem(f, [L(C.) : L])
and € € K is arbitrary with A(—¢g) = 0.

Proof. By the construction of the ramification polynomial p(x) the splitting field of p(z) over
L is the splitting field of ¢(z) over K. To be able to use Lemma 7.1 to find the splitting field
of p(z), we need to show that A(y) is square free.

Let p(z) = Y i, pir’ € Ok[z] be the ramification polynomial of ¢(x). Then the associated
polynomial to rp(yp) is

(n—1)/e - (nD)/e ‘ ‘
Ay) = Ay = Z pjeah(J—(n—l)/e)yJ e L[yl
j=0 §=0

We consider the polynomial B(z) = Y1 | B;x' = xA(yx®) for a root 7 of A(y). It follows
from the construction of A(y) that A; # 0 if the corresponding coefficient p;. of p(x) yields
a vertex of rp(p). By Lemma 4.1 if B, # 0 then ¢ = p® for some s € {0,...,m}. Thus
B(x) is an additive polynomial. Furthermore B'(z) = B, = A,, so ged(B(x),B'(z)) = 1
and therefore B(x) and A(x) are square free.

It remains to be shown that lem(f, [L(¢.) : L]) is the degree of the splitting field of A(y)
over F, = K. Because the associate inertia f is the degree of the splitting field of A(y)
over F, and as e | (¢/ — 1) this follow from Lemma 7.2 with u = ¢/, F(z) = B(z) and
G(z) = A(yz). O

The General Case. In the general case, that is when rp(y) consists of more than one
segment, ramification polygon and associated polynomials do not provide enough information
to describe the splitting field completely. But we can use the results for one segment and the
correspondence of theorem 6.2 to give a subfield T, such that the splitting field of ¢(z) is a
p-extension over T. In other words, the field T contains the maximal subfield of the splitting
field, which has degree coprime to p over the ground field.

Theorem 7.4. Let p(x) = 2™ + S0 g’ € Ok[x] be Bisenstein of degree n = ep™ with
pteandm > 0. Assume the ramification polygon rp(p) of p(z) consists of £ + 1 segments
Sty Sepr. For1 < i</ let

e m; = —h;/e; be the slope of S; with ged(h;,e;) =1 = dse; + bh; for d;,b; € Z,

e A;(y) € Okly| be the associated polynomial and f; associated inertia of S;,

e v; € K such that A;(y;) =0, and

o v, =0b-e-p"t +n+ 1.

13



Moreover we denote by | the unramified extension of K of degree

f = lcm(fh RN ff+17 [K(Ce1> : K]v BRI [K(geg) : K])
and by N the splitting field of p(x). Let a be a root of p(z) and K(ar) =Ly DLy D -+ D
Ly D K as in Theorem 6.2 be the tower of subfields corresponding to rp(yp). Then:
(a) The field

=1 (?/7{%, s /0 %o, f/%) Jor1<i</{

is a subfield of N/K, such that N/T is a p-extension.

(b) For 1 <i</{—1 the extensions TL;_1/TL; are elementary Abelian.

(c) The extension T /K is Galois and tamely ramified with ramification index eg-lem(eyq, . . ., ef).
Furthermore [T : K] < n?.

Proof. Assume the that the roots a« = ay, ..., a, of p(x) are ordered as in Lemma 5.2 For
1 < i < ¢ we have L; = K(;) with 8; = a1 ---a,:). The conjugates of 3; are of the form
BZ(]) — a(j—l)p5i+1 ..... ajpsi-

Theorem 7.3 yields the normal closure N; of L;,_;/L;. By Theorem 6.2 we can use e;, b,
and f; of the segment S; when determining N;. If €; is a root of A,(y) then, by Theorem 6.2

(c), we get
=1 (e

with 1;/L;_; unramified of degree lem(f;, [L;i_1(¢,), Li—1]) and —d; € O, a lift of a root of the
associated polynomial to rp(L;_1/L;). Furthermore N;/L; is normal. By Lemma 8.1 the first
ramification group and therefore the wildly ramified part of N;/L; is elementary Abelian.
For the tamely ramified extension Ly/K we set Nyp1 = 1 = Lo((ep)-
We now collect all unramified extensions over K and consider the tower of extensions

ILDIL; D---DIL, DI DK

By the definition of | the extensions IN;/IL; are Galois an totally ramified and their tamely
ramified part IN;/IL;_; is generated by z¢ + (—1)b¢; bt lg
Similarly to the unramified parts we now con81der the tamely ramified parts over . The

minimal polynomial of \/ el h 1) b:)5;_1 over | is the norm of its minimal polynomial of
N;/l;:

NiL,_ 1 (SC + ((— pl 1)b @'71)

BN ([T .
((—1)1’2'6?”) 1) 1 (—1)"¢@p. The product of the conjugates of
Bi—1 is up to sign equal to [, oy = £¢g. So

T = ( (—1)”i€?ipn%00>

is Galois and the tamely ramified part of IN;/I (1 <1 < ¢). Each of these extensions contains
[/L;/1. The compositum of the T, is T. In the new tower of extensions

TL=TLy,DTL; D---DTL; DTDIDK
14

and its constant term is



the extension T/K is Galois, because it is the compositum of Galois extensions. Also
TL; 1/TL; is an elementary Abelian p-Extension which proofs (b). It follows by induction
that N/T is a p-extension.

The ramification index of T /K follows from Abhyankar’s Lemma (see, for example, ??chapter
5 §2]nark, as T is the compositum of the tamely ramified extensions T,;/K. A first, obvious,
bound for [T : K] is e - [K((,) @ K] - [[n: with nge; f; - [K((,) : K]. By Theorem 6.2 we can
use the extension L;_;/L; to estimate n; for 1 <i < ¢. We obtain

¢

Hni < <ps1p32751 . _psé*55—1)2 _ (pse)2 _ (pm)Q
i=1
Furthermore e - [K((,,) : K] < €3 which implies (c). O

8. GALOIS GROUPS

In the case of an Eisenstein polynomial ¢(z) with one-sided ramification polygon we use
the results of section 7 and the well known structure of Galois groups of tamely ramified
extensions (theorem 2.3) to give an explicit description of Gal(y) .

Recall, that we denote the slope of the ramification polygon by —h/e (ged(h,e) = 1) and
that the degree of p(z) is equal to p™. Denote by N the splitting field of ¢(z), by L the subfield
generated by a root of p(z), and by T the maximal tamely ramified subfield of N/K. By
Lemma 7.1 T/K has ramification index e and its inertia degree f is determined by the degrees
of the irreducible factors of the associated polynomial over K. Set G = Gal(p) = Gal(N/K),
H = Gal(N/L), and let G; <G be the first ramification subgroup of N/K. Then G = G; x H
holds, as L and T satisfy the conditions LNT = K and LT = N. Because H is the Galois group
of a tame extension, its structure is well known (Theorem 2.3). It remains to determine the
group (7 and the action of H on G;.

We denote by G; the i-th ramification subgroup of GG. In the following, we examine the
ramification filtration G > Gy > G; > ... of G.

Lemma 8.1. The ramification filtration of G = Gal(p) is
GZGQZGlzGQZ...:Gh>Gh+1:{id}
The group G1 = Gal(N/K is isomorphic to the additive group of Fym.

Proof. Let my be a prime element of N. We have to show the equality I/N(Wﬁ —7n) =h+1

for all g € G1. As N = LT the ramification polygon rp(N/T) is a line of slope —e - & = —h.

Thus vn( W'Q‘W;NWN) = h for all ¢ € G and therefore we obtain

9 _

Un(TR — TTN) = N (WN ﬂN) +un(my) =h+ 1 forall g € Gy
N

as desired. Since the quotients G;/G;.1 for i > 1 embed into the additive Group of the

residue class field of N (see [19, chapter IV]), the second statement follows from Gy = G), =

Gh/Ghit. 0

The next theorem specifies the action of H on G; and describes the Galois group G as

a subgroup of the affine group AGL(m,p). We denote by o = (mn) the maximal ideal of
15



the valuation ring Oy. The group G acts naturally on the quotients g°/p‘™! which are, as
additive groups, isomorphic to the additive group of the residue class field of N. Furthermore,

L 3 )
0;: Gi/Gir1 — (9'/0" +) 1 gGi = (W—N - 1) +p'
N
embeds each quotient G;/G;,; into ©'/p""! (see again [19, chapter IV]).

Theorem 8.2. Let p(x) € Oklx] be an Eisenstein polynomial of degree p™, whose ram-
ification polygon consists of one single segment of slope —% with ged(h,e) = 1. Then
Gal(p) = Gy x H, where G is the first ramification group and H corresponds to the mazimal
tamely ramified subfield of the splitting field of p(x) (see Proposition 7.3). Moreover, Gal(p)

18 1somorphic to the group
G ={tay: (F,)" = (F,)":x— za+v|aecH <GL(m,p), ve (F,)"}

of permutations of the vector space (F,)™, where H' describes the action of H on ©,,(Gp/Ghi1)
" /"L (see definition above).

Proof. We have already seen, that Gal(yp) = Gy x H. If Gi={sy:z—z+v|ve(F )"}
and H = {u, : x — za | a € H'} then G = G x H where the action of H on Gy is the
multiplication of a vector by a matrix: sy* : x — (ra™ +v)a = z +va. First of all, we have
G1 G1 = Gy /Gpy1 by Lemma 8.1.

Now, we relate the actions of H on p"/ph+!

and on (G;. The injective homomorphism
g

O :Gh/Ghy1 =G — """ 1 g <:—E - 1) mod "1

is a H-homomorphism, which means, that ©,(g)" = ©,(¢%) for g € G1,b € H. To see that,
let 4 = 7n(1 + §) with § € p". Then ©,(g)" = 6° mod p"*!. For computing ©,(¢") =
b

™ h+1 b=l _ - x : g® _ _b7lgb _ b o_
(ﬂ— — 1) mod p"*!, set my, = wne with ¢ € Of and consider 7y, = 7y = (mne)9’ =

(m39)?. This is modulo " congruent to (7€)’ = (7n(1+6)e)® = (mne)’(140)° = N (1+0°)
which proves the assertion.

It follows, that H acts on G in the same way as it acts on ©,(G;) < o"/p"*!, where
both groups are isomorphic to (F,m,+). Because the action on ©,(G;) must be faithful, the
action on G is faithful, too. Let H’ be the subgroup of GL(m p), which describes the action

of H on ©,,(Gy). Then H =~ H' = H and thus Gal(p) = G. O
Remark 8.3. Another way to describe the Galois group is as a finitely presented group:

- sezl,tf:s”,st:s lai,ai] =1,
Gal(p) = <3,t,a1,...,am a =1,a5=s;,al=t;for1<i<j<m [~
Here s and ¢ generate a subgroup isomorphic to H and ay, . . ., a,, generate a normal subgroup

isomorphic to G;. The number e is the denominator of the slope of rp(¢) and f is equal
to lem(f, [K((.) : K]), where f; denotes the associated inertia. The integer r fulfills the
condition A(¢") = 0 for a primitive (¢/ — 1)-th root of unity ¢ and the associated polynomial
A(y) € L[y] (compare lemma 7.1 and theorem 2.3). The elements s; and t; are words in
ai,...,a,. They are determined by the action of the generating automorphisms of H on
On(G1) = OK(Gr/Ghi1) < o/

16
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In both descriptions of Gal(¢) we need a little computation to get the action of H on
©,(G1) and therefore the matrix group H' (or the elements s; and t;). As we have two
generators of H explicitly as automorphisms of N/L (see 2.3), we can determine their action
on p"/E"1. We use the representation of H of dimension f-f over F,, where f denotes the
inertia degree of the ground field K.

Now, we have to find the submodule ©,(G1) = Fyn of the H-module (p"/p"*!, +) = F/,
as, in general, g5 > p™. In the following lemma we show that ©(G;) can easily be computed
form the zeros of the associated polynomial A(y) € K[y]. Recall that the splitting field N of
¢(z) € Oklx] can be represented in the form N = L({, my) = K(a)(¢, mn) with my = /("
and let d = # be the degree of the associated polynomial A(y).

Lemma 8.4. Let vy ,...,7, be the zeros A(y) in N and a,b € N with ae —bp™ = 1. Then:

(a) For 1 <i <d the residue class field N contains the e-th roots of

by Vg Ve
(b) The images of Gy under ©y, are

{0+ " aymh + "1 <i<d1<j<el},

5. .
=i which we denote

where ;. ; denotes a lift Oflij e N to Oy.

Proof. (a) The roots —1 + 2 (s < i < p™) of the ramification polynomial p(x) have N-
valuation h and therefore the form &rfy for some ¢ € OfF. By Lemma 3.1 the roots of A(y)

are of the form .
((éﬂﬁ)e) _ ((éw_a) > e

al al

(b) The homomorphism ©;, : G,/Gri1 — (9"/9" + 1) is independent of the choice of
the prime element. As in the proof of Lemma 4.4 we therefore can use the prime element
7y = a%/B where 3 is an uniformizing element of T. Also as in the proof of Lemma 4.4,
we use the representation o;/a = 1+ da//¢ with v(§;) = 0 for the roots of p(x). Note that §
and o/¢ in general are not elements of N.

Now we have for o € GG, because p 1 a, that

o) el (o

™ B _§5_ «

) —1=adae+ ...

The image ©},(c) is the coset of ada’/*+-. .. in " /wp"*!. In order to find a representative by

elements in N for this class we start with £+/ C’“Ozh = §a¢ which is equivalent to § = /" "
Thus, as £ € Of:

/
h
%,NN) —1=al~\/¢" \e/ah+-~- = afml + - - = aénl mod "
Since each of the d = (p™ — 1)/e roots of A(y) give e elements £, we have, together with
0+ ©"*1, described all images of ©y,. O

Remark 8.5. We use the notation from the proof of Lemma 8.4 above. The operation of the
field automorphisms s and ¢ (see Theorem 2.3) on O,(G1) are s(Ciml+ ") = (P Tigh 4 Eh+l
and t(ciﬂ.'l\zl 4 ph—&-l) — thk-l—qiﬂ.ﬁ 4 ph—l—l_
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9. EXAMPLES

We give some examples to demonstrate the calculation of Galois groups using our results.
We consider two polynomials of degree 9 over Q5 leading to different Galois groups and one
polynomial of degree 81 over Q.

In each of the examples we denote by L = K(«) the field generated by a root « of the
respective polynomial.

Example 9.1. romano exampled.1

Example 9.2. We determine the Galois group of ¢(z) = 2% + 9z + 3 € Qs[z]. The ram-
ification polygon of ¢(x) is a straight line connecting the points (0,10) and (8,0) of slope
—L = 3 Therefore the polynomial ¢(z) is not covered by Romano’s results. Let a be
a root of p(x) and L = Qz(a). The associated polynomial A(y) = y*> + 1 € L[z] = F3[z].
of the ramification polynomial p(z) € L[z] is irreducible, so its associated inertia is f = 2.
The inertia degree of the splitting field of p(z) is lem(2,4) = 4. Let ¢ be a primitive eighth
root of unity. Because ¢? is a root of A(y) = 3> + 1, Lemma 7.1 gives us N = L(¢, ¢/2a)
as the splitting field of p(z) over L, which is also the splitting field of ¢(z) over Qs (see
Proposition 7.3). Set my = /(2. By Theorem 2.3 (with e =4, f = 2 and r = 2) the group
H = Gal(N/L) is generated by the automorphisms

s:(—Cmn— Cayand t: = Gy — (n.

With Remark 8.5 we get S € GL(2,3) as the representation matrix of the automorphism of
F3, given by (" +— (' and T' € GL(2, 3) as the representation matrix of the automorphism
¢t — (3. With a basis corresponding to 1, ¢ of ©°/p° = (F32, +), we obtain

1 1 0 2
S_(l 2) andT—(1 0)

which represent the action of s and ¢ on the first ramification group G;. The matrices S
and T generate a representation of the quaternion group Jg of order 8 over F3. In this
special case we are already in the right dimension 2 and it is not necessary to search for a
submodule. Hence the Galois group of ¢(z) is isomorphic to the group

G = {top: (F3)’ = (F3)* x> za+v|ac(S,T), ve (F3)}

= Cg X Qg.
Example 9.3. Let ¢(z) = 2° + 32% + 6 € Qa[z]. Here, the ramification polygon connects
the points (0,2) and (8,0), therefore has slope —% = —1. The associated polynomial of

the ramification polynomial p(z) € L[] is congruent to z* + 2 in L[z]. As 2% + 2 splits
into linear factors over L = F3, the polynomial p(z) generates totally and tamely ramified
extensions of degree 4 of L. Hence we must add the 4-th roots of unity to get the splitting
field N = L((, v/«) (see Lemma 7.1 and Proposition 7.3), where ( is a primitive eighth root of
unity. By Theorem 2.3 (with e =4, f = 2 and r = 0) the group H = Gal(N/L) is generated
by the automorphisms

s:(—CVam CYaandt: (— G Va— Va.
18



With a basis corresponding to 1,¢ of p/p* = (Fs2, +), we obtain

1 1 10
S:(l 2) andT:(1 2)

for the action of s and ¢t on G;. Again, we are already in the right dimension and do not have
to search for a submodule. In this case S and T generate a representation of the dihedral
group Dg of order 8 over F3 and Gal(yp) is isomorphic to

G = {tow: (F3)* = (F3)’:z—zatv]|ac (S T), ve (Fs3)?}
>~ (OF x Dg.
Example 9.4. We determine the Galois group of the polynomial
o(x) = 2® +32%° + 3270 + 32%° + ... + 32" + 3 € Qs[z].

Let a be a root of ¢(x) and L = Q3(«). The ramification polygon of ¢(x) is a straight line
connecting the points (0,10) and (80,0) of slope —% = —1. The associated polynomial of

g.
the ramification polynomial p(z) € L[z] is
Aly) =y +2=(+ 1)+ +.. )" +...) € Lla].

Hence the associated inertia is 4. With [Q3((s) : Q3] = 2 we obtain the inertia degree
f =lem(4,2) = 4 of the splitting field. So T = Fsi. Let ¢ be a (3* — 1)-th root of unity.
Because ¢ = 1 is a root of A(y) = y'°+2, Lemma 7.1 gives us N = L(¢, /) as the splitting
field of p(z) over L, which is also the splitting field of ¢(x) over Qs (see Proposition 7.3).
By Theorem 2.3 (with e = 8, f = 4 and r = 0) the group H = Gal(N/L) is generated by the
automorphisms
s (G Va— (OVaand t: (- 3, Ya— Ja.

By Remark 8.5 we obtain S € GL(4, 3) as the representation matrix of the automorphism of

F3, given by (" +— ¢'%" and T' € GL(4, 3) as the representation matrix of the automorphism
¢t — (3. With a basis corresponding to 1, ¢, (2, ¢ of p/p? = (Fsa, +), these are

102 2 1000
21 0 000 1
S=11 91 1| ™T=1]7 11,
112 2 0211

Hence the Galois group of ¢(z) is isomorphic to the group
G = {tap: F3)' = (F3)' x> azat+v|ac(S,T), ve (Fs)'}
> (Of % (S, T).
of order 3*- 8.4 = 2592.
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